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 2 

Abstract 44 

Background: Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. 45 

Large genetically informative cohorts of individuals with ASD have led to the identification of three 46 

common genome-wide significant (GWS) risk loci to date. However, many more common genetic 47 

variants are expected to contribute to ASD risk given the high heritability. Here, we performed a 48 

genome-wide association study (GWAS) using the Simons Foundation Powering Autism 49 

Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and 50 

molecular mechanisms underlying risk for ASD.  51 

Methods: We performed an association study on 6,222 case-pseudocontrol pairs from SPARK 52 

and meta-analyzed with a previous GWAS. We integrated gene regulatory annotations to map 53 

non-coding risk variants to their regulated genes. Further, we performed a massively parallel 54 

reporter assay (MPRA) to identify causal variant(s) within a novel risk locus. 55 

Results: We identified one novel GWS locus from the SPARK GWAS. The meta-analysis 56 

identified four significant loci, including an additional novel locus. We observed significant 57 

enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that 58 

disruption of gene regulation during neurodevelopment is critical for ASD risk. The MPRA 59 

identified one variant at the novel locus with strong impacts on gene regulation (rs7001340), and 60 

expression quantitative trait loci data demonstrated an association between the risk allele and 61 

decreased expression of DDHD2 (DDHD domain containing 2) in both adult and pre-natal brains.  62 

Conclusions: By integrating genetic association data with multi-omic gene regulatory 63 

annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated 64 

that DDHD2 is a novel gene associated with ASD risk. 65 

  66 
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 3 

Introduction 67 

 68 
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by 69 

characteristic social deficits as well as ritualistic behaviors (1). Because ASD is highly heritable 70 

(~50-80%) (2–6), a number of studies have been conducted to identify both rare and common 71 

genetic variants contributing to risk for ASD. While previous studies have successfully identified 72 

rare de novo presumed loss of function mutations leading to risk for ASD (7–13), these de novo 73 

variants do not explain the large heritability and therefore are missing an important component of 74 

ASD risk.  75 

 76 

To identify common inherited genetic risk factors, genome-wide association studies (GWAS) have 77 

now accumulated over 18,000 individuals with ASD and have begun discovering genome-wide 78 

significant (GWS) loci that explain some of the inherited risks for ASD (14). The three GWS ASD 79 

susceptibility loci discovered previously explain in total only 0.13% of the liability for autism risk, 80 

whereas all common variants are estimated to explain 11.8% of liability (14). Therefore, there are 81 

more common risk variants to be discovered, which requires larger sample sizes to provide 82 

sufficient power to detect risk variants of small effect (15–17). The newly established genetic 83 

cohort, SPARK (Simons Foundation Powering Autism Research for Knowledge) 84 

(https://sparkforautism.org/) is planning to collect and analyze data from 50,000 individuals with 85 

ASD (18). SPARK has recently released genotype data for over 8,000 families or singletons with 86 

ASD, which we utilize here to increase the power of ASD GWAS.  87 

 88 

Once we identify GWS loci, the critical next step is to understand their biological impact. This is 89 

especially challenging because most GWAS identified loci for neurodevelopmental disorders and 90 

other traits are located in poorly annotated non-coding regions with presumed gene regulatory 91 

function (19). In addition, most loci are comprised of multiple single nucleotide polymorphisms 92 
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(SNPs) that are often inherited together, which makes it difficult to identify the true causal 93 

variant(s) and their regulatory effects (20,21). To overcome these problems, various experimental 94 

validation tools have been developed (22–24). One of these tools, a massively parallel reporter 95 

assay (MPRA), simultaneously evaluates allelic effects on enhancer activity for many variants. In 96 

this assay, exogenous DNA constructs, harboring risk and protective alleles at an associated 97 

variant, drive the expression of a barcoded transcript. Differences in barcode counts between the 98 

risk and protective alleles indicate the regulatory function of that variant (23,24). This assay thus 99 

demonstrates the regulatory potential of individual SNPs and provides evidence of the causal 100 

variants within an associated locus. 101 

 102 

Though fine-mapping approaches can suggest causal variants at a locus, they cannot identify 103 

target genes affected by those variants. Several approaches are designed to link variants to 104 

genes they regulate including expression quantitative trait loci (eQTL) (25–27) as well as 105 

chromatin interaction (via Hi-C) assays (28–30). Recently, we developed Hi-C coupled MAGMA 106 

(H-MAGMA) which predicts genes associated with the target phenotype by integrating long-range 107 

chromatin interaction with GWAS summary statistics (31). Together with existing eQTL resources 108 

in the adult and fetal cortex (32,33), it is possible to link variants associated with risk for ASD to 109 

target genes and functional pathways. 110 

 111 

In this study, we increase the sample size of existing ASD GWAS by adding 6,222 cases-112 

pseudocontrol pairs from the genetically diverse SPARK project. Our analysis identified five loci 113 

associated with risk for ASD including two novel loci. For one novel locus identified, we used an 114 

MPRA to identify the causal variant within the locus. Further, we integrated multi-level functional 115 

genomic data obtained from the developing brain, including eQTLs, chromatin interactions, and 116 

regulatory elements, to identify DDHD2 as a candidate gene involved in ASD etiology at the 117 

MPRA-validated locus. 118 
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Methods and Materials 119 

This study (analysis of this publicly available dataset) was reviewed by the Office of Human 120 

Research Ethics at UNC, which has determined that this study does not constitute human 121 

subjects research as defined under federal regulations [45 CFR 46.102 (d or f) and 21 CFR 122 

56.102(c)(e)(l)] and does not require IRB approval. 123 

SPARK dataset 124 

SPARK participants who received any of the following diagnoses: autism spectrum disorder [ASD], 125 

