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Abstract

Health research using electronic health records (EHR) has gained popularity, but misclas-
sification of EHR-derived disease status and lack of representativeness of the study sample
can result in substantial bias in effect estimates and can impact power and type I error. In
this paper, we develop new strategies for handling disease status misclassification and selec-
tion bias in EHR-based association studies. We first focus on each type of bias separately.
For misclassification, we propose three novel likelihood-based bias correction strategies. A
distinguishing feature of the EHR setting is that misclassification may be related to patient-
specific factors, and the proposed methods leverage data in the EHR to estimate misclas-
sification rates without gold standard labels. For addressing selection bias, we describe how
calibration and inverse probability weighting methods from the survey sampling literature
can be extended and applied to the EHR setting.

Addressing misclassification and selection biases simultaneously is a more challenging
problem than dealing with each on its own, and we propose several new strategies to ad-
dress this situation. For all methods proposed, we derive valid standard errors and provide
software for implementation. We provide a new suite of statistical estimation and inference
strategies for addressing misclassification and selection bias simultaneously that is tailored
to problems arising in EHR data analysis. We apply these methods to data from The Michi-
gan Genomics Initiative (MGI), a longitudinal EHR-linked biorepository.

Keywords: biobank, electronic health records, non-probability sampling, outcome misclas-
sification, selection bias

1 Introduction

Health research using data from large observational databases such as electronic health records
(EHR) has gained popularity, and interest in such analyses continues to increase (Beesley et al.,
2018b; Wolford et al., 2018). Unlike curated and well-designed population-based studies, these
databases are rarely originally intended for research use and, consequently, patient recruitment
processes may not be well understood (Casey et al., 2016). Without properly accounting for
these design issues (e.g. who is in the study sample, how data were measured), association
analyses using these data are naturally susceptible to bias (Beesley et al., 2018a). With larger
and larger datasets at researchers’ fingertips, the impact of bias relative to variance is becoming
more and more pronounced. In particular, these biases do not disappear with increased sample
size, but the variance of the estimates does decrease with sample size, resulting in a greater
potential for “incorrect” inference with inflated type 1 error and suboptimal coverage. This
phenomenon is known as the “big data paradox” (Meng et al., 2018), and statistical strategies
for correcting these biases are needed. In this paper, we focus on two common sources of bias
for EHR data analysis: (1) misclassification of derived disease status (information bias) and (2)
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lack of representativeness (selection bias). We consider a very common inference problem where
one is interested in relating a binary disease phenotype D with predictors Z.

EHR-derived disease status variables (phenotypes) can be misclassified for many reasons.
Researchers often define disease status based on diagnosis codes recorded in the EHR for billing
purposes, which provide a restricted snapshot of a patient’s complete disease history. Even the
most sophisticated phenotyping methods are limited by the information available in structured
and unstructured content of the EHR (e.g. Liao et al., 2015). Secondary conditions may not
always be recorded, past medical history may be incomplete, and symptoms between visits may
be missed. For academic databases, patients may visit the hospital for short-term treatment
and return to local providers for continued care. These factors can lead to a large degree of mis-
classification, particularly due to underreporting of disease. Several researchers have explored
misclassification in EHR or claims data assuming constant sensitivity and specificity (Sinnott
et al., 2014; Lange et al., 2015; Hubbard et al., 2015). However, a key feature of misclassifica-
tion for EHR-derived phenotypes is that we expect more diagnoses to be missed for patients
followed for a shorter period of time and for fewer visits, so misclassification may depend on
patients’ individual characteristics. This problem has been discussed in the literature on EHR
data analysis (e.g. Bower et al., 2017; Goldstein et al., 2016; Phelan et al., 2017). Even so,
statistical literature handling this covariate-related misclassification is sparse. Neuhaus (1999)
presented analytic expressions for bias under covariate-related misclassification, and Beesley
et al. (2018a) provided a sensitivity analysis approach tailored to the EHR setting. Ad hoc
strategies including adjusting for number of encounters or clinic type have also been proposed
(Goldstein et al., 2016; Phelan et al., 2017). In general, however, existing work considering
covariate-related misclassification is limited, necessitating new statistical methods that can ad-
dress this more complex misclassification mechanism.

EHR data are also susceptible to bias due to a lack of representativeness of the study sam-
ple with respect to some population of interest, e.g. the US population. Interactions with the
health care system are generated by the patient, as is consent for biobank inclusion. Thus, it
can be difficult to understand the mechanism driving patient inclusion, which may be related to
a broad spectrum of patient factors including overall health and access to care. When ignored,
patient selection related to disease status can often have a large impact on results of association
analyses (Beesley et al., 2018b). Complex patient selection can often be addressed using survey
techniques if the selection strategy is known, but a primary challenge for addressing patient se-
lection in EHR is that the mechanisms for patient selection/inclusion are unknown. Researchers
have attempted to partially account for selection bias by adjusting for patient factors such as
referral status and clinic type (Phelan et al., 2017; Goldstein et al., 2016). Haneuse and Daniels
(2016) developed a statistical framework for modeling selection in EHR data as a series of selec-
tion steps. This strategy can be very useful for characterizing selection mechanisms generating
an analytical sample (e.g. patients aged 60+ with at least 6 months of follow-up) from a bigger
EHR database. However, these methods do not address the systematic differences between
patients in the population that are and are not included in the EHR itself. To bridge this gap,
strategies in the survey sampling literature for dealing with unknown selection probabilities
(termed non-probability sampling) such as calibration weighting, inverse probability of selec-
tion weighting, and propensity-score matching or covariate adjustment can be applied (Bower
et al., 2017; Baker et al., 2013). Little work has been done to describe how such methods can
be implemented in the specific EHR setting.

In this paper, we develop new, practical strategies for handling phenotype misclassifica-
tion and selection bias in EHR-based association studies. We first focus on each type of bias
separately. For misclassification, we propose three novel likelihood-based bias correction and
inference strategies. These strategies allow us to estimate the rate of misclassification incorpo-
rating covariate relationships and require minimal external information and no gold standard
labels. For addressing selection bias without misclassification, we describe how calibration and
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inverse probability of selection weighting methods from the survey sampling literature can be
modified and applied in the EHR setting.

