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ABSTRACT 

Our study employed the detection of 5-hydroxymethyl cytosine (5hmC) profiles on cell free 

DNA (cfDNA) from the plasma of cancer patients using a novel enrichment technology coupled 

with sequencing and machine learning based classification method. These classification 

methods were develoiped to detect the presence of disease in the plasma of cancer and control 

subjects.  Cancer and control patient cfDNA cohorts were accrued from multiple sites consisting 

of 48 breast, 55 lung, 32 prostate and 53 pancreatic cancer subjects. In addition, a control 

cohort of 180  subjects (non-cancer) was employed to match cancer patient demographics (age, 

sex and smoking status) in a case-control study design.  

Logistic regression methods applied to each cancer case cohort individually, with a balancing 

non-cancer cohort, were able to classify cancer and control samples with measurably high 

performance.  Measures of predictive performance by using 5-fold cross validation coupled 

with out-of-fold area under the curve (AUC) measures were established for breast, lung, 

pancreatic and prostate cancer to be 0.89, 0.84, 0.95 and 0.83 respectively.   The genes defining 

each of these predictive models were enriched for pathways relevant to disease specific 
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etiology, notably in the control of gene regulation in these same pathways. The breast cancer 

cohort consisted primarily of stage I and II patients, including tumors < 2 cm and these samples 

exhibited a high cancer probability score.  This suggests that the 5hmC derived classification 

methodology may yield epigenomic detection of early stage disease in plasma. Same 

observation was made for the pancreatic dataset where >50% of cancers were stage I and II and 

showed the highest cancer probability score. 

INTRODUCTION  
 
 Detection of point mutations or copy number variations in cfDNA or circulating tumor DNA 

(ctDNA) has revolutionized the molecular characterization of tumors. However, strategies 

which interrogate dynamic and temporal genome-wide signals in a liquid biopsy context may 

address precision medicine’s needs to improve cancer care 1.  Exploiting the epigenetic 

regulation of gene expression exemplifies one systems biology approach to deciphering cancer 

pathways for biomedical applications.  Genome-wide mapping of methylation or 

hydroxymethylation of cytosine residues (5mC and 5hmC) in a CpG context from tissues and 

cfDNA has clarified the regulatory effects of 5mC or 5hmC.  These suppressive or activating 

effects, for 5mC and 5hmC respectively, on gene expression in cells of diverse tumor types and 

their inflamed microenvironments 2–4, have yielded new therapeutic targets5,6 and candidate 

biomarkers potentially useful for clinical decision-making7–10.  Such investigations of non-small 

cell lung cancer (NSCLC) have clarified the contribution of 5mC and 5hmC at gene loci and 

promoter regions or CpG islands to tumor heterogeneity11, pre-malignant lesions12 and 

regulation of PDL1 expression13. Statistical analysis and machine learning approaches 

incorporating methylation states have yielded candidate algorithms for discrimination of clinical 
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cancer states8,14.  Studies of breast malignancies15–17  and pancreatic cancer have identified 

similar perturbations of 5mC or 5hmC in tissue or cfDNA. Comprehensive analyses of multiple 

cancer types have also yielded a candidate pan-cancer plasma cfDNA methylation panel 

associated with clinical outcomes20-21.             

Development of cfDNA 5hmC biomarkers for cancer management must also address the 

molecular complexity of individual patients since each comprises a blend of demographic 

and/or clinical conditions known to impact epigenetic methylation states.  Specifically, patients 

with cancer reflect a population segment associated with different age-dependent risk profiles 

with a high prevalence of both obesity and tobacco use.  Analyses of peripheral blood 

mononuclear cells (PBMCs)22 and whole blood cells23  in European and Canadian populations, 

respectively, have demonstrated an age-associated decline of 5hmC levels.  In addition, the 

metabolic, physiologic and inflammatory effects of obesity, defined as a body-mass index (BMI) 

of 30 or higher24, are associated with BMI-related changes in whole blood genomic DNA 

methylation levels at 187 gene loci25 and CpG loci-specific methylation related to BMI and waist 