Asperger syndrome, autism/autistic disorder and pervasive developmental disorder-not otherwise 126 

specified (PDD-NOS) were recruited. The samples were enriched for affected individuals whose 127 

parents were also available to participate. Participants registered for SPARK online at 128 

www.SPARKforAutism.org or at 25 clinical sites across the country by completing questionnaires 129 

on medical history and social communication as described here: https://www.sfari.org/spark-130 

phenotypic-measures/. 131 

In the current study, participants were drawn from the SPARK 27K release (20190501 ver.) 132 

through SFARIBase (https://www.sfari.org/resource/sfari-base/), which included 27,290 133 

individuals (who were genotyped with a SNP array and/or whole-exome sequencing [WES]) with 134 

phenotype information such as sex, diagnosis, and cognitive impairment. The data included 135 

probands and their family members if applicable (e.g. 3,192 quads (2,798 families with unaffected 136 

siblings, 394 with multiple affected siblings), 2,486 trios, and 2,448 duos) (Supplementary Figure 137 

S1). Twenty families in this release overlapped with the Simon’s Variations in Individuals Project 138 

(SVIP) cohort and were subsequently removed for the genome-wide association analysis 139 

(Supplementary Figure S2) since the SVIP cohort has targeted probands with 16p11.2 deletions. 140 

We also obtained whole-exome sequencing (WES) data to estimate the imputation accuracy. 141 

Details on genotyping and whole-exome sequencing data, and pre-imputation quality control are 142 

provided in Supplementary Methods.  143 
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Genotype phasing and imputation 144 

Phasing was performed using EAGLE v2.4.1 (34) 145 

(https://data.broadinstitute.org/alkesgroup/Eagle/) within SPARK samples. Before making 146 

pseudocontrols, we removed two individuals, one each from two pairs of monozygotic twins with 147 

Identity-By-Descent (PI_HAT)>0.9, by selecting the individual with lower call rates. We then 148 

defined pseudocontrols by PLINK 1.9 (35) (www.cog-genomics.org/plink/1.9/) for trios by 149 

selecting the alleles not inherited from the parents to the case (36). We re-phased all SPARK 150 

samples that passed our QC measures with pseudocontrols. Imputation was performed on the 151 

Michigan imputation server (37) (https://imputationserver.sph.umich.edu/index.html). Since 152 

SPARK participants are genetically diverse, we imputed genotypes using the Trans-Omics for 153 

Precision Medicine (TOPMed) Freeze 5b (https://www.nhlbiwgs.org/) reference panel which 154 

consists of 125,568 haplotypes from multiple ancestries (38,39). Imputation accuracy relative to 155 

WES was assessed using a similar approach to previous work (40) (Supplementary Figure S4) 156 

as described in Supplementary Methods. 157 

Genome-wide association analysis and Meta-analysis with iPSYCH-PGC 158 

study 159 

We tested association within the SPARK all case-pseudocontrol pairs (full dataset; 160 

Supplementary Table S1) using PLINK2 generalized linear model (--glm) for SNPs with MAF ≥ 161 

0.01 and imputation quality score from minimac4 (R2) > 0.5 (Supplementary Figure S4). In this 162 

model, we did not include any covariates since cases and pseudocontrols are matched on 163 

environmental variables and genetic ancestry. We performed secondary GWAS analyses by 164 

subsetting to only specific ancestry groups. We called ancestry using multidimensional scaling 165 

(MDS) analysis with 988 HapMap3 individuals and one random case from each trio 166 

(Supplementary Figure S3, Supplementary Table S2). Ancestry of individuals from SPARK was 167 

called as European, African or East Asian ancestries if they were within 5 standard deviations of 168 
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 7 

defined HapMap3 population (CEU/TSI; YRI/LWK; or CHB/CHD/JPT, respectively) centroids in 169 

MDS dimensions 1 and 2. Population-specific GWASs were carried out using the same 170 

association model as described above for the SPARK all ancestries dataset. Meta-analyses with 171 

iPSYCH-PGC study (14) were performed by METAL (release 2018-08-28) (41). Additional 172 

information for iPSYCH-PGC summary statistics is provided in Supplementary Methods.  173 

Investigation of pleiotropic effects for ASD loci 174 

The pleiotropic effects of identified loci were investigated for phenotypes available in the 175 

NHGRI/EBI GWAS catalog (downloaded October 22, 2019) (42) (Supplementary Methods).  176 

Linkage Disequilibrium Score regression analysis 177 

LD SCore regression (LDSC) (v1.0.0) (43,44) was used to estimate genome-wide SNP based 178 

heritability, heritability enrichment of tissue/cell-type specific epigenetic states, and genetic correlation 179 

across phenotypes for GWAS meta-analysis result (Supplementary Methods). Prior to the analyses, 180 

we filtered SNPs to those found in HapMap3 and converted to LDSC input files (.sumstats.gz) using 181 

munge_sumstats.py. The pre-computed LD scores for Europeans were obtained from 182 

https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2. For all LDSC analyses, 183 

we used individuals from European ancestry as described in the “Genome-wide association analysis 184 

(GWAS)” section above.  185 

Estimating polygenic risk score 186 

Polygenic risk scores (PRSs) were calculated based on the iPSYCH-PGC study (14) using 187 

PRSice-2 (45) (https://www.prsice.info/). Details on generation of PRS, sex-stratified and family-188 

type PRS, and parental origin PRS analyses are provided in Supplementary Methods. 189 

 190 
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H-MAGMA  191 

SNP to Ensembl gene annotation was carried out by Hi-C coupled MAGMA (H-MAGMA) 192 

(https://github.com/thewonlab/H-MAGMA) by leveraging chromatin-interaction generated from 193 

fetal brain Hi-C (46) as previously described (31). Details on H-MAGMA and functional analyses 194 

of H-MAGMA genes are provided in Supplementary Methods.  195 

Construction of a Massively Parallel Reporter Assay (MPRA) Library  196 

Because the novel SPARK associated locus (chr8:38.19M - chr8:38.45M) was also detected in a 197 

previous schizophrenia GWAS which is better powered, we obtained credible set SNPs for the 198 

locus based on schizophrenia GWAS results (47) (see Supplementary Methods). Ninety-eight 199 

credible set SNPs were detected in this locus. We obtained 150bp sequences that flank each 200 

credible set SNP with the SNP at the center (74bp + 75bp). Because each SNP has risk and 201 

protective alleles, this resulted in 196 total alleles to be tested. We seeded HEK293 cells (ATCC® 202 

