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Abstract 

Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized primarily by 

progressive muscle weakness. Cognitive dysfunction is commonly observed in patients, 

however factors influencing risk for cognitive dysfunction remain elusive. Using sparse 

canonical correlation analysis (sCCA), an unsupervised machine-learning technique, we 

observed that single nucleotide polymorphisms collectively associate with baseline 

cognitive performance in a large ALS patient cohort from the multicenter 

Clinical Research in ALS and Related Disorders for Therapeutic Development 

(CReATe) Consortium (N=327). We demonstrate that a polygenic risk score derived 

using sCCA relates to longitudinal cognitive decline in the same cohort, and also to in 

vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral 

temporal cortex, premotor cortex, and hippocampus (N=114) as well as post mortem 

motor cortical neuronal loss (N=88) in independent ALS cohorts from the University of 

Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that 

common genetic polymorphisms may exert a polygenic contribution to the risk of cortical 

disease vulnerability and cognitive dysfunction in ALS. 
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Introduction 

As many as half of patients with amyotrophic lateral sclerosis (ALS) manifest 

progressive decline in cognition consistent with extra-motor frontal and temporal lobe 

neurodegeneration, including 14% also diagnosed with frontotemporal dementia (FTD) 

[1,2]. Comorbid cognitive dysfunction is a marker of poorer prognosis in this fatal 

disease and confers risk for more rapid functional decline, shorter survival, and greater 

caregiver burden [3-6]. While linkage analysis and genome-wide association studies 

(GWAS) have identified rare causal mutations [7-10] and common risk loci [11-15] 

suggesting shared genetic architecture between ALS and FTD, whether and how 

identified variants relate to phenotypic heterogeneity, including in cognition, remain 

largely unexplored. 

 

The genetic landscape of ALS is largely characterized by ‘apparently sporadic’ disease 

occurring in 90% of patients with neither a known family disease history nor an 

identifiable pathogenic mutation [16]. Population-based studies estimate that only 5-

10% of non-familial and 40-50% of familial ALS cases can be attributed to known 

pathogenic mutations [17] (e.g. C9ORF72 [7,8], NEK1 [18], SOD1 [19]), but GWAS 

have revealed many loci of common genetic variation that confer risk for ALS and FTD. 

Indeed, recent evidence, supports a polygenic contribution to disease risk from common 

genetic variants [20,21]. These include the largest ALS GWAS to-date which newly 

identified risk variants in the KIF5A gene [12] and genome-wide conjunction and 

conditional false discovery rate (FDR) analyses demonstrating shared genetic 
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contributions between ALS and FTD from common single nucleotide polymorphisms 

(SNPs) at known and novel loci [15].  

 

An accumulating body of research suggests that SNPs associated with risk of ALS and 

FTD demonstrate quantitative trait modification of patient phenotype. For example, a 

SNP identified as a risk locus for ALS and FTD was found to contribute to cognitive 

decline, in vivo cortical degeneration in the prefrontal and temporal cortices, and post 

mortem pathologic burden of hyperphosphorylated TAR-DNA binding protein [43 kDa] 

(TDP-43) in the middle frontal, temporal, and motor cortices [22]. Another study found 

that a SNP identified as a risk locus for FTD with underlying TDP-43 pathology was 

additionally associated with cognition in patients with ALS [23]. Others have recently 

demonstrated shared polygenic risk between ALS and other traits (e.g. smoking, 

education) and diseases (e.g. schizophrenia) [20,21,24], suggesting that a single variant 

is unlikely to fully account for observed disease phenotype modification. However, there 

are presently no published studies evaluating polygenic contribution to cognitive 

dysfunction in ALS. 

 

Here we employed an unsupervised machine-learning approach, sparse canonical 

correlation analysis (sCCA), to identify and evaluate a potential polygenic contribution to 

cognitive dysfunction in ALS. Traditional approaches for constructing polygenic scores 

identify variants associated with disease risk through GWAS in a univariate manner, 

and then compute the sum of alleles at each identified variant weighted by their effect 

sizes. In this study, we used sCCA to identify polygenic associations with a continuous 
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phenotype of cognitive performance in ALS. This data-driven method employs sparsity 

to select maximally-contributing variants and assigns corresponding weights based on 

model contribution with minimal a priori assumptions. We used sCCA to derive a 

polygenic risk score for cognitive dysfunction in a large longitudinal cohort of cognitively-

characterized patients with ALS or a related disorder participating in the Phenotype-