circumference metrics26.  Cigarette smoking has well-established associations with the 

development of diverse diseases and multiple cancer types27, including a role for DNA 

methylation in oncogenic pathways influenced by tobacco28–30.  In addition to the identification 

of candidate hypomethylated CpG sites which may mediate the effects of tobacco use on lung 

cancer31, cigarette smoking also impacts genome-wide methylation broadly that persists at a 

variety of loci for many years after smoking cessation32.  Importantly, the discrepancies in the 

composition and discriminatory performance of cfDNA 5hmC molecular classifiers for NSCLC (8, 

14) illustrate the need to consider not only tumor histologic subtypes and pathologic staging, 
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but also cohort-specific demographic metrics and disease co-morbidities in the interpretation 

of genome-wide methylation data.  Whether the epigenetic impact identified previously for 

age, obesity and smoking might also impact cfDNA cytosine methylation states, as well as the 

relationship between cfDNA 5mc and 5hmC levels33 remain unknown. However, these may  be 

collectively important challenges to overcome in the development of biomedical applications of 

5hmC classifiers.     

 In our prior work, we identified enrichment of cfDNA 5hmC signatures in exons, 3'UTRs and 

transcription termination sites in a disease- and stage-specific manner in a case-control study of 

pancreatic ductal adenocarcinoma.  To further investigate the clinical complexity of cancer 

epigenetic mechanisms mediated by the hydroxymethylome, we performed genome-wide 

interrogation of plasma cfDNA 5hmC levels to identify candidate hydroxymethlated genes or 

genomics regions.  We focused our study in three cancer types, notably, (i) in women with 

infiltrating ductal carcinoma (IDC), (ii) in lung cancer patients across the spectrum of pathologic 

stage, and (iii) in prostate and  pancreatic adenocarcinoma patients early stage using a case-

control study design.   

To control for potential confounding effects of clinical states, study cohorts were selectively 

matched for age, obesity (using established BMI metrics), and tobacco exposure using smoking 

status (current, former, never) and pack-years (defined as the product of the number of packs 

of cigarettes smoked daily by the number of years smoked).  A machine learning framework 

was used to train and validate prediction models to enable both the binary and multiple 

classification of different cancer states.  The data demonstrate that multi-gene or multi-loci 

5hmC signatures appear to be specific for each cancer, i.e., organ and subject cohorts, and 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.22.20018382doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018382


   
 

 5 

further that discrete classifiers can be found to distinguish amongst the three tumor types.  This 

suggests that large scale studies of 5hmC cfDNA levels in cancer subjects using clinically well-

annotated plasma specimens may enable the derivation of molecular signatures to classify 

and/or stratify patient cohorts along the management spectrum from early detection, i.e., 

screening, and early diagnosis to predictions of therapeutic responsiveness and disease 

recurrence.  

 

Material and Methods  

Clinical cohorts and study design – A case-control study was performed using plasma obtained 

from subjects without (termed control) and with cancer patients diagnosed with breast,  lung, 

pancreas and prostate who provided informed consent and contributed biospecimens in 

studies approved by the Institutional Review Boards (IRBs) at participating sites in the United 

States.  Plasma samples for the control cohort were obtained from subjects enrolled 

prospectively at up to 20 sites in the United States, following review and approval of the study 

protocol by each site's participating investigator(s). 

 

Cancer cohort - Plasma samples for the cancer cohort were obtained from subjects who had 

undergone management of breast, colon or lung in the United States, and also provided 

consent for use of blood specimens for archival storage and retrospective analyses.     

Criteria for subject eligibility for inclusion in the analysis included age greater than or equal to 

21 years for all subjects, with additional requirements for the cancer cohort including: 1) no 

cancer treatment, e.g., surgical, chemotherapy, immunotherapy, targeted therapy, or radiation 
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therapy, prior to study enrollment and blood specimen acquisition; and 2) a confirmed 

pathologic diagnosis . 