CRL-11268™) in 6 wells (total 6 replicates) to be 70-90% confluent at transfection. We used 203 

lipofectamine 2000 (Invitrogen cat#11668) with our final MPRA library following the 204 

manufacturer's instructions. Additional information for construction of MPRA library is available in 205 

Supplementary Methods. MPRA data was analyzed by an mpra package in R  (48,49)  206 

(https://github.com/hansenlab/mpra) with more details in  Supplementary Methods. 207 

Functional annotation of rs7001340 locus with multi-omic datasets 208 

To investigate the target genes affected by allelic variation at rs7001340, we used two expression 209 

quantitative loci (eQTL) datasets derived from fetal cortical brain tissue and adult dorsolateral 210 

prefrontal cortex (32). We also used chromatin accessibility profiles from primary human neural 211 

progenitor cells and their differentiated neuronal progeny (unpublished data from Stein lab). 212 

Further information is provided in Supplementary Methods. 213 

  214 
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 9 

Results 215 

GWAS in SPARK dataset identified a new locus associated with ASD risk 216 

We obtained genotype and clinical diagnosis of ASD via self- or parent-report from 27,290 217 

individuals who participated in the SPARK project (18). The majority of data comprised families, 218 

including those where both parents and multiple children were genotyped (quads; N=3,192 219 

families), where both parents and one child were genotyped (trios; N=2,486 families), or where 220 

one parent and one child were genotyped (duos; N=2,448 families) (Supplementary Figure S1). 221 

Only 68 individuals were ascertained without family members (singletons). After genotyping 222 

quality control (Supplementary Methods), 375,918 variants from 26,883 individuals were retained. 223 

Because the SPARK dataset did not genotype unrelated controls, we created pseudocontrols 224 

from the alleles not transmitted from parents to probands (36). Case-pseudocontrol design 225 

requires genotyping of both parents, so singletons and duos were excluded from the analysis. 226 

Due to the diverse ancestry in the cohort (Supplementary Figure S2, Supplementary Table S1), 227 

genotypes of all individuals including pseudocontrols were imputed to a diverse reference panel 228 

(TOPMed Freeze 5b reference panel consisting of 125,568 haplotypes). After imputation quality 229 

control (Methods; Supplementary Figure S3), 90,051,896 autosomal SNPs were tested for 230 

association in 6,222 case-pseudocontrol pairs (SPARK full dataset) consisting of 4,956 males 231 

and 1,266 females from multiple ancestries including European (N = 4,535), African (N = 37), 232 

East Asian (N = 83) and other ancestries/admixed individuals (N = 1,567) (Supplementary Figure 233 

S1, Supplementary Table S2). We observed no inflation of test statistics (λGC = 1.00) 234 

(Supplementary Figure S3), indicating population stratification was well-controlled when using this 235 

case-pseudocontrol design. We identified two SNPs at one locus (index SNP: rs60527016-C; OR 236 

= 0.84, P = 4.70×10-8) at genome-wide significance (P < 5.0 × 10-8) (Figure 1A, Table 1), which 237 

were supported by the previous largest ASD GWAS (14) (OR = 0.95, P = 0.0047) derived from 238 

the PGC and iPSYCH cohorts (Supplementary Figure S4).  239 
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 240 

Figure 1. Genome-wide association of ASD in the SPARK dataset 241 

(A) GWAS result from SPARK full dataset (Ncase+pseudocontrol = 12,444). (B) Genetic correlations across ASD 242 
GWAS. From left to right, iPSYCH versus PGC (50), SPARK EUR versus iPSYCH, SPARK EUR versus 243 
PGC and SPARK EUR versus iPSYCH-PGC study (14). (C) GWAS results from the meta-analysis (SPARK 244 
European population and iPSYCH-PGC, Nmax_case+control = 55,420). For Manhattan plots (A, C), the x-axes 245 
indicate the chromosomal position and y-axes indicate the significance of associations. The blue and red 246 
lines denote the significance threshold at suggestive (P < 1×10-6) and significant (P<5×10-8) levels. SNPs 247 
at with P < 1×10-6 are shown as a filled circle. Rs number indicates index SNPs from independent loci (1 248 
MB apart from each other) at P < 1×10-8). Index SNPs at P < 5×10-8 are shown as diamonds. 249 
 250 
  251 
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Table 1.  Genome-wide significant loci associated with ASD risk 252 
Genome-wide significant and suggestive loci in any of the GWAS analyses and meta-analysis of SPARK 253 
European ancestries and iPSYCH+PGC participants are shown. 254 

 Position 
(hg38) 

  SPARK  iPSYCH+PGC  Meta(EUR)2 

SNP1 EA OA EAF OR(95%CI) P   OR(95%CI) P  OR(95%CI) P 
Genome-wide significant loci (P < 5x10-8)         

rs716219 1:96104001 T C 0.34 1.08 
(1.03 - 1.14) 0.003  1.08 

(1.05 - 1.11) 3.99×10-7  1.08 
(1.05 - 1.11)  6.42×10-9 

rs10099100 8:10719265 C G 0.31 1.08 
(1.02 - 1.14) 0.008  1.09 

(1.06 - 1.12)  1.07×10-8  1.08 
(1.05 - 1.11)  7.65×10-9 

rs60527016 8:38442106 C T 0.21 0.84 
(0.79 - 0.90) 4.70×10-8  0.95 

(0.92- 0.99) 0.00466  0.93 
(0.91 - 0.96) 3.05×10-6 

rs112436750 17:45887763 A AT 0.21 1.07 
(1.01 - 1.14) 0.027  1.09 

(1.05 - 1.12) 1.23×10-6  1.09 
(1.06 - 1.12) 2.62×10-8 

rs1000177 20:21252560 T C 0.24 1.08 
(1.02 - 1.15) 0.014   1.10 

(1.07 - 1.14) 3.32×10-9  1.09 
(1.06 - 1.13) 1.34×10-9 

Suggestive loci (5x10-8 ≤ P < 1x10-6)         