Addressing both sources of bias at once is a more challenging problem than dealing with
each source of bias on its own, and we propose several new estimation and inference strategies.
For all bias correction strategies proposed, we derive valid standard errors and provide software
for implementation (R package, SAMBA). This paper is the first of its kind to develop a com-
prehensive statistical framework addressing misclassification and selection bias simultaneously.
We provide a new suite of statistical estimation and inference methods tailored to EHR data
analysis. Through a simulation study, we demonstrate the ability of these methods to reduce
or eliminate bias and correctly estimate standard errors. We apply our proposed methods to
address bias (e.g. in GWAS results) and identify factors related to phenotype misclassification
using data from The Michigan Genomics Initiative (MGI), a longitudinal EHR-linked biorepos-
itory within Michigan Medicine.

2 Model, notation, and conceptual framework

Let binary D represent a patient’s true disease status for a disease of interest. Suppose we are
ideally interested in the relationship between D and person-level information, Z. Z may contain
genetic information, lab results, age, gender, or any other characteristics of interest. We call
this relationship the disease mechanism.

We consider a large EHR database with the goal of making inference about some defined
population. Let S indicate whether a given person in the population is included in our data (e.g.,
by going to a particular hospital and consenting to share biosamples), where the probability of
an individual being included in our data may depend on the underlying disease status, D, along
with additional covariates, W . Let W † denote variables in W that are not adjusted for in the
disease model (not in Z). Here, we will use the terms “sampled” or “selected” interchangeably
to refer to patients included in our EHR dataset. We may often expect the sampled and non-
sampled patients to have different rates of the disease, and other factors such as patient age,
residence, access to care, and general health state may also impact inclusion. We will call this
mechanism the selection mechanism. In reality, patient inclusion in the analytical dataset may
be impacted by multiple phases of selection as illustrated for MGI in Figure C.1. In our
notation, we focus on the aggregate mechanism governing inclusion, which may be composed
of these various sub-stages.

Instances of the disease are recorded in the EHR. Factors such as patient age, length of
follow-up, and number of hospital visits may impact whether we observe/record the disease
of interest for a given person. Let D∗ be the observed disease status. D∗ is a potentially
misclassified version of D. We call the mechanism generating D∗ the observation mechanism.
We will assume that misclassification is primarily through underreporting of disease. In other
words, we assume that D∗ has perfect specificity and potentially imperfect sensitivity with
respect to D. Let X denote patient and provider-level predictors related to sensitivity, and let
X† denote the variables in X not included in Z. Figure 1 shows the conceptual model, which
is expressed mathematically in Eq. 1 .

Conceptual Model (Eq. 1 )

Disease Mechanism : logit(P (D = 1|Z; θ)) = θ0 + θZZ

Selection Mechanism : P (S = 1|D,W ;φ)

Observation Mechanism : logit(P (D∗ = 1|D = 1, S = 1, X;β)) = β0 + βXX

3

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.26.19015859doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.26.19015859


Figure 1: Diagram of the assumed data structure

In our statistical development, we will often refer to the following functions of the observation
and selection model parameters

ctrue(X) = P (D∗ = 1|D = 1, S = 1,X;β) (Eq. 2 )

c(Z) = P (D∗ = 1|D = 1, S = 1,Z;β) =

∫
ctrue(X)f(X†|Z,D = 1, S = 1)dX†

c̃ = P (D∗ = 1|D = 1, S = 1;β) =

∫
c(Z)f(Z|D = 1, S = 1)dZ

r(Z) =
P (S = 1|D = 1,Z;φ)

P (S = 1|D = 0,Z;φ)
=

∫
P (S = 1|D = 1,W ;φ)f(W †|Z,D = 1)dW †∫
P (S = 1|D = 0,W ;φ)f(W †|Z,D = 0)dW †

r̃ =
P (S = 1|D = 1;φ)

P (S = 1|D = 0;φ)
=

∫
P (S = 1|D = 1, Z;φ)f(Z|D = 1)dZ∫
P (S = 1|D = 0, Z;φ)f(Z|D = 0)dZ

The first expression represents the generating sensitivity mechanism. The subsequent expres-
sions show the average sensitivity as a function of Z and the overall marginal sensitivity, c̃,
both of which are implicit functions of β. The fourth expression represents the sampling ratio
with respect to D as a function of Z, and constant r̃ represents the ratio of marginal sampling
probabilities (here, called the marginal sampling ratio). These latter expressions are implicit
functions of φ.

A common approach is to model D∗|Z, S = 1 (analysis model) and interpret results under
the target model D|Z. There are many settings in which the resulting inference will be biased.
To explore these settings, we relate the parameters in the conceptual and analysis models. In
Web Appendix A.1, we prove the following key relationship:

P (D∗ = 1|Z, S = 1) =
c(Z) r(Z)P (D = 1|Z)

1 + [r(Z)− 1]P (D = 1|Z)
(Eq. 3 )

Eq. 3 is an extension of Neuhaus (1999) allowing for covariate-related misclassification and
also incorporating patient selection. The contribution of misclassification and selection reduces
to terms c(Z) and r(Z) in Eq. 2 , where c(Z) represents the impact of misclassification and
r(Z) represents the impact of selection. Under distinctness of β and φ in Eq. 1 , c(Z) and
r(Z) are independent functions of model parameters given Z. These two factors work together
to generate bias in P (D∗ = 1|Z, S = 1) relative to P (D = 1|Z). We study settings in which
c(Z) = r(Z) = 1 in Web Appendix A.2. A special case is when D|Z follows a logistic
regression as in Eq. 1 . In this case, we can show that

log

[
P (D∗ = 1|Z, S = 1)

c(Z)− P (D∗ = 1|Z, S = 1)

]
= θ0 + θZZ + log [r(Z)] (Eq. 4 )
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The left-hand side of the equation takes a GLM-type form with a different (non-logistic) non-
linear link function, and the right-hand side contains an offset term as a function of the sampling
ratio. If we knew both c(Z) and r(Z), estimation of θ would simply involve fitting the above
model to the observed data. In this paper, we provide strategies for estimating θ when c(Z)
and r(Z) are not known, all guided by the relationship in Eq. 4 .

3 Accounting for phenotype misclassification assuming ignor-
able selection

Suppose first that patient selection is ignorable for θ. In other words, assume that r(Z) = 1.

In this case, Eq. 3 gives that log
[

P (D∗=1|Z,S=1)
c(Z)−P (D∗=1|Z,S=1)

]
= θ0 + θZZ. In this section, we propose

strategies for estimating θ accounting for unknown c(Z).