 

Control cohort - Subject exclusion criteria for the non-cancer cohort also included any of the 

following: prior cancer diagnosis within prior six months; surgery or invasive procedure 

requiring general anesthesia within prior month; non-cancer systemic therapy associated with 

molecularly targeted immune modulation; concurrent or prior pregnancy within previous 12 

months; history of organ tissue transplantation; history of blood product transfusion within one 

month; and major trauma within six months.  Clinical data required for all subjects included 

age, gender, smoking history, and both tissue pathology and grade, and were managed in 

accordance with the guidance established by the Health Insurance Portability and 

Accountability Act (HIPAA) of 1996 to ensure subject privacy. 

 

Plasma collection - Plasma was isolated from whole blood specimens obtained by routine 

venous phlebotomy at the time of subject enrollment.  For both cancer and control subjects,   

whole blood was collected in Cell-Free DNA BCT® tubes according to the manufacturer's 

protocol (Streck, La Vista, NE) (https://www.streck.com/collection/cell-free-dna-bct/).  Tubes 

were maintained at 15 °C to 25 °C with plasma separation performed within 24 h of 

phlebotomy by centrifugation of whole blood at 1600 x g for 10 min at RT, followed by transfer 

of the plasma layer to a new tube for centrifugation at 3500 x g for 10 min.  Plasma was 

aliquoted for subsequent cfDNA isolation or storage at -80°C.   
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cfDNA isolation – cfDNA was isolated using the QIAamp Circulating Nucleic Acid Kit (QIAGEN, 

Germantown, MD) following the manufacturer’s protocol excepting the omission of carrier RNA 

during cfDNA extraction. Four milliliter plasma volumes were used for cfDNA extraction. Eluates 

were collected in a volume of 60 µl buffer. All cfDNA extracts were quantified by Qubit dsDNA 

High Sensitivity Assay (Thermo Fisher Scientific, Waltham, MA) and quality of fragment sizes by 

Tape Station (Agilent Technologies Inc, Santa Clara, CA). 

  

5-hydroxymethyl Cytosine (5hmC) assay enrichment – Sequencing library preparation and 

5hmC enrichment was performed as described previously8.  cfDNA was normalized to 10 ng 

total input for each assay and ligated to sequencing adapters. The adapter ligated library was 

partitioned 80:20 to enable 5hmC enrichment and whole genome sequencing to be performed 

on each partition. 5hmC bases were biotinylated via a two-step chemistry and subsequently 

enriched by binding to Dynabeads M270 Streptavidin (Thermo Fisher Scientific, Waltham, MA). 

All libraries were quantified by Bioanalyzer dsDNA High Sensitivity assay (Agilent Technologies 

Inc, Santa Clara, CA) and Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific, 

Waltham, MA) and normalized in preparation for sequencing.  

 

DNA sequencing and alignment – DNA sequencing was performed according to manufacturer’s 

recommendations with 75 base-pair, paired-end sequencing using a NextSeq550 instrument 

with version 2 reagent chemistry (Illumina, San Diego, CA). Twenty-four libraries were 

sequenced per flowcell,to yield approach 20 millon paired end reads, and raw data processing 

and demultiplexing was performed using the Illumina BaseSpace Sequence Hub to generate 
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sample-specific FASTQ output. Sequencing reads were aligned to the hg19 reference genome 

using BWA-MEM with default parameters. 

 

5hmC Profile Quality Control - Subsequent to alignment, we performed a variety of quality 

control checks on the 5hmC profiles. Additionally, the 5hmC variability for each gene, in each 

sample, was compared to the median count for the same genes in the control population. Each 

sample’s range of 5hmC count was thus expressed as a relative log representation (RLR) to the 

control cohort median 5hmC values.  

 

Predictive Modelling - For the purpose of assessing the feasibility of building classifiers that can 

discriminate between cancer type and or all cancers and non-cancer samples based on the 

5hmC representation of gene bodies, we evaluated the performance of two forms of 

regularized logistic regression models, namely the Lasso and the Elastic net, which are 

commonly used in the classification context, where the number of examples are few and the 

number of features are large. See Friedman et al.36 for a description of the general Elastic net 

procedure. Software implementation of these methods can be found at https://cran.r-

project.org/web/packages/glmnet/index.html. To remove weakly represented genes, we 

excluded genes that did not have greater than 3 counts per million reads in at least 20 samples. 