Genotype-Biomarker (PGB) study of the Clinical Research in ALS and Related 

Disorders for Therapeutic Development (CReATe) Consortium. We then evaluated 

independent neuroimaging and autopsy ALS patient cohorts from the University of 

Pennsylvania Integrated Neurodegenerative Disease Biobank (UPenn Biobank) [25] to 

evaluate whether polygenic risk for cognitive dysfunction also relates to in vivo cortical 

neurodegeneration and ex vivo cortical neuronal loss and TDP-43 pathology. We 

focused our investigation on SNPs achieving genome-wide significance in the largest 

published ALS GWAS [12] and SNPs identified as shared risk loci for both ALS and 

FTD [15]. We hypothesized that a sparse multivariate approach would reveal a subset 

of genetic loci associated with cognitive dysfunction profiles in ALS in a polygenic 

manner, and that follow-up analyses in independent neuroimaging and autopsy cohorts 

would converge to characterize quantitative traits associated with polygenic risk from 

identified loci.  

 

Results 

Heterogeneity of baseline cognitive and motor phenotype in ALS patients.   

Smaller-scale studies have shown that ALS patients have impairments in executive, 

verbal fluency, and language domains, but with relative sparing of memory and 
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visuospatial function [4]. The Edinburgh Cognitive and Behavioral ALS Screen (ECAS) 

was developed to measure cognitive function minimally confounded by motor disability 

and includes an “ALS-Specific” score that captures impairments in language, executive 

function, and verbal fluency domains that are frequently observed in ALS patients, and 

an “ALS-Non-Specific” score that captures less frequently observed impairments in 

memory and visuospatial function, in addition to overall performance (ECAS Total 

score) [26]. To quantify heterogeneity in cognitive dysfunction, we evaluated 327 

patients with ALS or a related disorder (e.g., ALS-FTD, primary lateral sclerosis (PLS), 

progressive muscular atrophy (PMA)) participating in the PGB study of the CReATe 

Consortium (NCT02327845) (Table 1). We used linear mixed-effects (LME) to model 

variability between individuals in baseline performance and rate of decline on the ECAS 

(Total, ALS-Specific, and ALS-Non-Specific scores, and scores for each individual 

cognitive domain), on the ALS Functional Rating Scale – Revised (ALSFRS-R), and on 

clinician ratings of upper motor neuron (UMN) and lower motor neuron (LMN) signs 

(UMN and LMN burden scores); each model included covariate adjustment for potential 

confounders including age, education, bulbar onset, and disease duration. We 

confirmed that cognitive and motor performance at baseline are heterogeneous across 

individuals (Figure 1A), and correlation analyses suggested that this is independent of 

disability in physical function or clinical burden of UMN/LMN signs (all R<0.2; Figure 

1B).  Together this establishes the heterogeneity of baseline and longitudinal cognitive 

and motor phenotypes within the PGB cohort. 
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Multivariate analyses indicate polygenic contributions to baseline cognitive 

performance. 

To identify potential polygenic contributions to cognitive impairment in ALS we 

employed sCCA [27], an unsupervised machine-learning approach enabling 

identification of multivariate relationships between a dataset of one modality (e.g. 

genetic variables including allele dosage of SNPs) and another modality (e.g. clinical 

measures of cognitive and motor function).  Traditional CCA identifies a linear 

combination of all variables that maximize the correlation between datasets, resulting in 

an association of variables from one dataset (e.g., SNPs) and variables from another 

dataset (e.g., clinical scores) [27]. The “sparse” component of sCCA additionally 

incorporates an L1 penalty that shrinks the absolute value of the magnitude of 

coefficients to yield sparse models (i.e. models with fewer variables) such that some 

coefficients are zero, and the variables associated with them are effectively eliminated 

from the model. As a result, variables that contribute little variance to the model are 

dropped and instead of a linear combination of all model variables, we are able to 

identify a data-driven subset of variables from one dataset that relate to a subset of 

variables from another dataset. Unstandardized regression coefficients resulting from 

sCCA serve as canonical weights indicating the direction and strength of the 

relationships between selected variables. 

 

We evaluated an allele-dosage dataset comprised of 33 SNPs identified as shared risk 

loci for both ALS and FTD [15], and 12 SNPs identified as risk loci for ALS from the 

largest published case-control GWAS [12], with the latter chosen to include loci 
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associated with ALS but not specifically with FTD (Figure 1C). We included the first two 

principle components from a PCA conducted in the PGB cohort and binary variables for 

sex, C9ORF72 repeat expansion status, and other mutation status (e.g. SOD1) in this 

dataset to account for inter-individual genetic differences in population structure, sex, 

and mutation status. We then used sCCA to examine the association between this 

genetic dataset and a dataset comprised of adjusted baseline performance on clinical 

measures of cognitive and motor performance extracted from the LME models. 