3.1 Method 1: approximating D∗|Z

Suppose c(Z) is independent of Z, so c(Z) = c̃. This will be the case if X is independent of Z

given D. In this setting, we observe that c̃ = P (D∗=1)
P (D=1) . If we know prevalence P (D = 1), then

we can estimate sensitivity as the ratio of observed and true disease prevalences. In Beesley
et al. (2018a), we derived an expression relating the true log-odds ratio θZ to the uncorrected
parameter θucZ and c̃ based on Taylor series approximations. As shown in Web Appendix A.3,
we can further relate θZ and θucZ as follows:

θZ ≈ θucZ
[
c̃(1− P (D∗ = 1))

c̃− P (D∗ = 1)

]
(Eq. 5 )

Replacing θucZ with an estimate, this expression recovers an existing estimator for binary predic-
tor Z in Duffy et al. (2004). We show we can apply Eq. 5 more generally to estimate θZ when
Z and X are independent given D. This expression is convenient, because it can be applied in
settings where only summary statistics for θucZ are available.

3.2 Method 2: direct estimation of θ using a non-logistic link

Suppose instead that c(Z) is not constant in Z. Given c(Z), we can estimate θ using the

relationship log
[

P (D∗=1|Z,S=1)
c(Z)−P (D∗=1|Z,S=1)

]
= θ0 + θZZ, which is a generalized linear model with a

non-logistic link function. The question then becomes how to estimate c(Z).
In Web Appendix A.4, we discuss settings where we can replace c(Z) with estimated

ctrue(X) = P (D∗ = 1|D = 1, X;β). In practice, replacing c(Z) with ctrue(X) tends to produce
decent results when the covariate of interest is not a direct driver of misclassification. As shown
in Web Appendix A.5, we can estimate ctrue(X) (function of β) using the relationship

log

[
P (D∗ = 1|X)

P (D = 1|X)− P (D∗ = 1|X)

]
= β0 + βXX (Eq. 6 )

assuming P (D = 1|X) is known. In practice, we will approximate P (D = 1|X) as discussed in
Web Appendix A.5. Importantly, Eq. 6 may not always have a solution, and we can instead

estimate ctrue(X) = min
(
P (D∗=1|X)
P (D=1|X) , 1

)
. In our experience, this latter approach tends to be

more robust to misspecification of P (D = 1|X).

3.3 Method 3: joint estimation of β and θ using observed data log-likelihood

Rather than estimating sensitivity and θ in a two-step process, we can jointly estimate θ and
sensitivity parameter β. Under assumptions discussed in Web Appendix A.6, we estimate
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(θ, β) using the following observed data log-likelihood∑
i

D∗i log

[
eβ0+βXXi

1 + eβ0+βXXi

eθ0+θZZi

1 + eθ0+θZZi

]
+ (1−D∗i )log

[
1− eβ0+βXXi

1 + eβ0+βXXi

eθ0+θZZi

1 + eθ0+θZZi

]
This can be viewed as a zero-inflated logistic regression model as proposed in the context
of infection and cure modeling in Diop et al. (2011). This model is identifiable if we have
a continuous covariate that is included in X but not Z or vice-versa. For EHR data, we
expect factors such as length of follow-up in the EHR to be included in X but not Z. We
can jointly estimate θ and β by maximizing this log-likelihood through a Newton-Raphson
algorithm or other numerical optimization method. For large datasets, it can sometimes be
more computationally convenient to estimate parameters using the expectation-maximization
algorithm. In both cases, estimation using the profile likelihood method across β0 tends to
have good performance. We may run into numerical problems tied to weak identifiability in
practice, which can be reduced by fixing a model parameter. In simulations, we observed good
performance when β0 was fixed at logit(c̃) for c̃ = P (D∗=1)

P (D=1) and mean-centered X. Estimation
details are presented in Web Appendix A.6.

4 Accounting for patient selection under perfect classification

Suppose that we have some unobserved mechanism governing patient selection and that se-
lection is related to D. Additionally, we suppose that we observe D perfectly, so D∗ =
D. In this case, we can relate the observed and true data models using Eq. 3 as follows:
logit [P (D = 1|Z, S = 1)] = θ0 + θZZ + log [r(Z)], where r(Z) is defined in Eq. 2 . When r(Z)
is known, we can directly estimate θ by fitting the above model. In the setting of case-control
sampling, for example, r(Z) is a (often known) constant and does not impact estimation of θZ .
When r(Z) is a function of Z, however, failure to account for r(Z) can result in bias. Estimation
of r(Z) directly can be very challenging, and researchers have developed many statistical strate-
gies (e.g. covariate adjustment, propensity weighting, matching, etc.) for obtaining estimates of
θ without requiring r(Z). Here, we describe how two such methods can be applied in the EHR
setting, and we extend these methods to incorporate selection composed of many intermediate
sampling stages.

4.1 Method 1: inverse of the selection probability weighting using external
data

When sampling probabilities are known or estimable, inverse probability of selection weighting
(IPW) can be applied to correct for selection bias. In this approach, we can estimate θ by
fitting a weighted regression for D|Z on the sampled data, where each patient’s data is weighted
proportional to the inverse of his/her estimated probability of being sampled, P (S = 1|D,W ).
Estimation of P (S = 1|D,W ) for EHR data is generally difficult. However, we can borrow
results from the non-probability sampling literature and leverage limited external data from the
population of interest to obtain rough estimates.

In particular, suppose we have individual-level data on D and W (or some subset) for an
external sample of patients from the population of interest. We suppose either the external
sampling mechanism or sampling weights is known. Example sources of data from the US adult
population might include National Health and Nutrition Examination Survey (NHANES); the
NCI Surveillance, Epidemiology, and End Results (SEER) program; the CDC Behavioral Risk
Factor Surveillance System; and the US Census. We can estimate the selection probability for
our internal EHR dataset as follows.

Let S indicate inclusion in the internal EHR dataset (our analytical dataset), Sext indicate
inclusion in the external data (e.g. NHANES), and Sall indicate inclusion in either the internal
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or external data. We will assume no one is included in both datasets. Following Elliot (2009)
and the proof in Web Appendix A.7, we can write

P (S = 1|D,W ) = P (Sext = 1|D,W )
P (S = 1|W,D,Sall = 1)

1− P (S = 1|W,D,Sall = 1)
(Eq. 7 )

where P (Sext = 1|D,W ) is the sampling distribution for the external data. When only sampling
weights are available, we can estimate P (Sext = 1|D,W ) by fitting a regression model, e.g.
beta regression, for the sampling weights in the external data (Elliot, 2009). We can estimate
P (S = 1|W,D,Sall = 1) by fitting a regression model for inclusion in the internal EHR data
given inclusion in the combined dataset. We then define inverse probability of selection weights
ω ∝ 1

P (S=1|D,W ) , where we approximate P (S = 1|D,W ) using available data on D and W in
practice. In many EHR settings, we may want to incorporate more complicated selection steps
into the modeling of the aggregate selection mechanism P (S = 1|D,W ), as is done in Haneuse
and Daniels (2016). In Web Appendix A.9, we extend these methods to incorporate multiple
selection stages.