This filter excludes roughly 12% of the genes. Before any fitting, genes were filtered to include 

the 65% of the most variable genes for model fitting task. 

We employed lasso and elastic net, which control the level of regularization used in the fit by 

requiring to specify hyper-parameters. Hyper-parameters were selected based on out-of-fold 
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performance on 30 repetitions of 10-fold cross-validated analysis of the training data. Out-of-

fold assessments are based on the samples in the left-out fold at each step of the cross-

validated analysis. The same approach was employed when including PCAWG 37enhancers in 

the model.  

 

RESULTS 

Clinical cohort and Study Design 

Plasma specimens were collected from 180 presumably healthy controls and 48 breast, 55 lung, 

53 pancreatic and 32 prostate cancer patients. The schematic summary of cancer cohorts, with 

the corresponding matched control cohorts, can be found in Fig 1. Study inclusion criteria for 

the cancer and controls are reported in the Material and Methods section and cohorts clinico-

pathological features description are listed in Table 1. 

 

Cancer specific predictive models for the detection of breast, lung and pancreatic cancer in 

cfDNA 

We performed regularized logistic regression analysis in order to determine whether gene-

based features are present in the breast, lung, pancreas and prostate and non-cancer cohorts 

to enable the classification of patient samples.  

For all datasets we employed 3 type of analysis: i) 65% of the genes with the most variable 

5hmC density for model selection only; ii)  PCAWG enhancers only and iii) a combined gene and 

enhancers analysis . As a regularization method we use Elastic net which require specifying 

hyper-parameters for controlling the level of regularization used in the fit. These hyper-
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parameters were selected based on out-of-fold performance on 30 repetitions of 5-fold cross-

validated analysis of the training data. Out-of-fold assessments are based on the samples in the 

left-out fold at each step of the cross-validated analysis.  Performance of all three analysis 

performances can be found in Table 2.  

The training set for genes only yielded an out-of-fold performance metric, Area Under Curve 

(AUC) of 0.89, 0.79, 0.93 and 0.83 respectively for breast, lung, pancreatic and prostate 

respectively. 

The training set for enhancers only yielded an out-of-fold performance metric AUC of 0.72, 0.8, 

0.92 and 0.82 respectively for breast, lung, pancreatic and prostate respectively .  

The training set for genes and enhancers yielded an out-of-fold performance metric, AUC of 

0.83, 0.86, 0.95 and 0.73 respectively for breast, lung, pancreatic and prostate respectively. 

Amon the 3 different methods the best performance for breast was found with using gene-only 

analysis AUC= 0.89 with an interquartile range (AUC-IQR)  of the 30 five-fold cross validation 

runs were, for breast, 0.72 – 0.92 (Fig 2A). 

The best performance for lung and pancreas was found using genes plus enhancers AUC 

respectively of 0.84 and 0.95. AUC-IQR for lung and pancreas were 0.64-0.84, pancreas 0.92-

0.96. 

Performace for prostate cancer was the highest when genes-only and enhancers-only analysis 

was employed (AUC 0.83 with and AUC-IQR of 0.71 – 0.93). 

Summary of sensitivity performance is found in Table 3.  Sensitivity, at 95% specificity, was 

calculated for each cancers for the highest model. Pancreas prediciton model had the highest 

sensitivity (83%) followed by beast (69%), prostate (64%) and lung (49%). 
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Cancer predictive models are associated with enrichment of specific biological pathways 

We sought to identify whether the features identified in the 4 cancer prediction models were 

associated with any relevant cancer biology. 

First, we noted that in breast cancer, the majority of early stage with small size tumors (<2cm) 

had the highest cancer predicted probability (Fig 3a). Same observation was made for the 

pancreas dataset (Fig. D), while for prostate and lung the highest prediction scores are spread 

across diffent stages  (Fig. 3C-E). 