rs6701243 1:98627228 A C 0.38 
0.99 

(0.94 - 1.00) 0.610  
0.93 

(0.90 - 0.96) 3.07×10-7  
0.94 

(0.91 - 0.96) 5.90×10--7 

rs6743102 2:158521946 G A 0.34 
0.94 

(0.89 - 0.99) 0.021  
0.94 

(0.91 - 0.97 8.99×10-6  
0.94 

(0.91 - 0.96) 4.07×10-7 

rs33966416 4:170285452 CA C 0.50 
0.95 

(0.90 - 1.00) 0.038  
0.94 

(0.91 - 0.96) 2.73×10-6  
0.94 

(0.92 - 0.96) 6.99×10-7 

rs4916723 5:88558577 A C 0.40 
1.10 

(1.00 - 1.10) 0.062  
1.07 

(1.04 - 1.10) 1.92×10-6  
1.07 

(1.04 - 1.09) 6.90×10-7 

rs416223 5:104655775 C A 0.40 
1.00 

(0.96 - 1.10) 0.730  
1.07 

(1.04 - 1.10) 3.84×10-7  
1.07 

(1.04 - 1.09) 3.56×10-7 

rs67248478 6:134711094 C T 0.34 
0.94 

(0.90 - 1.10) 0.032  
0.94 

(0.91 - 0.96) 3.22×10-6  
0.94 

(0.91 - 0.96) 3.22×10-7 

rs76569799 9:73565191 C T 0.15 
1.10 

(0.99 - 1.10) 0.076  
1.09 

(1.05 - 1.13) 3.90×10-6  
1.08 

(1.05 - 1.12) 9.99×10-7 

rs4750990 10:128689762 T C 0.36 
1.00 

(0.98 - 1.10) 0.250  
1.07 

(1.04 - 1.10) 1.37×10-6  
1.07 

(1.04 - 1.09) 4.89×10-7 

rs2224274 20:14780101 C T 0.43 
1.00 

(0.97 - 1.10) 0.310  
1.07 

(1.04 - 1.1) 2.86×10-7  
1.07 

(1.05 - 1.10) 5.56×10-8 

1Index SNPs from loci that survived genome-wide significance in any of the GWASs including meta-analysis.  255 
2Meta-analysis of SPARK European ancestries and iPSYCH+PGC 256 
EA: Effect allele, OA: Other allele; EAF: Effect allele frequency in SPARK full dataset 257 
 258 

Replication of genetic risk factors for ASD 259 

Given the phenotypic heterogeneity of ASD and potential technical differences such as 260 

genotyping platforms or data processing, we assessed the replication of genetic risk factors 261 

across cohorts by comparing previous major ASD studies including PGC and iPSYCH cohort 262 
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(14,50) with the SPARK dataset subset to individuals of European descent (EUR) (Figure 1B). 263 

Although each study included multiple ASD subtypes including ASD from DSM5, Asperger's, 264 

autism/autistic disorder, and Pervasive Developmental Disorder - Not otherwise specified (PDD-265 

NOS) from DSM IV, and approaches differed across these samples from requiring community 266 

diagnosis to best-estimate diagnosis based on standardized assessment, we obtained high genetic 267 

correlations between the SPARK EUR dataset and the largest iPSYCH-PGC GWAS (rg= 0.82; P 268 

= 5.27 × 10-14), suggesting the genetic risk factors for autism are largely shared among different 269 

ASD GWAS and are generalizable despite differences in diagnostic criteria and batch effects. 270 

We next performed meta-analysis with SPARK EUR samples and iPSYCH-PGC samples (Ncase 271 

= 18,381 and Ncontrol = 27,969) to maximize power. The meta-analysis identified four additional 272 

loci associated with risk for ASD (Supplementary Figure S5-8). These included three previously 273 

reported loci (14) and one novel locus on chromosome 17, where a gene-based test from the 274 

iPSYCH-PGC study has previously shown association with risk for ASD (14) (Figure 1C, Table 1, 275 

Supplementary Figure S7). This novel locus was also reported to be associated with more than 276 

60 phenotypes including neuroticism (51–55), educational attainment (56) and intracranial volume 277 

(57) (index SNPs r2> 0.8 in 1KG EUR) (Supplementary Table S3) indicating highly pleiotropic 278 

effects at this locus. The SNP based heritability in SPARK EUR samples was estimated (h2
G) to 279 

be 0.117 (s.e. = 0.0082) for population prevalence of 0.012 (14,58) which was comparable with 280 

the previous report (h2
G = 0.118; s.e. = 0.010) (14). 281 

The generalization of effects across ancestries for the five index SNPs identified (Table 1) was 282 

examined (Supplementary Figure S2, S3, and Supplementary Table S4). The association results 283 

from the cross-ancestry dataset were mainly driven by the European population, as expected 284 

given the larger sampling from this population. We found that some regions showed population-285 

differentiated allele frequencies. For example, rs10099100 was more common in European and 286 

African populations (MAF = 0.33, 0.39 from tested samples, respectively) than in East Asians 287 
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(MAF = 0.02 from tested samples), necessitating a further investigation of genetic risk factors for 288 

ASD in populations of diverse ancestry (59,60). 289 

The generalization of genetic effects on risk for ASD was also confirmed by polygenic risk scores 290 

(PRSs) derived from the iPSYCH-PGC GWAS that showed higher scores in SPARK EUR cases 291 

(N = 4,097) compared to pseudocontrols (N = 4,097) (P = 1.61 x 10-19) (Figure 2A).  292 

 293 

Figure 2. Comparison of polygenic risk scores between subgroups. 294 
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(A) Common variant risk burden is higher in cases compared to pseudocontrols. (B) Comparison of PRS 295 
across family types (from left to right, families with multiple affected children with affected parent(s), multiple 296 
affected children with unaffected parents, one affected child with affected parent(s), and one affected child 297 
with unaffected parents) shows no evidence for a higher common variant burden in multiplex families. (C) 298 
Comparison of PRS between male and female probands shows no evidence of enrichment of common 299 
variants impacting risk for ASD in females. (D) There is no evidence for a difference in the transmission of 300 
common variant risk burden from mother versus father.   301 

Investigation of common variant burden impacting risk for ASD 302 

We next used PRSs to compare common variant risk burden among family types, sex, and parent 303 

of origin (Figure 2B-D). Because ASD families with multiple affected siblings were shown to have 304 

different segregation patterns compared with simplex families that have a higher burden of de 305 

novo mutations (12,61,62), we compared the distribution of PRSs across four family types (Figure 306 