4.2 Method 2: calibration weighting using external summary statistics

Calibration weighting uses summary statistics from the population (e.g., the relationship be-
tween D and W ) to re-weight the internal data so that the weighted distributions match dis-
tributions in the population. We then estimate θ by fitting a weighted regression for D|Z on
the internal sample. Several versions of calibration weighting exist. We will focus on two types:
(1) poststratification, where the joint distribution of D and W (or some subset) is available,
and (2) raking, where only marginal distributions are available. Under poststratification, we

define weights ω ∝ f(W,D)
f(W,D|S=1) = f(D|W )

f(D|W,S=1)
f(W )

f(W |S=1) , which incorporates summary information
from the population along with estimated relationships from the EHR data. We relate these
weights to inverse probability of selection weights in Web Appendix A.7. Construction of
raking weights requires an iterative algorithm to ensure that the resulting weights ω recover
the marginal distributions in the population. Both weighting strategies can be applied for
generalized linear models using R package survey.

5 Jointly addressing phenotype misclassification and patient se-
lection

When c(Z) and selection weights ω are known, adjustment for both sources of bias is a simple
extension of Section 3 to incorporate weighting. However, sensitivity and weights ω will not
be known in general, and estimation of these quantities in the presence of both sources of bias
is much harder than with each source of bias separately.

Firstly, misclassification complicates the estimation of weights for selection bias adjustment.
When we have misclassification, true D is not always known, making it difficult to estimate
P (S = 1|W,D) or f(D,W |S = 1) directly. Methods in Section 4 cannot be applied directly.
Secondly, sensitivity estimates in Section 3 often rely on the differences between observed and
population disease rates, which will be impacted by the selection mechanism, and cannot be
directly applied when we have selection bias. Each source of bias complicates estimation of
terms used to correct for the other source of bias, and additional thought is needed to estimate
sensitivity and ω when both biases are present.

As visualized in Figure 2, we propose a series of intermediate steps through which these
quantities can be estimated. Fixing these quantities, we then describe how we can estimate θ
following Eq. 4 .
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Figure 2: Flowchart of data analysis accounting for both misclassification and patient selection

Step 1: Estimating the marginal sampling ratio
In order to estimate θ, we first specify the marginal sampling ratio, r̃. This can be treated

as a tuning parameter. We can use the data, the population disease rate P (D = 1), and our
prior beliefs about c̃ to inform plausible r̃ as follows (Web Appendix A.8):

r̃ =
P (D∗ = 1|S = 1)

c̃− P (D∗ = 1|S = 1)

1− P (D = 1)

P (D = 1)
(Eq. 8 )

Step 2: Estimating marginal or patient-specific sensitivities
Given r̃, we estimate either marginal sensitivity c̃ or patient-specific sensitivity ctrue(X).

We can estimate c̃ using c̃ = P (D∗ = 1|S = 1) r̃P (D=1)+P (D=0)
r̃P (D=1) , noting that this could produce

a sensitivity greater than 1. Instead, suppose we want to estimate ctrue(X). We can estimate
β (and ctrue(X)) using the following approximate relationship:

log

 P (D∗ = 1|X,S = 1)
r̃P (D=1|X)

r̃P (D=1|X)+P (D=0|X) − P (D∗ = 1|X,S = 1)

 ≈ β0 + βXX (Eq. 9 )

where P (D = 1|X) is specified as in Web Appendix A.5. This fit may have no solu-
tion for P (D = 1|X) incompatible with the data, and we may directly estimate ctrue(X) ≈

min

(
P (D∗=1|X,S=1)

r̃P (D=1|X)
r̃P (D=1|X)+P (D=0|X)

, 1

)
where P (D∗ = 1|X,S = 1) is estimated using the EHR data.

Step 3: Estimating sampling or calibration weights
Given c̃ or ctrue(X), we can estimate weights ω for selection bias adjustment. When D is

misclassified, we propose defining inverse probability weights using P (S = 1|W,D∗) instead of
P (S = 1|W,D). Suppose we have individual-level data on W (or subset) and D for an external
sample from the population. Approximating P (S = 1|W,D∗) with P (S = 1|W,D∗) (after re-
placing W with available subset), we estimate the selection probability using (Web Appendix
A.7):

P (S = 1|W,D∗) =
f(D∗|S = 1,W )

f(D∗|W )
P (S = 1|W ) (Eq. 10 )

Each element of Eq. 10 is estimable using the external data and internal EHR. P (S = 1|W )
does not involve D, so it can be directly estimated using Eq. 7 or methods in Section A.9.
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P (D∗ = 1|S = 1,W ) can be directly estimated using the internal data. Combining sensitivity
c (estimated using c̃ or ctrue(X)) with estimated P (D = 1|W ) from the external data, we can
express f(D∗|W ) ≈ [cP (D = 1|W )]D

∗
[1− cP (D = 1|W )]1−D

∗
. Using similar logic, we can de-

fine poststratification weights as ω ∝ f(D∗|W )
f(D∗|W,S=1)

f(W )
f(W |S=1) .

Step 4: Estimating θ given sampling/calibration weights ω and sensitivity

5.1 Method 1: approximation of D∗|X accounting for selection

Suppose we assume r(Z) is a constant. This may be reasonable if Z is independent of W † given
D and the covariates of interest in Z are not contained in W . Suppose further that c(Z) can
be replaced with constant c̃. Then, we can apply Eq. 5 directly to correct for both sources
of bias (Web Appendix A.3). Intuitively, the impact of the selection enters that estimator
through the observed rate of disease in the sample. In general, r(Z) may rarely be a constant,

and we show that θZ ≈ θω,ucZ
c̃(1−p∗)
c̃−p∗ , where θω,ucZ is estimated from fitting a model for D∗|Z on

the sampled patients and weighting by ω, and p∗ is the ω−weighted average of D∗ in our sample
(Web Appendix A.3).

5.2 Method 2: non-logistic link function method with weighting

Suppose sensitivity is a function of Z. Recall from Eq. 4 that log
[

P (D∗=1|Z,S=1)
c(Z)−P (D∗=1|Z,S=1)

]
=

θ0 + θZZ + log [r(Z)]. We again remove the contribution of r(Z) by weighting estimation by ω.