 

After optimizing model sparsity parameters (Supplementary Figure 1), we ran sCCA 

10,000 times and employed random bootstrapped subsamples of 75% of participants in 

each iteration (Supplementary Figure 2). We then calculated the median canonical 

correlation between the clinical and genetic datasets, the median canonical weight for 

each variable in the genetic dataset, and the proportion of times (as a percentage) each 

variable from the clinical dataset was chosen out of 10,000 iterations. We report 

percentages rather than median canonical weight for clinical features because the 

optimized L1 parameter for the clinical dataset was the most stringent (i.e. 0.1), thus 

resulting in only one variable from the clinical dataset being chosen in each of the 

10,000 iterations.  

 

To assess model performance under the null hypothesis (no association between 

genetic factors and clinical phenotypes), we similarly ran 10,000 bootstrapped sCCAs 

using the same L1 and subsampling parameters; however, we randomly permuted each 

dataset 100 times in each model iteration. We examined the proportion of times each 
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variable in the clinical and genetic datasets was selected by this null model (i.e. 

achieving a non-zero canonical weight). We used the null model to define a p value for 

the true, unpermuted model by calculating the probability under the null hypothesis of 

observing a canonical correlation greater than or equal to the median canonical 

correlation under sCCA modeling of the true data.  

 

We observed that a subset of 29 genetic variables were correlated with a single clinical 

variable, achieving a median canonical correlation between the two datasets of R=0.35 

(95% Confidence Interval: 0.23, 0.42; p=0.019) (Figure 2, Supplementary Figure 3). 

Over the 10,000 iterations, the most frequently selected clinical variable was the ECAS 

ALS-Specific score (percentage of times selected: 37%), followed by the ECAS Total 

(29%), Executive Function (17%), Language (9.5%), Verbal Fluency (2.3%), ALS-

Specific (2.2%), Memory (2%), and Visuospatial (0.34%) scores. The ALSFRS-R and 

UMN and LMN burden scores were each selected in less than 0.05% of the model 

iterations. By contrast, performance of sCCA modeling under the null hypothesis 

demonstrated that each clinical variable was selected in a largely equal proportion of 

iterations (all variables ranging 5.9% to 9.4%), demonstrating that the true sCCA 

modeling selected cognitive and not motor features beyond what would be expected by 

chance (Supplementary Figure 4A). 

 

Of the 29 selected genetic variables, the 12 most highly weighted were rs1768208 and 

rs9820623 (MOBP), rs7224296 (NSF), rs538622 (ERGIC1), rs10143310 (ATXN3), 

rs6603044 (BTBD1), rs4239633 (UNC13A), rs2068667 (NFASC), rs10488631 
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(TNPO3), rs11185393 (AMY1A), rs3828599 (GPX3), and sex. Twenty-seven of the 29 

genetic variables selected were SNPs, and 85% of model-selected SNPs (23/27) were 

shared risk loci for ALS and FTD [15]. Modeling under the null hypothesis revealed that 

each genetic variable achieved a largely equal median weight, and thus there were no 

stronger model contributions from any subset of genetic variables (Supplementary 

Figure 4B). The association of genetic variables most frequently with the ECAS ALS-

Specific score suggests polygenic contribution to impairment in domains of cognition 

frequently impaired in patients with ALS (e.g. language, verbal fluency, and executive 

function), that are also the most impaired domains of cognition observed in FTD.  

 

Polygenic score captures baseline cognition as well as longitudinal rate of cognitive 

decline, but not motor decline. 

Next we investigated potential polygenic contributions to rate of decline in cognitive and 

motor performance in the PGB cohort. Investigation of baseline performance may only 

capture differences at a single (somewhat arbitrary) point in time, but not differences in 

the trajectory of performance over time.  

 

To evaluate association with longitudinal performance, we first calculated a weighted 

polygenic score (wPGS) by computing a sum of allele dosage for each individual 

genetic variable multiplied by their median canonical weights from sCCA modeling. 

Spearman rank-order correlations between the wPGS and adjusted baseline estimates 

of the four clinical features selected in 10% or more of the 10,000 iterations (e.g. ALS-

Specific, Total, Executive Function, and Language scores from the ECAS) resulted in 
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correlation values similar to the median canonical correlation observed from sCCA 

modeling (e.g. for ECAS ALS-Specific: rs(329)=-0.34, p=2.4×10-10) (Figure 3A), 

suggesting construct validity.  