Next, we inspected genes defined by the predictive models to determine if any  biologically 

relevant pathways specific for breast, lung, pancreas and prostate cancer or tumorigenesis 

more generally, was enriched  using mSigDB37 and KEGG pathway analysis. 5hmC predictive 

genes in breast were enriched in BRCA1 network, hypoxia genes signaling and early estrogen 

response genes (Table 4) .  

Using KEGG pathway analysis, predictive model in lung cancer, was found to be enriched  with 

response to necrosis factor and EGFR signaling pathway genes (Fig. 4A). Of Interest, KEGG 

pathway analysis indeitified in  the pancreatic cancer model Notch signaling pathway to be 

significantly enriched (Fig. 4B). 

 

DISCUSSION 

The aim of this pilot study was to evaluate whether cfDNA specific hydroxymethyl cytosine-

based profiles can be employed to discover candidate biomarkers that are specific for the 

detection of breast, lung, pancreas and prostate cancer.  This approach identified predictive 
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hydroxymethylated genes and gene loci and, in breast, lung, pancreas and prostate cancer 

patients. These predictive genes were found involved  in known cancer pathways such as  BRCA, 

and hypoxia in breast cancer,  EGFR and TNF  and Pholipase A2 in pancreatic cancer. In breast 

cancer, it was possible to discover a set of genes that contributed to predictive models with 

good performance in separating cancer from controls, AUC = 0.89. High probability scores from 

the gene-based prediction model in breast cancer are associated with tumor size < 2 cm, 

suggesting that despite the apparent absence of mutation in the cfDNA, that aberrant biology 

and clinical characteristics can be identified through the biomarker signatures (Fig 3A). This 

lends support to the hypothesis that relevant underlying biological transformations of early 

stage oncological disease are being employed in cancer discrimination.   

Previous studies in breast cancer have shown that a global decrease in 5hmC occurs and is 

associated with a poor prognosis16,38.  Our data show that 5hmC changes in the cfDNA from 

plasma has more nuanced changes, including increases and decreases in 5hmC, that bear the 

molecular hallmarks of breast cancer.   

Several cancer specific pathways were found to be activated in the breast cancer predictive 

model, by employing the contributing genes in the model, to measure pathway enrichment 

directly. Of note, amongst the enrichment was the hypoxia pathways. Changes in the cellular 

environment through hypoxia have been identified in breast cancer36 and associated with poor 

prognosis. Hypoxia has been shown to control methylation through TET1/3 deregulation39 

which would result in altered 5hmC patterns. Through the detection of these modulated 5hmC 

profiles in our breast cancer cohort, as found in the predictive model, we have been able to 

show that genes involved in the mediation hypoxia are implicated. 
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The best lung cancer classification, with an AUC = 0.84, was identified by  genes and enhancers, 

possibly indicating that the samples in the datasets may have a high transcriptional activity 

compared to control samples. 

Futher, our lung results compared favorably to the data of Zhang et al14, despite the fact that 

different training methods were employed as well as the apparent absence of out-of-fold 

validation in the latter study.  Another source of difference with Zhang et al is the lung cancer 

histology which may be a combination of adenocarcinoma, squamous and adenosquamous. 

Our study employed primarily adenocarcinoma samples (>75% lung cancer cohort).  

Epidermal growth factor receptor signalling pathway, a known lung-associated pathways was 

found enriched in predictive genes and enhancers in the lung dataset. Its activation is a key 

driver of lung cancer progression and the most important  target for lung cancer treatment. 

We also investigate pathway enriched in the pancreatic cancer and interestingly found NOTCH 

siganlin genes significantly enriched in the pancreatic prediction model. Indeed Notch signaling 

pathway has been showed to play critical roles in the development and progression of 

pancreatic cancer41.  