In particular, we estimate θ by fitting an ω-weighted version of the model log
[

P (D∗=1|Z)
c(Z)−P (D∗=1|Z)

]
=

θ0 + θZZ to the patients in the sample. Assuming X† is independent of Z given D, we can
replace c(Z) with estimated ctrue(X).

5.3 Method 3: joint estimation using observed data log-likelihood incorpo-
rating weights

We can jointly estimate θ and β accounting for selection bias by maximizing a ω−weighted
version of the log-likelihood in Section 3.3 or applying a weighted expectation-maximization
algorithm. Details are available in Web Appendix A.6.

6 Standard error estimation for bias-corrected estimates

Until this point, we have focused on point estimation for θ, but we are also interested in valid
standard errors. In Web Appendix A.10, we detail how to estimate standard errors for each
of the proposed methods. Here, we summarize that discussion. When we do not account for
selection bias, variance estimation is more straightforward. For the method in Section 3.1, we

can estimate standard errors for θ̂Z given c̃ as Var(θ̂Z) ≈ Var(θ̂ucZ )
[
c̃(1−P (D∗=1))
c̃−P (D∗=1)

]2
. When we

estimate θ given c(Z) as in Section 3.2, the corresponding information matrix can be inverted
to obtain standard errors for θ̂. Similarly, we can obtain an estimated covariance matrix after
joint estimation of θ and β from Section 3.3 using the inverse of the expected observed data
information matrix. We analytically show that our bias correction methods ignoring selection
will result in larger standard errors relative to naive analysis on average (Web Appendix
A.10). Joint estimation of θ and β will produce the largest standard errors on average.

Methods for selection bias adjustment ignoring misclassification involve fitting a weighted re-
gression model. Corresponding standard errors can be estimated using a Huber-White sandwich
estimator as implemented in the R package survey (Freedman, 2006). We can obtain standard
errors for weighted versions of the first two θ estimation methods in Section 5 similarly. In
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order to estimate standard errors for the observed data log-likelihood method with weighting,
we propose a sandwich estimator based on weighting the observed data score and information
matrices as detailed in Web Appendix A.6.

For the majority of these methods, standard errors are estimated fixing sensitivity and/or se-
lection bias weights ω. However, rigorous estimation of standard errors should also incorporate
uncertainty from estimating these quantities. To account for this residual uncertainty, we could
apply bootstrap methods, where the sensitivity, weights, and θ are estimated on each of many
bootstrap samples of the data. The resulting distribution of θ̂ can then be used to estimate
standard errors. We compare the degree of underestimation due to ignoring this uncertainty
in our simulations. We find that ignoring uncertainty in estimating sensitivity does not impact
variance estimation too much, but there is some underestimation of variance when we ignore
uncertainty in estimating selection weights.

7 Simulations

We present a simulation study to evaluate the proposed methods in terms of bias and bias-
corrected inference in settings with disease status misclassification and/or non-ignorable patient
selection. We divide this simulation study into three parts. In the first part, we focus on the
setting where the outcome is misclassified but patient selection can be ignored. In the second
part, we focus on selection and assume we have no misclassification. After evaluating these
two simpler cases, we then explore the more complicated setting where we have both sources of
bias.

In all simulation settings, we generate 500 datasets with 5000 population members each
under a ∼10% marginal disease prevalence. In part 1, we impose outcome misclassification
under different covariate-related sensitivity mechanisms corresponding to marginal sensitivities
of roughly 0.4, 0.65, 0.8, and 0.95. In part 2, we sub-sample about 50% of patients under various
sampling mechanisms. In part 3, we sub-sample patients under different mechanisms and impose
roughly 65% outcome sensitivity. In each simulation setting, we apply methods discussed in
this paper to correct bias in disease model parameters. Details about data generation and
implementation can be found in Web Appendix B.1.

7.1 Simulation results

Figure 3 presents the biases in the estimated log-odds ratio of Z (from D|Z model, truth =
0.5) across 500 simulated datasets for the first two simulation scenarios. Figure 4 presents the
bias for the third simulation scenario.

Misclassification Only: Suppose first that X and Z are independent. Relative bias in uncor-
rected analysis ranges from very small (high sensitivity) to about 10% (low sensitivity). When
X ⊥ Z, the proposed methods do a good job at removing or reducing bias to less than 2%. An
exception is the observed data log-likelihood maximization method, which maintains residual
bias due to numerical instability. When we fix β0 (the intercept in the misclassification model)
at a reasonable value, however, this method has excellent performance in terms of bias. When X
and Z are correlated, the uncorrected analysis bias increases to over 40%, and this bias is in the
direction away from the null. Methods treating sensitivity as fixed do not correct this bias, but
methods that treat sensitivity as a function of covariates reduce this bias to much smaller levels.

Selection Only: Analysis of selected patients without correction produces bias from 4% to
9% except in the setting where W is independent of D and is the only driver of selection (no
bias). These biases are not too large, but they can grow larger with stronger covariate effects
on selection. We compare weighting strategies for correcting this selection bias. When the

10

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.26.19015859doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.26.19015859


IPW model is correctly structured, we can estimate parameters with low bias. This is true
even when the true selection probabilities are not known and must be estimated as in Eq. 7 .
Poststratification on both W and D using external summary statistics has good performance
in terms of bias. When selection is independent of D given W , poststratification on W also
performs well. Raking (using marginal distributions of D and W ), however, performs poorly
when selection depends directly on D.

Both Selection and Misclassification: Biases of uncorrected analysis range from about 4%
to 17% relative to the true log-odd ratio of 0.5. We see even higher bias if X is related to Z (e.g.
20%+). Notably, methods that only correct for misclassification can still result in substantial
residual bias (3-9%), and this can even be larger than bias in the näıve analysis. When we also
adjust for selection, however, we see little bias.

Other Metrics for Inference: Figure 5 provides empirical and estimated variances. The
estimated variances tend to be similar or slightly smaller than empirical variances on average.
Ignoring uncertainty due to estimation of selection weights seems to be a bigger problem than
ignoring uncertainty due to estimation of sensitivity. Coverage rates of 95% confidence intervals
tend to be low (as low as 8% in our simulations) for naive analyses. In contrast, coverages tend
to be near nominal for methods that fully correct the bias. Simulations in Web Appendices
B.2-B.4 demonstrate that the proposed estimators for sensitivity and ω generally do a good
job at recovering the true values when models are correctly specified. In Web Appendix B.2,
we demonstrate that misclassification bias-adjusted p-values tend to be similar to unadjusted
p-values when Z and X are independent. However, when Z and X are associated, the corrected
and uncorrected p-values differ, and uncorrected type I error can be highly inflated (e.g. 0.60).
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Figure 4: (Part 3) Bias in estimated log-odds ratio of Z across 500 simulations under selection
bias and phenotype misclassification.† ** Bars (points) represent the average (median) difference
between estimates and the truth of θZ = 0.5.