 

We then conducted Spearman’s rank order correlations between the wPGS and 

adjusted rate of decline on each clinical measure of cognitive and motor performance 

using a Bonferroni family-wise error correction. To obtain adjusted rates of decline, we 

extracted individual slope estimates from prior LME (see above) for the 277 individuals 

(85%) from the PGB cohort with 2 or more observations on the ECAS, ALSFRS-R, and 

UMN and LMN burden scores. We observed significant negative relationships between 

the wPGS and adjusted rate of decline on ECAS ALS-Specific (rs(277)=-0.21, 

p=5.3×10-3), ALS-Non Specific (rs(277)=-0.19, p=0.016), and Total scores (rs(277)=-

0.26, p=8.1×10-5) (Figure 3B), but not on the ALSFRS-R or UMN and LMN burden 

scores (all p >0.9) (Supplementary Figure 5). These findings suggest polygenic 

contribution to rate of cognitive – but not motor – decline from the SNPs associated with 

risk of ALS or joint risk of ALS and FTD that were included in this analysis. 

 

Polygenic score associates with cortical thinning in the UPenn Biobank. 

Cognitive dysfunction in ALS, including performance on the ECAS, has previously been 

attributed to sequential disease progression rostrally and caudally from the motor cortex 

[28-30] and to advancing disease stage [4]. To evaluate the neuroanatomic basis for 

polygenic contribution to cognitive performance in patients with ALS, we applied the 

wPGS score derived in the CReATe PGB Cohort to an independent cohort of patients 
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with ALS from the UPenn Biobank.  We used voxel-wise in vivo measures of reduced 

cortical thickness (in mm3) to quantify cortical neurodegeneration. Cross-sectional 

measurements of cortical thickness were derived from T1-weighted magnetic resonance 

imaging (MRI) in 114 patients with ALS and 114 age, sex, and education-matched 

healthy controls who were recruited for research from UPenn (Table 2). Nonparametric 

modeling using 10,000 random permutations revealed extensive reduction of cortical 

thickness bilaterally in the frontal and temporal cortices of patients relative to controls 

(Table 2, Supplementary Figure 6).  

 

After identifying regions of reduced cortical thickness in patients with ALS, we 

investigated whether the wPGS derived from sCCA modeling in the CReATe PGB 

cohort contributed to magnitude of reduced cortical thickness in the independent UPenn 

Biobank neuroimaging cohort.  Nonparametric modeling using 10,000 random 

permutations with adjustments for potential confounds in age, disease duration, and 

scanning acquisition revealed that a higher wPGS (i.e. greater risk) associated with 

greater reduction of cortical thickness in the orbital prefrontal cortex, anterior cingulate 

cortex, premotor cortex, lateral temporal cortex, and hippocampus (Figure 4A; 

Supplementary Table 3). The frontal and temporal lobe cortical regions identified in this 

analysis are known to support the domains of cognitive dysfunction characterized by the 

ECAS [28]. These findings provide a potential neuroanatomical basis for the observed 

polygenic relationships between the wPGS and baseline cognitive performance and rate 

of decline, and are consistent with prior associations of cortical neurodegeneration with 

cognitive dysfunction in patients with ALS [29].  
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Polygenic score associates with neocortical neuronal loss in the UPenn Biobank. 

To complement these in vivo neuroanatomical data, we also explored whether 

polygenic risk for cognitive dysfunction associated with post-mortem anatomical 

distribution of neuronal loss and TDP-43 pathology. We assessed the magnitude of 

neuronal loss and TDP-43 pathological inclusions on an ordinal scale in tissue sampled 

from the middle frontal, cingulate, motor, and superior / middle temporal cortices and 

from the cornu ammonus 1 (CA1) / subiculum of the hippocampus in 88 autopsy cases 

from the UPenn Biobank with confirmed ALS due to underlying TDP-43 pathology 

(Table 2). We conducted ordinal logistic regression with covariate adjustment for age at 

death and disease duration and found that ALS cases with higher wPGS were 2.05 

times more likely (95% CI: 1.05, 4.10; p=0.0043) to have greater neuronal loss in the 

motor cortex relative to ALS cases with a lower wPGS (Figure 4B); older age at death 

and longer disease duration were not found to influence likelihood of greater neuronal 

loss (p>0.05). We observed no statistically significant associations between the wPGS 

and neuronal loss in any other region, or between the wPGS and TDP-43 pathology in 

any other region (all p values>0.1; Supplementary Figures 7 and 8). These findings 

suggest that polygenic risk for cognitive dysfunction is associated with the 

neuroanatomic distribution of neuronal loss in ALS cases with end-stage disease. 