In summary, we show here a platform technology employing 5hmC signal detection coupled 

with machine learning approaches to develop methodologies that can extend toward the 

detection of specific cancers or to distinguish amongst various cancer types.  These complex 

problems can be tackled in a liquid biopsy context and provide the opportunity for the 

development of future assays of clinical utility in the earlier diagnosis of disease. 
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Figure  and Table Legends 
 
Fig 1. Summary of Cohorts included in the study 
Schematic depicting study datasets included in the study for breast, lung, pancreas and 
prostate datasets including number of controls used. Case-control design employed 1:1 ratio 
(control:cases)  
 
Fig 2.  Identification of a 5hmC signature that differentiates breast, lung, pancreas and prostate 
cancers from controls. Logistic regression algorithms were trained for each cohort. Correction 
for smoking was performed in the lung cohort. 
 
 
Fig 3. Distribution of  classification scores for individual cancer and control cohorts depicting .  A 
threshold was set by calculating the third quartile of control samples. Cancer samples are color-
coded based on stage. 
 
Fig 4. Identification of KEGG pathways identified by the A)lung cancer B) Pancreatic  prediction 
model. 
  
 
Table 1. Cohorts clinico-pathological features. Statistical analysis of differentially represented 
genes and prediction models in the lung cancer cohort were corrected for smoking status 
differences.  All cohorts were age matched 
 
Table 2. Area Under the Curve (auROC) for all cancer types 
 
Table 3. Cancer cohorts sensitivity calculated at 95% specificity 
 
Table 4. Enriched genesets in the breast cancer prediction model 
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Fig 1. Summary of Cohorts included in the study
Schematic depicting study datasets included in the study for breast, lung, pancreas and prostate datasets including number of controls used. Case-
control design employed 1:1 ratio (control:cases)
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Fig 2. Identification of a 5hmC signature that differentiates breast, lung, pancreas and prostate cancers from controls. Logistic regression 
algorithms were trained for each cohort. Correction for smoking was performed in the lung cohort.
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Fig 4. Identification of KEGG pathways identified by the A)lung cancer B) Pancreatic  prediction model.
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Table 1. Cohorts clinico-pathological features. Statistical analysis of differentially represented genes and prediction models in the lung 
cancer cohort were corrected for smoking status differences.  All cohorts were age matched.

Breast Dataset Lung Dataset Pancreas Dataset Prostate Dataset
Cancer Control Cancer Control Cancer Control Cancer Control

Total, n 48 40 55 55 53 53 32 32
Age 57.4 58 70.4 69.9 66.4 66.4 70.3 70.6
Sex (Female) 48 40 31 24 30 24 0 0
Stage

NA 1 5 2
I 25 9 11 18

II 17 1 19 12
III 4 23 6 1
IV 1 17 15 1

Histology
Invasive 

Adenocarcinom
a 48 35 53 32

Squamous Cell 
Carcinoma - 20

Smoking
Current 2 (4.2%) 4 (10%) 15 (27.2%) 15 (27.2%) 5 (25%) 4(10%) 3 (9.4%) 4 (12.5%)
Former 8 (16.7) 6 (15%) 32 (58.2%) 32 (58.2%) 3 (15%) 15(38%) 9 (28.1%) 14 (43.75)

Never 38 (79.1%) 30 (75%) 8 (14.6%) 8 (14.6%) 12 (60%) 21 (52%) 20 (62.5%) 14 (43.75)
BMI

median 30.7 29.5 31.1 28.4 25.4 28.6 27.8 28.7
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Cancer type 95% Specificity

Breast 69%

Lung 49%

Pancreas 83%

Prostate 64%

Table 3. Cancer cohorts sensitivity calculated at 95% specificity

Gene Body 
Only

Enhancers 
Only

Gene body + 
Enhancers

Breast 0.89 0.72 0.83
Lung 0.79 0.78 0.84
Pancreas 0.93 0.92 0.95
Prostate 0.83 0.83 0.72

Table 2. Area Under the Curve (auROC) for all cancer types

Table 4. Enriched genesets in the breast cancer prediction model

Description P-value

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.0001

BRCA1_PCC_NETWORK 0.01

HALLMARK_HYPOXIA
0.04
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