2B, Supplementary Table S1). Our results showed no evidence for a difference in common variant 307 

burden impacting risk for ASD in multiplex families as compared to simplex families. We note that 308 

multiplex/simplex status was indicated by either enrollment or self-report in a questionnaire and 309 

may be underestimated due to missing survey data. 310 

As the prevalence of ASD is higher in males than in females (OR = 4.20) (63), and previous 311 

studies have reported that females with ASD have a higher burden of de novo variants (9,64–66), 312 

we also investigated the potential contribution of common variants to the female protective effect 313 

by comparing PRS between sexes. We did not find any evidence that ASD common variant risk 314 

burden differs in females compared to males (Figure 2C).  315 

A previous study hypothesized that a new mutation in a mother, who is less susceptible to 316 

developing autism because of the female protective effect, may be more likely to transmit risk 317 

factors to their children with ASD (67). We, therefore, examined the over-transmission of common 318 

variant risk for ASD from mother to offspring. We found no evidence of the over-transmission of 319 

common variant risk burden from either mothers or fathers to their affected children (Figure 2D).  320 
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Contribution of cortical development to risk for ASD  321 

Previous studies suggest an important role of brain development in ASD (14,68). To characterize 322 

tissue types relevant to risk for ASD, we next evaluated heritability enrichment within active 323 

enhancer or promoter regions in different tissues (69) (Figure 3A, Table S4). Significant 324 

enrichment of heritability was observed in regulatory elements of brain germinal matrix as well as 325 

primary cultured neurospheres from the fetal cortex (FDR = 0.004 and 0.015, respectively), 326 

suggesting that disruption of gene regulation in these tissues increases the risk for ASD. We 327 

further examined SNP heritability in the developing cortex using differentially accessible peaks 328 

between the neuron-enriched cortical plate and the progenitor-enriched germinal zone (70) 329 

(Figure 3B). We found significant enrichment in peaks more accessible in the germinal zone (FDR 330 

= 0.008), but not in the cortical plate, providing further evidence for genetically mediated 331 

alterations in cortical development playing a crucial role in ASD etiology. 332 

 333 

Figure 3. Partitioned heritability enrichment of tissues implicates cortical development in ASD risk 334 
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(A) Heritability enrichment in active enhancer and promoter regions present in different tissues shows the 335 
critical role of developing the brain in ASD etiology. (B) Heritability enrichment in differential chromatin 336 
accessibility from the developing fetal cortical wall. (upper) The x-axis represents tissue types and the y-337 
axis indicates heritability enrichment. The error bar shows a 95% confidence interval. (lower) The x-axis 338 
represents tissue types and the y-axis indicates statistical significance as -log10(FDR). BRN: Brain, ADRL: 339 
Adrenal, BLD: Blood, BRST: Breast, CRVX: Cervix, ESDR: ESC_derived, GI: GI_duodenum, GI_colon, 340 
GI_rectum, GI_stomach, GI_intestine, GI_colon, GI_rectum, GI_duodenum and GI_esophagus, HRT: 341 
Heart, KID: Kideney, LIV: Liver, LNG: Lung,  MUS: Muscle, OVRY: Ovary, PANC: Pancreas, PLCNT: 342 
Placenta, SPLN: Spleen, STRM: Stromal connective, THYM: Thymus, VAS: Vascular, CP: Peaks more 343 
accessible in cortical plate, GZ: Peaks more accessible in germinal zone. * FDR < 0.05, ** FDR < 0.01. 344 

 345 

H-MAGMA identified genes and pathways impacting risk for ASD 346 

To identify genes associated with risk for ASD from meta-analysis (EUR only), we applied Hi-C 347 

coupled MAGMA (H-MAGMA) (31), which aggregates SNP-level P-values into a gene-level 348 

association statistic with an additional assignment of non-coding SNPs to their chromatin-interacting 349 

target genes generated from fetal brain Hi-C (46) (Figure 4A). We identified 567 genes associated 350 

with ASD (FDR < 0.1), including 263 protein coding genes (Figure 4B, Table S5). Five genes 351 

implicated from common variant evidence (KMT2E, RAI1, BCL11A, FOXP1, and FOXP2) also 352 

harbored an excess of rare variants associated with ASD (11). This overlap between rare and common 353 

ASD risk variants was more than expected by chance (hypergeometric P = 0.01; Figure 4C), 354 

corroborating the previous result that common and rare variation converges on the same genes and 355 

pathways (31,71). We also found that 14 H-MAGMA genes were also differentially expressed in the 356 

post-mortem cortex between individuals with ASD and neurotypical controls (up-regulated in ASD: 357 

NFKB2, BTG1, RASGEF1B, TXNL4B, IFI16, WDR73 and C2CD4A; down-regulated in ASD: 358 

PAFAH1B1, SEMA3G, DDHD2, GTDC1 ASH2L, USP19 and ARIH2; FDR < 0.05) (72) (Figure 4D). 359 

Rank-based gene ontology enrichment analysis (73) suggested that ASD risk genes were enriched in 360 

188 terms including telencephalon development and regulation of synapse organization (Figure 4E, 361 

Supplementary Table S7).  362 
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Since heritability enrichment analyses suggested genetically mediated impacts on cortical 363 

development contribute to ASD risk (Figure 3), we explored whether the expression level of ASD 364 

risk genes from H-MAGMA is different between prenatal and postnatal cortex. As shown 365 

previously (14,31), we found ASD risk genes exhibited higher expression in the prenatal cortex 366 

as compared to the postnatal cortex (P = 2.77×10-62) (Figure 4F) (74). In particular, the expression 367 

level of ASD risk genes was highest between 20 and 30 post-conception weeks (Supplementary 368 

Figure S9). Taken together, our results demonstrate common risk variants for ASD play an 369 

important role in the developing cortex.  370 
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 371 