Misclassification 
 and Selection 

 Adjustment

Misclassification 
 Adjustment 

 Only

No Adjustment

3.1

3.2

3.3

5.1

5.1

5.2

5.2

5.3

5.3

Section

Obs. log-lik + Poststratification

Obs. log-lik + IPW

Link with c(X) + Poststratification

Link with c(X) + IPW

D*|Z approx + Poststratification

D*|Z approx + IPW

Obs. log-lik

Link with c(X)

D*|Z approx

Uncorrected

True

-0.
05 0.0

0
0.0
5

Bias in Estimated logOR of Z

D and W (W independent of D, related to Z) D and W (W related to D and Z)

W only (W independent of D, related to Z) W only (W related to D and Z)

† Here, c(X) denotes an estimate of ctrue(X) and c denotes an estimate of c̃. ‘Link’ represents the non-logistic
GLM fit. ** IPW was implemented using the true selection probabilities. We obtain similar results using
estimated probabilities.
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Figure 5: Comparison of empirical and median estimated variances for the log-odds ratio of
Z across 500 simulations†
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† This figure presents empirical variances (bars) and median estimated variances (points) across 500 simulated
datasets. We calculate these quantities after applying a variety of bias-correction strategies. Here, c(X) denotes
an estimate of ctrue(X). ‘Link’ represents the non-logistic GLM fit. When handling selection only, Population
IPW indicates the selection model was estimated using data from the entire population, and Elliot indicates
the selection model was estimated as in Eq. 7 . When handling misclassification and selection, true selection
probabilities were used. Coverage of 95% confidence intervals is printed at the bottom of each bar.
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8 Data example: exploring bias and sensitivity in MGI

The Michigan Genomics Initiative (MGI) is an EHR-linked biorepository within Michigan
Medicine containing over 40,000 patients with matched genotype and phenotype information
(Fritsche et al., 2018). Table C.1 provides descriptives of the unrelated patients of recent
European ancestry used for our analyses. Time-stamped ICD (International Classification of
Disease) diagnosis data are available for each patient. We map ICD codes to a set of 1866 dis-
eases and symptoms called “phenotype codes” or “phecodes” (Carroll et al., 2014). Observed
disease status, denoted D∗, indicates whether each patient received a given phecode during
follow-up. Let D denote the “true” disease status.

Figure C.1 provides a visualization of the MGI data accumulation process. We are con-
cerned about generalizing results in MGI to external populations. Patients in a hospital EHR
will naturally be sicker than the average person in the US. Moreover, MGI, a subset of Michigan
Medicine, primarily recruits perioperative patients, resulting in strong enrichment for many dis-
eases. When ignored, these factors could result in a large degree of bias in association analyses.

We apply the proposed methods to address phenotype misclassification and selection bias in
MGI through three illustrative examples. In the first example, we explore factors measured in
the EHR that may be related to misclassification for several diseases of interest. In the second
example, we apply the proposed methods to study a well-known relationship between gender
and cancer risk. In the third example, we examine bias in genetic association study results for
age-related macular degeneration. Table C.2 clarifies the link between each example and the
conceptual framework laid out in Eq. 1 .

8.1 Example 1: factors related to sensitivity in MGI

The proposed methods in Section 3 provide a unique opportunity to explore factors related
to sensitivity in EHR data. We study five EHR-derived phenotypes in MGI: cancer, colorectal
cancer, diabetes, hypothyroidism, and melanoma. We modeled sensitivity as a function of
follow-up years, age, and the number of doctor’s visits per follow-up year. We adjusted for
gender and age in the disease model. Results are shown in Figure 6.

Average estimated sensitivity across patients ranged from 0.40 for diabetes to 0.73 for cancer,
but individual patients’ sensitivity estimates differed greatly. This supports a need to consider
covariate relationships with sensitivity in EHR data. A greater number of visits per follow-
up year was associated with higher sensitivity, with odds ratios associated with log(visits per
year) ranging from 1.26 (95% CI: 1.07, 1.48) for melanoma to 2.96 (95% CI: 2.18, 4.02) for
colorectal cancer. The odds ratio for years of follow-up was greater than 1 for all diseases
except melanoma (0.95 [95% CI: 0.92, 0.98]). Michigan Medicine is well-known for its skin
cancer clinic, and many patients receive treatment over a short period of time and then return
to their home clinics for subsequent care. This could explain an inverse relationship between
follow-up duration and accuracy of EHR-derived skin cancer diagnosis. Increased age was
associated with higher sensitivity for all diseases considered, with odds ratios up to 1.99 (95%
CI: 1.69, 2.24) for colorectal cancer.
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Figure 6: Sensitivity of EHR-derived disease phenotypes in MGI*

(a) Estimated β and 95% confidence intervals
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(b) Distribution of estimated sensitivities in MGI
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*Sensitivity was estimated using the method in Section 3.3 ignoring selection and adjusting for age and gender
in the disease model.

8.2 Example 2: assessing association between gender and cancer risk

Suppose we are interested in the relationship between cancer (D) and gender (Z). Odds ratios
reported using SEER data indicate lower cancer risk among women, with estimates of 0.78
(2008-2010), 0.83 (2010-2012), 0.92 (2012-2014), and 0.94 (2014-2016). An estimate using 28,709
patients in NHANES (2011-2016) is 0.88 (95% CI: 0.77, 0.99).

We first present an illustrative example (example 2a) where we treat EHR-derived cancer
status as the truth and impose additional misclassification. We then present example 2b, where
we correct for an unknown degree of misclassification in EHR-derived cancer status along with
potential selection bias using the methods in Section 5.
Example 2a: Suppose we treat EHR-derived cancer diagnosis as the truth, D. In this case, we
estimate the “true” gender odds ratio in MGI as 0.93 (95% CI: 0.90, 0.97), where the reference
category is men. Given D, we then impose misclassification (generate D∗) using two different
mechanisms: (1) patients with longer follow-up are more likely to have observed disease and (2)
patients with longer follow-up and female patients are more likely to have observed disease, each
resulting in an average sensitivity of about 70%. We apply methods in Section 3 to correct
resulting bias in the gender odds ratio.

