








Examplary F-maps obtained from EEG-fMRI analysis of GPFA events  

 
Figure 7: F-maps of EEG-fMRI analysis based on the timing of GPFA events for subjects S3 and S13 as two exemplary cases with 

high spatial agreement between automatic IED detection and manual markup. Acronyms: TP = True Positive, FP = False Positive.     

Time-frequency characterization of manually marked GPFA events suggests that their bimodal 
spectral behaviour is robust over patients. However, the specific frequency bands of interest may vary 
considerably across individuals. We assessed the robustness of this time-frequency feature via an 
automatic search for similar dynamics throughout patients’ interictal EEG recordings. We 
hypothesized that if this EEG signal feature is reliable across patients, it should be able to highlight 
both manually marked IEDs as well as IED-like events that were ‘missed’ in the manual markup. 
Across patients, the agreement between manually marked IEDs and automatically detected events 
varied from ~40% to ~80% for the two IED types. Even though the number of false positives was 
generally higher than the number of manually marked IEDs (see the 𝑁#- columns in  Table 3), their 
associated statistical parametric maps generated from EEG-fMRI analysis were spatially similar to 
the corresponding EEG-fMRI maps derived from manual markup. This spatial overlap is above r=0.5 
in most analyses, when the zero-thresholded F-statistical maps are compared. It is also similar for the 
F-maps extracted from false positives only and the maps generated based on the combination of true 
and false positives. Spatial overlap is reduced in both IED groups after statistical correction of the 
EEG-fMRI F-maps. This is also reflected in the group-mean correlation values of GPFA in Table 4. 
Less strict comparison of the automatically detected events with reference to manual markup (i.e., 
post-onset interval of 1 s in contrast to 0.5 s in Δ)*+*%+) had negligible impact on the spatial correlation 
values of the F-maps. This finding suggests EEG-fMRI analysis of GPFA may show some resilience 
to minor variability in the precise EEG onset of IEDs (either manually marked or automatically 
detected), perhaps due to the comparatively slow event-related hemodynamic response measured by 
fMRI.   

The promising detection results may facilitate faster simultaneous EEG-fMRI analysis in LGS. 
This is important because it may assist with pre-surgical planning for LGS, for example in guiding 
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optimal thalamic stimulation targets in patients undergoing deep brain stimulation [Archer et al., 
2014a] or identifying potentially resectable epileptogenic cortical lesions.  

 

5 Conclusion 
GPFA shows a characteristic bimodal time-frequency feature that can be automatically detected 

in patients with LGS. Utility of this time-frequency feature is demonstrated by EEG-fMRI analysis 
of automatically detected EEG events, which recapitulates the brain network patterns we have 
previously shown to underlie manually marked generalized IEDs in LGS.   
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Supplementary materials 
 

Subject-specific spatial correlations of uncorrected F-maps for 𝚫𝑫𝒆𝒕𝒆𝒄𝒕 = -0.5 s to 1 s peri-
onset 

 
Figure 8: Spatial correlation values between the uncorrected F-maps of manual markup and automatically detected events for 

the less strict comparison scenario (∆𝑫𝒆𝒕𝒆𝒄𝒕 = -0.5 s to 1 s peri-onset). (A) Correlation with the F-maps of all detected events for the 
GPFA group. (B) Correlation with the F-maps of all detected events for the SSW group. (C) Correlation with the F-maps of the false 

positives only for the GPFA group. (D) Correlation with the F-maps of the false positives only for the SSW group. 

 
Subject-specific spatial correlations of corrected F-maps for 𝚫𝑫𝒆𝒕𝒆𝒄𝒕 = -0.5 s to 1 s peri-onset 

 
Figure 9: Similar caption to Figure 8, but for corrected F-maps. 
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