Figure 4. H-MAGMA identified 263 protein-coding genes linked to ASD 372 

(A) Schematic diagram of H-MAGMA. SNP based association P-values were aggregated to gene-based P-373 
values using positional information as well as chromatin interaction in the fetal brain. (B) Gene-based 374 
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association result from H-MAGMA. The x-axis indicates the start position of genes (hg19). (C) Overlap of 375 
ASD risk genes harboring common and rare variants (11). (D) Overlapped genes with differential 376 
expression from post-mortem brains in individuals with ASD patients and neurotypical controls (72). (E) 377 
Gene ontologies enriched for ASD linked genes (top 20). (F) Developmental expression pattern of ASD risk 378 
genes (74).  379 

Genetic correlation between ASD and 12 brain and behavioral phenotypes 380 

Both epidemiological studies and genetic studies suggested the phenotypic comorbidity (75–78) 381 

or genetic correlation (14,79) of ASD with various brain and behavioral phenotypes. Thus, we 382 

evaluated the pleiotropic effect of ASD risk SNPs with twelve other brain and behavioral 383 

phenotypes (47,54,57,80–87) (Figure 5, Supplementary Table S8). We observed a novel genetic 384 

correlation between ASD and cigarettes per day (rg = 0.16, P = 8.80×10-5), indicating a partially 385 

shared genetic basis between risk for ASD and addictive smoking behavior. We also replicated 386 

positive genetic correlations previously detected for seven phenotypes (FDR < 0.05) (14), 387 

providing further support for a shared genetic basis of multiple neuropsychiatric disorders (79,88). 388 
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 389 

Figure 5. Genetic correlation of ASD against twelve brain and behavioral phenotypes 390 

The x-axis represents an estimate of the genetic correlation (rg). Error bars represent the 95% confidence 391 
interval. P-values at FDR < 0.05 are shown in bold. MDD: Major depressive disorder, ADHD: Attention-392 
Deficit/Hyperactivity Disorder. 393 
 394 

Functional validation to fine-map causal variants and prioritize genes  395 

Interestingly, the novel locus identified by the SPARK full dataset (rs60527016 at chr8:38.19M - 396 

chr8:38.45M, Figure 1A, 6A) was also identified as a pleiotropic locus in a recent cross-disorder 397 

meta-analysis on eight psychiatric disorders (79). This locus was not only associated with ASD 398 

but also with schizophrenia, bipolar disorder and obsessive-compulsive disorder (OCD), 399 

suggesting that understanding the regulatory mechanism at this locus may reveal the basis for 400 
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pleiotropic effects across psychiatric disorders. The index SNP (rs60527016) was located within 401 

a 300 kb LD block (r2 > 0.5 in SPARK full dataset) that contains seven genes (Figure 6A). To 402 

prioritize causal variants within this locus, we performed a massively parallel reporter assay 403 

(MPRA) (23,24) on 98 credible SNPs in this region in HEK 293 cells. MPRA measures barcoded 404 

transcriptional activity driven by each allele in a high-throughput fashion (Supplementary Figure 405 

S13). Surprisingly, SNP rs7001340 exhibited the strongest allelic difference in barcoded 406 

expression (P = 1.51×10-24) even though it is 37 kb away from the GWAS index SNP (r2 = 0.85 407 

with the index SNP in SPARK full dataset) (Figure 6A, B, Supplementary Table S9), 408 

demonstrating the regulatory potential of this SNP and suggesting its causal role in psychiatric 409 

disorders, including ASD. While MPRA was performed in HEK cells, the SNP was located in a 410 

regulatory element with higher chromatin accessibility in human neural progenitors compared with 411 

postmitotic neurons (Figure 6A) (unpublished data from Stein lab), indicating its regulatory 412 

potential in the developing brain. The risk allele (T) at this SNP was associated with 413 

downregulation of barcoded expression in MPRA (Figure 6B), and was predicted to disrupt two 414 

transcription factor binding motifs (89) (TBX1 and SMARCC1) (Supplementary Figure S14), 415 

providing a possible mechanism of action of this variant. We next investigated potential target 416 

genes impacted by regulatory changes at this SNP by using eQTL data from fetal (33) and adult 417 

brain tissues (32). Expression levels of three eGenes were significantly associated with this SNP 418 

(DDHD2 from the fetal brain and DDHD2, LSM1, LETM2 from the adult brain) (Figure 6A). Of 419 

these three genes, two genes (DDHD2, LETM2) showed the direction of the effect expected from 420 

the MPRA result (risk allele downregulates the eGene) (Supplementary Figure S15). It is of note 421 

that DDHD2 was identified in both fetal and adult brain eQTL datasets (beta = -0.080, P = 422 

2.212×10-13; beta = -0.177, P = 1.38×10-20, respectively; Figure 6C, D). Notably, DDHD2 was also 423 

significantly downregulated in the post-mortem cortex of individuals with autism (logFC = -0.28, 424 

FDR = 0.013), providing an added layer of evidence supporting its role in ASD risk (72). DDHD2 425 

also was identified by H-MAGMA (Figure 4F), and a copy number variation (CNV) containing 426 
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DDHD2 (deletions) was found in proband-sibling pairs with discordant social-behavior 427 

phenotypes (90). Collectively, by integrating existing multi-level functional genomic resources and 428 

an experimental fine-mapping approach using MPRA, we suggest DDHD2 as a strong candidate 429 

gene impacting risk for ASD.  430 

 431 
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 432 

Figure 6. Identification of putative causal variant and gene impacting risk for ASD  433 

(A) Annotated locus plot near rs60527016 ASD risk index variant, from top panel to bottom, ASD 434 
associations within SPARK full dataset (n = 6,222 case-pseudocontrol pairs), eQTL for DDHD2 in fetal 435 
brains (n = 235) and adult brain (n = 1,387) , MPRA expression (n=6), ATAC-seq averaged depth in neuron 436 
(n = 61) and progenitor (n = 73). Differential open chromatin accessibility peaks from ATAC-seq, and gene 437 
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model (NCBI Refseq). LD was calculated to rs7001340 within SPARK parents of cases, fetal brain donors, 438 
or 1KG EUR and colored accordingly. (B) The barcoded expression level of mRNA based from each allele 439 
at rs7001340 from the MPRA experiment. (C) The expression level of DDHD2 by rs7001340 genotypes in 440 
the fetal brain. (D) The expression level of DDHD2 by rs7001340 genotypes in adult brain. Individuals with 441 
allele dosage (0-0.1 as C/C, 0.9-1.1 as C/T, 1.9-2.0 as T/T) are shown. For (B) to (D), ASD risk allele for 442 
rs7001340 is T and protective allele is C.  443 