Figure C.2 shows the associations between gender and the misclassified outcome. In both
settings, some bias is evident and is particularly notable when misclassification depends directly
on gender (odds ratio 1.01 [95% CI: 0.97, 1.06]). When misclassification does not depend directly
on gender, our methods can correct the bias even when the sensitivity model parameters are
estimated. When misclassification depends directly on gender, however, it is more difficult to
estimate sensitivity, and our methods struggle unless the true sensitivity is known. In general,
our methods have good performance in correcting bias when sensitivity is not strongly related
to the predictor of interest, Z.
Example 2b: Now, we apply the proposed methods to correct bias already present in the ob-
served MGI data. Suppose our population of interest is the general US population, and we
define the true cancer status of interest, D, as the patient’s historical cancer status up to their
current age. We now want to study the relationship between true cancer status D and gender
(Z), adjusting for potential misclassification of the EHR-based cancer diagnosis status (D∗) and
the unknown mechanism driving patient inclusion in the EHR.

We estimate sensitivity given age, length of follow-up, and log(number of visits per follow-up
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year) using Eq. 9 and fixing unknown r̃ at 250, resulting in a median estimated sensitivity of
roughly 0.64 and ranging from 0.11 to 0.96 across patients. We adjust for selection bias using
poststratification and inverse probability of selection weighting using several weight construc-
tion strategies. Details can be found in Web Appendix C.4.

We apply methods described in Sections 3 and 5 to estimate the association between
cancer and gender. Results are shown in Table 1. First, we adjust for misclassification only.
Using the non-logistic link function and observed data log-likelihood methods, we obtain odds
ratio estimates of 0.85 (95% CI: 0.75, 0.95) and 0.97 (95% CI: 0.87, 1.08) respectively. When
we adjust for both misclassification and selection bias and incorporate cancer diagnosis in the
selection weights, point estimates range from 0.77 (95% CI: 0.72, 0.82) to 0.86 (95% CI: 0.77,
0.96). Since our patient population is a mix of diagnoses across these time periods, it is diffi-
cult to assess the “truth,” but this exploration does demonstrate the potential impact of bias
correction.

Table 1: Estimated cancer-gender odds ratio and 95% confidence intervals across methods
(reference category = male)

Gender OR
Approx. D∗|Z Non-logistic link with c(X) Obs. log-likelihood*

Uncorrected OR: 0.93 (0.90, 0.97)

Dealing with misclassification NA † 0.85 (0.75, 0.95) 0.97 (0.87, 1.08)

Dealing with misclassification + sampling
Version 1 Poststratification** 1.08 (0.93, 1.26) 0.98 (0.87, 1.10) 1.08 (0.97, 1.22)
Version 2 Poststratification 0.87 (0.81, 0.93) 0.83 (0.82, 0.85) 0.85 (0.77, 0.93)
Version 3 Poststratification 0.77 (0.73, 0.82) 0.77 (0.73, 0.81) 0.79 (0.70, 0.89)
Version 1 IPW 1.25 (1.12, 1.39) 1.18 (1.07, 1.30) 1.29 (1.16, 1.43)
Version 2 IPW 0.87 (0.83, 0.91) 0.86 (0.82, 0.90) 0.92 (0.85, 0.99)
Version 3 IPW 0.80 (0.76, 0.84) 0.77 (0.74, 0.82) 0.86 (0.77, 0.96)

*No fixed intercept for sensitivity model. Instead, intercept is estimated.
** Version 1 weights depend on age and gender, but they do not incorporate disease status. Version 2 weights
depend on age, gender, and cancer diagnosis but ignore misclassification. Version 3 weights depend on age,
gender, and cancer diagnosis and account for misclassification.
† Estimated c̃ = P (D∗ = 1)/P (D = 1) greater than 1. Cannot apply method.

8.3 Example 3: genetic associations for age-related macular degeneration

Age-related macular degeneration (AMD) is a common cause of vision loss, and the Interna-
tional AMD Genomics Consortium (IAMDGC) was developed to better understand its genetic
drivers. In this section, we compare results from a genome-wide association study of over 16,000
advanced AMD cases and 18,000 controls using IAMDGC data to parallel results using matched
MGI case-control data among patients over 50. Details of the data curation are available in
Web Appendix C.5. We focus on 44 independent genetic loci identified with small p-values
(<5x10−8) in the IAMDGC data. Across these 44 loci, MGI and IAMDGC GWAS log-odds
ratio point estimates have a Lin’s concordance correlation coefficient (CCC) of only 0.61, and
MGI point estimates generally tend to be closer to the null compared to the IAMDGC es-
timates (Figure 5.2). The “winner’s curse” resulting in inflated IAMDGC point estimates
explains some differences, but bias due to selection and misclassification in MGI may also con-
tribute. Another explanation for smaller effect estimates in MGI is that less advanced AMD
cases were also included, as were cases of macular degeneration in older adults that may not
have been age-related. We apply our methods to correct for potential biases due to selection
and misclassification in MGI.

AMD sensitivity in MGI is estimated as a function of age, length of follow-up in the EHR,
and log(number of visits per follow-up year). Fixing r̃ = 50 (see Web Appendix C.5 for
details), we obtain a median estimated sensitivity of 0.17 that ranges between 0.01 and 0.99
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across patients. We use these sensitivities and poststratification weights obtained using US
Census and NIH National Eye Institute summary statistics to correct for potential bias in the
MGI estimates. We compare the resulting point estimates in Table C.4. When we accounted
for both potential selection bias and misclassification, Lin’s concordance increased from 0.61 to
0.77. Additionally, the average absolute difference between MGI and IAMDGC estimates went
from 0.21 for naive analysis to 0.13 for bias-adjusted analysis. Figure 5.2 provides the point
estimates in MGI after applying the method in Section 5.2. These estimates tend to be closer
to IAMDGC estimates than seen in näıve analysis. These results indicate that the proposed
bias-correction methods allowed us to better recover genetic associations observed using better
quality data.

Figure 7: AMD log-odds ratio estimates across 44 genetic loci in MGI and IAMDGC*
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*We show log-odds ratio estimates for 44 genetic loci known to be associated with AMD. Circles correspond to
the results from the IAMDGC GWAS, here viewed as a comparative gold standard. Triangles show estimates in
MGI ignoring selection and misclassification-related biases. Horizontal lines correspond to estimated associations
in MGI after applying the method in Section 5.2.