Discussion 444 

In this study, we increased sample sizes for ASD GWAS to Ncase(max) = 24,063, Ncontrol(max) = 34,191 445 

and identified five loci associated with risk for ASD (four from European only meta-analysis, one 446 

locus from SPARK project alone), including two new loci (marked by index SNPs rs60527016 and 447 

rs112436750). These loci have pleiotropic effects on multiple psychiatric disorders including 448 

schizophrenia (for rs60527016 and rs112436750), bipolar disorder, and OCD (for rs60527016). 449 

 450 

Using a PRS derived from a previous study (14), we found enrichment of risk variants in SPARK 451 

cases, indicating the contribution of common genetic risk factors to ASD is consistent across 452 

cohorts. However, despite several hypotheses that rare variants associated with risk for ASD are 453 

enriched in certain subgroups of individuals with ASD, such as in females compared to males 454 

(female protective effect) (9,64–66,91), multiplex families compared to simplex families (12,61,62), 455 

or maternal alleles compared to paternal alleles (10,67), we do not find evidence to support the 456 

increased burden of common risk variants within those subgroups. This result indicates potential 457 

rare and common variant differences in contribution to subgroup risk for ASD. However, given the 458 

small sample size of specific subgroups (N = 835 in female whereas N = 3,262 in male, N = 14 459 

for families with multiple affected children vs N = 3,618 with one affected children), our study may 460 

have limited power to identify the differences among subgroups. Thus, a larger sample size would 461 

be warranted to compare the difference in the role of common variants within these categories.  462 

 463 
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Identifying locations in the genome associated with risk for ASD does not in itself lead to insights 464 

into what tissues or developmental time points are crucial for the etiology of ASD. Here, by 465 

integrating SNP association statistics with existing annotations of regulatory elements active 466 

during specific developmental time periods or within specific brain regions, we found an excess 467 

of common genetic risk for ASD in the fetal brain regulatory elements (brain germinal matrix and 468 

primary cultured neurospheres from the fetal cortex), and progenitor enriched germinal zone of 469 

the developing cortex, confirming previous findings that alterations of gene regulation in the 470 

prenatal cortex play a key role in ASD etiology (14). 471 

 472 

To further understand the specific genes leading to risk for ASD, we applied a recently developed 473 

platform, H-MAGMA (31) and identified 263 putative candidate protein-coding risk genes. H-474 

MAGMA genes are highly expressed in the prenatal brain, similar to the enrichment of ASD risk 475 

genes with rare variations during neurodevelopment (92). This result suggests potential molecular 476 

convergence regardless of classes of mutation, which is supported by five genes (previously 477 

identified KMT2E and newly identified RAI1, BCL11A, FOXP1, and FOXP2) that are affected by 478 

both rare and common variation.  479 

 480 

Since identification of a GWS locus does not elucidate the causal variant(s), we performed MPRA 481 

and identified a potential causal SNP (rs7001340) at a novel ASD locus discovered in the SPARK 482 

sample. Interestingly, the individual variant with the strongest regulatory effect (rs7001340; r2= 483 

0.85 with the index SNP in SPARK full dataset) was different from the SNP with the strongest 484 

association with ASD (rs60527016), highlighting the importance of experimental validation in 485 

identifying causal variants. It should be noted that the regulatory effects of these variants were 486 

assessed in non-neural (HEK) cells, so further validation of these effects in ASD-relevant cell 487 

types would provide increased confidence in declaring this SNP as causal. The experimentally 488 

validated regulatory SNP (rs7001340) is in the intron of LETM2, and is also an eQTL for LETM2, 489 
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LSM1 (247 kb away) and DDHD2 (173 kb away), indicating that the SNP functions as a distal 490 

regulatory element. The risk allele (T) was associated with decreased expression of barcoded 491 

transcripts in the MPRA and downregulation of DDHD2 from eQTL in both fetal and adult brains, 492 

implying a consistent direction of the allelic effects on gene regulation. The risk allele showed the 493 

same direction of effect for LETM2 in adult brain tissue, but was not significantly associated in 494 

fetal brain tissue (P-values = 0.33). Intriguingly, DDHD2 was also downregulated in the cortex 495 

from individuals with ASD compared to neurotypical controls (72), providing an additional level of 496 

support for this gene as a risk factor for ASD. DDHD2 (DDHD domain-containing protein 2), also 497 

known as KIAA0725p, encodes a phospholipase and is localized in the Golgi (93). DDHD2 plays 498 

a role in the efficient regulation of membrane trafficking between the Golgi and cytosol (93) and 499 

is highly expressed in the brain (94–96). Mutations in DDHD2 have been previously found in 500 

individuals with spastic paraplegia type 54 (SPG) (96–98). Ddhd2 null mice exhibited motor and 501 

cognitive impairments (99), which are frequent comorbidities of ASD (100). We, therefore, 502 

conclude DDHD2 is a strong candidate risk gene for ASD through multiple lines of evidence. 503 

 504 

There is still a large amount of common variant heritability not explained in this study indicating 505 

that further increases in sample size will be necessary to explain the common inherited 506 

component of ASD risk. While the combination of TOPMed imputation and the case-507 

pseudocontrol study model enabled us to include individuals from multiple ancestries, the case-508 

pseudocontrol model is lower powered compared to case-unscreened control models because a 509 

pseudocontrol might have greater liability for ASD than the average individual in the population 510 

(101). In addition, the case-pseudocontrol model cannot incorporate duos or singletons due to 511 

the lack of parental genotype information, which resulted in over 2,000 individuals with ASD with 512 

genotyping information in the SPARK project not being included in our analysis. Future studies 513 

could potentially increase power by including all cases available in SPARK and using unscreened 514 

population matched controls (102). Secondly, subsequent analyses including PRS, LDSC 515 
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regression, and H-MAGMA were limited to individuals from European ancestries only, because 516 

most resources and software are designed to be used only within one population, generally 517 

European ancestry (103). Including other ancestries for these analyses will be able to uncover 518 

risk factors shared or specific to existing human populations. 519 

 520 

In summary, ASD GWAS in the SPARK dataset and meta-analysis with previous GWAS identified 521 

two new susceptibility loci. By integrating existing multi-level functional genomic resources and 522 

experimental tools such as MPRA and eQTL, we highlight DDHD2 as a novel high confidence 523 

ASD risk gene impacted by a distal common variant within a regulatory element present in neural 524 

progenitors of the developing cortex. This strategy can be broadly applied to common variant risk 525 

loci of multiple neuropsychiatric disorders to identify causal variant(s), regulatory regions, cell-526 

types, and genes whose misregulation leads to risk for neuropsychiatric disorders. 527 

 528 
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 836 

Legends 837 

Figure 1. Genome-wide association of ASD in the SPARK dataset 838 

(A) GWAS result from SPARK full dataset (Ncase+pseudocontrol = 12,444). (B) Genetic correlations across ASD 839 
GWAS. From left to right, iPSYCH versus PGC (50), SPARK EUR versus iPSYCH, SPARK EUR versus 840 
PGC and SPARK EUR versus iPSYCH-PGC study (14). (C) GWAS results from the meta-analysis (SPARK 841 
European population and iPSYCH-PGC, Nmax_case+control = 55,420). For Manhattan plots (A, C), the x-axes 842 
indicate the chromosomal position and y-axes indicate the significance of associations. The blue and red 843 
lines denote the significance threshold at suggestive (P < 1×10-6) and significant (P<5×10-8) levels. SNPs 844 
at with P < 1×10-6 are shown as a filled circle. Rs number indicates index SNPs from independent loci (1 845 
MB apart from each other) at P < 1×10-8). Index SNPs at P < 5×10-8 are shown as diamonds. 846 

Figure 2. Comparison of polygenic risk scores between subgroups. 847 

(A) Common variant risk burden is higher in cases compared to pseudocontrols. (B) Comparison of PRS 848 
across family types (from left to right, families with multiple affected children with affected parent(s), multiple 849 
affected children with unaffected parents, one affected child with affected parent(s), and one affected child 850 
with unaffected parents) shows no evidence for a higher common variant burden in multiplex families. (C) 851 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.13.20017319doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.13.20017319
http://creativecommons.org/licenses/by/4.0/


 40 

Comparison of PRS between male and female probands shows no evidence of enrichment of common 852 
variants impacting risk for ASD in females. (D) There is no evidence for a difference in the transmission of 853 
common variant risk burden from mother versus father.   854 

Figure 3. Partitioned heritability enrichment of tissues implicates cortical development in ASD risk 855 

(A) Heritability enrichment in active enhancer and promoter regions present in different tissues shows the 856 
critical role of developing the brain in ASD etiology. (B) Heritability enrichment in differential chromatin 857 
accessibility from the developing fetal cortical wall. (upper) The x-axis represents tissue types and the y-858 
axis indicates heritability enrichment. The error bar shows a 95% confidence interval. (lower) The x-axis 859 
represents tissue types and the y-axis indicates statistical significance as -log10(FDR). BRN: Brain, ADRL: 860 
Adrenal, BLD: Blood, BRST: Breast, CRVX: Cervix, ESDR: ESC_derived, GI: GI_duodenum, GI_colon, 861 
GI_rectum, GI_stomach, GI_intestine, GI_colon, GI_rectum, GI_duodenum and GI_esophagus, HRT: 862 
Heart, KID: Kideney, LIV: Liver, LNG: Lung,  MUS: Muscle, OVRY: Ovary, PANC: Pancreas, PLCNT: 863 
Placenta, SPLN: Spleen, STRM: Stromal connective, THYM: Thymus, VAS: Vascular, CP: Peaks more 864 
accessible in cortical plate, GZ: Peaks more accessible in germinal zone. * FDR < 0.05, ** FDR < 0.01. 865 

Figure 4. H-MAGMA identified 263 protein-coding genes linked to ASD 866 

(A) Schematic diagram of H-MAGMA. SNP based association P-values were aggregated to gene-based P-867 
values using positional information as well as chromatin interaction in the fetal brain. (B) Gene-based 868 
association result from H-MAGMA.  The x-axis indicates the start position of genes (hg19). (C) Overlap of 869 
ASD risk genes harboring common and rare variants (11). (D) Overlapped genes with differential 870 
expression from post-mortem brains in individuals with ASD patients and neurotypical controls (72). (E) 871 
Gene ontologies enriched for ASD linked genes (top 20). (F) Developmental expression pattern of ASD risk 872 
genes (74).  873 

Figure 5. Genetic correlation of ASD against twelve brain and behavioral phenotypes 874 

The x-axis represents an estimate of the genetic correlation (rg). Error bars represent the 95% confidence 875 
interval. P-values at FDR < 0.05 are shown in bold. MDD: Major depressive disorder, ADHD: Attention-876 
Deficit/Hyperactivity Disorder. 877 
 878 
Figure 6. Identification of putative causal variant and gene impacting risk for ASD  879 

(A) Annotated locus plot near rs60527016 ASD risk index variant, from top panel to bottom, ASD 880 
associations within SPARK full dataset (n = 6,222 case-pseudocontrol pairs), eQTL for DDHD2 in fetal 881 
brains (n = 235) and adult brain (n = 1,387) , MPRA expression (n=6), ATAC-seq averaged depth in neuron 882 
(n = 61) and progenitor (n = 73). Differential open chromatin accessibility peaks from ATAC-seq, and gene 883 
model (NCBI Refseq). LD was calculated to rs7001340 within SPARK parents of cases, fetal brain donors, 884 
or 1KG EUR and colored accordingly. (B) The barcoded expression level of mRNA based from each allele 885 
at rs7001340 from the MPRA experiment. (C) The expression level of DDHD2 by rs7001340 genotypes in 886 
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the fetal brain. (D) The expression level of DDHD2 by rs7001340 genotypes in adult brain. Individuals with 887 
allele dosage (0-0.1 as C/C, 0.9-1.1 as C/T, 1.9-2.0 as T/T) are shown. For (B) to (D), ASD risk allele for 888 
rs7001340 is T and protective allele is C.  889 
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