9 Discussion

Electronic health records (EHR) have become a rich resource for biomedical research. How-
ever, data obtained from EHR are highly susceptible to various sources of bias, which can
negatively impact the accuracy and generalizability of statistical inference. In this paper, we
focus on two common sources of bias: (1) misclassification of derived disease variables (in-
formation bias), which may be related to patient factors, and (2) lack of representativeness
(selection bias). To address these key problems, we propose a variety of likelihood-based
bias-correction strategies. We also derive valid standard errors, allowing for principled in-
ference, and we provide corresponding software (R package, SAMBA, available at https:

//github.com/umich-cphds/SAMBA).
A key advancement in this paper is the development of strategies to handle covariate-

related phenotype misclassification. The proposed methods leverage information in each pa-
tient’s follow-up history to estimate the rate of misclassification without requiring gold standard
disease status labels. We also describe how we can incorporate external disease information into
the estimation, resulting in efficiency gains.

In addition to addressing misclassification, we explore strategies for dealing with the harder
problem of selection bias. Correction for selection bias is extremely difficult for EHR data, and
we describe how we can extend weighting methods in the survey sampling literature to at least
partially address patient selection. As in Haneuse and Daniels (2016), our methods can accom-
modate the complicated multi-stage selection mechanisms often present for EHR data, but our
methods further bridge the gap between patients that are and are not included in the EHR.
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The key limitation of these methods is the need for high-quality external information, including
external summary statistics or even individual-level data from the population of interest.

This paper proposes a variety of bias-correction strategies. Among the methods for handling
misclassification, the method in Section 3.2 is particularly attractive and easy to implement.
Estimating sensitivity under that method requires some external summary information (e.g. as-
sociation between disease and age, gender), but this may be easily obtained for many diseases.
Poststratification emerges as an appealing approach for handling selection bias since it relies on
summary statistics from the population rather than individual-level data. The combination of
these two approaches in Section 5.2 tends to produce good results for addressing both sources
of bias at once. We recommend this approach as a starting point for analysts interested in
applying the proposed methods.

Our results rely on logistic regression models for misclassification and disease, and we as-
sume perfect specificity. Future work should explore more general modeling settings. We focus
our attention on a single disease D and adjustment factors Z, but these methods could be
applied to study many disease-covariate combinations. Strategies for automating estimation
for association studies are discussed in Web Appendix D.2. In general, this paper provides
useful statistical strategies and corresponding software for handling outcome misclassification
and selection bias, and these methods are tailored to issues encountered in EHR data analysis.

Acknowledgments

The authors would like to thank Chad Brummet, Goncalo Abecasis, and Sachin Kheterpal
along with the large group of collaborators and staff at Michigan Genomics Initiative along
with MGI participants for generously donating their biosamples for research. This work was
supported by The University of Michigan Comprehensive Cancer Center core grant supplement
5P30-CA-046592, NSF DMS award 1712933 and The University of Michigan precision health
award U067541. The authors acknowledge the University of Michigan Medical School Cen-
tral Biorepository for providing biospecimen storage, management, and distribution services in
support of the research reported in this publication. We want to thank Lars Fritsche and the
International AMD Genomics Consortium (IAMDGC) for providing GWAS summary statistics.
We also want to thank Alexander Rix for his help in developing the R package.

Supporting Information

R package SAMBA can be found at https://github.com/umich-cphds/SAMBA. MGI data are
available after IRB approval to select researchers.

19

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 30, 2019. ; https://doi.org/10.1101/2019.12.26.19015859doi: medRxiv preprint 

https://github.com/umich-cphds/SAMBA
https://doi.org/10.1101/2019.12.26.19015859


References

Reg Baker, J Michael Brick, Nancy A Bates, Mike Battaglia, Mick P Couper, Jill A Dever,
Krista J Gile, and Roger Tourangeau. Report of the AAPOR Task Force on Non-Probability
Sampling. Technical report, 2013.

Lauren J Beesley, Lars G Fritsche, and Bhramar Mukherjee. A Modeling Framework for Ex-
ploring Sampling and Observation Process Biases in Genome and Phenome-wide Association
Studies using Electronic Health Records. bioRXiv, pages 1–19, 2018a.

Lauren J Beesley, Maxwell Salvatore, Lars G Fritsche, Anita Pandit, Arvind Rao, Cristen J
Willer, Lynda D Lisabeth, and Bhramar Mukherjee. The Emerging Landscape of Epidemi-
ological Research Based on Biobanks Linked to Electronic Health Records. Preprints.org,
pages 1–35, 2018b.

Julie K Bower, Sejal Patel, Joyce E Rudy, and Ashley S Felix. Addressing bias in electronic
health record-based surveillance of cardiovascular disease risk: finding the signal through the
noise. Curr Epidemiol Rep2, 4(4):346–352, 2017.

Robert J. Carroll, Lisa Bastarache, and Joshua C. Denny. R PheWAS: Data analysis and
plotting tools for phenome-wide association studies in the R environment. Bioinformatics,
30(16):2375–2376, 2014.

Joan A. Casey, Brian S. Schwartz, Walter F. Stewart, and Nancy E. Adler. Using Elec-
tronic Health Records for Population Health Research: A Review of Methods and Ap-
plications. Annual Review of Public Health, 37(1):61–81, 2016. ISSN 0163-7525. doi:
10.1146/annurev-publhealth-032315-021353. URL http://www.annualreviews.org/doi/

10.1146/annurev-publhealth-032315-021353.

Aba Diop, Aliou Diop, and Jean-François Dupuy. Maximum likelihood estimation in the logistic
regression model with a cure fraction. Electronic Journal of Statistics, 5(0):460–483, 2011.

S. W. Duffy, J. Warwick, A. R.W. Williams, H. Keshavarz, F. Kaffashian, T. E. Rohan, F. Nili,
and A. Sadeghi-Hassanabadi. A simple model for potential use with a misclassified binary
outcome in epidemiology. Journal of Epidemiology and Community Health, 58(8):712–717,
2004.

Michael R Elliot. Combining Data from Probability and Non- Probability Samples Using
Pseudo-Weights. Survey Practice, 2(3):1–7, 2009.

David A Freedman. On The So-Called “Huber Sandwich Estimator” and “Robust Standard
Errors”. The American Statistician, 60(4):299–302, 2006.

Lars G. Fritsche, Stephen B. Gruber, Zhenke Wu, Ellen M. Schmidt, Matthew Zawistowski,
Stephanie E. Moser, Victoria M. Blanc, Chad M. Brummett, Sachin Kheterpal, Gonçalo R.
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