 

Discussion 

In this study, we evaluated polygenic contributions to cognitive dysfunction in patients 

with ALS by employing machine learning. We identified polygenic risk for cognitive 
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dysfunction from genetic variables associated with risk of ALS and FTD, which we 

further investigated through quantitative-trait evaluations of two independent ALS 

cohorts with in vivo neuroimaging and post-mortem neuropathology data. Our results 

indicate a polygenic contribution to the presence and rate of decline of cognitive 

dysfunction in domains specifically impaired in ALS. Converging evidence from 

independent cohorts further demonstrates the generalizability of polygenic contribution 

to biologically-plausible associations including reduced in vivo cortical thickness and 

post-mortem cortical neurodegeneration including in the prefrontal, motor, and temporal 

cortices. These findings contribute novel evidence in support of polygenic contribution to 

cognitive dysfunction and cortical disease burden in ALS and provide further detailed 

phenotypic evidence for genetic overlap between ALS and FTD.  Below, we highlight 

clinical, biological, and methodological implications for our observations. 

 

Our findings add to an increasing body of evidence for genetic contribution to 

phenotypic variability in ALS and support the idea that polygenic variation accounts for a 

portion of variability in cognitive dysfunction and cortical disease burden in ALS.  While 

cognitive dysfunction has been more frequently linked to genetic mutations causally 

associated with ALS, such as C9ORF72 repeat expansions [31], studies examining 

individual SNPs have demonstrated quantitative-trait modification of cognitive 

performance and cortical disease burden [22,23]. However, mounting evidence 

suggests that there are polygenic, rather than single allele, modifiers of disease risk and 

phenotype in ALS and related neurodegenerative diseases [20,21,24]. Our observation 

of polygenic association between of 27 SNPs and the ECAS ALS-Specific score, a 
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combined measure of executive, language, and verbal fluency domains most commonly 

affected in ALS, is consistent with the idea of polygenic contribution to phenotypic 

variability in ALS. Notably, our observed polygenic association in the CReATe PGB 

cohort appears specific to cognitive variability: we demonstrate relative independence of 

cognitive performance and motor disease severity (i.e. UMN or LMN burden scores, 

functional performance on the ALSFRS-R) and observe no evidence for polygenic 

association with motor disease severity. This suggests that, in this study, polygenic risk 

for cognitive dysfunction does not appear to be confounded by motor disease severity. 

 

The majority (85%) of the 27 SNPs selected by our machine learning modeling for 

association with cognitive dysfunction are shared risk loci for ALS and FTD [15]. The 

selection frequency of these ALS and FTD risk variants outweighed the selection of 

ALS-only risk variants, emphasizing the contribution of genetic overlap between ALS 

and FTD to polygenic risk associated with cognitive dysfunction in ALS. SNPs in or near 

the MOBP, NSF, ATXN3, ERGIC1, and UNC13A genes were among those with the 

strongest model contributions (i.e. with the highest canonical weights). Our group has 

previously shown that SNPs mapped to MOBP, including rs1768208, relate to regional 

neurodegeneration in sporadic FTD and to shorter survival in FTD with underlying tau or 

TDP-43 pathology [32,33]. Our group has also demonstrated that rs12608932 in 

UNC13A relates to in vivo prefrontal cortical thinning, post mortem frontal cortical 

burden of TDP-43 pathology, and executive dysfunction [22]. rs538622 near ERGIC1, 

originally identified as a shared risk locus for ALS and FTD, has also been previously 

demonstrated to contribute to quantitative trait modification in ALS by relating to 
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reduced expression of the protein BNIP1 in ALS patient motor neurons [15]. Other top-

weighted variants near NSF and ATXN3 indicate potential biological plausibility. 

rs10143310 is found near ATXN3 which encodes a de-ubiquitinating enzyme, and 

polyglutamine expansions in ATXN3 cause spinocerebellar ataxia – type 3 [34]. 

rs7224296 near NSF tags the MAPT H1 haplotype [35] and is associated with increased 

risk for FTD syndromes including progressive supranuclear palsy and corticobasal 

degeneration [36], as well as Alzheimer’s and Parkinson’s diseases [37].  

 

While the mechanism of polygenic contribution to cognitive dysfunction in ALS requires 

further investigation, we speculate based on our findings that identified SNPs may 

contribute to neuroanatomic disease burden. A weighted polygenic risk score derived 

from the observed multivariate genotype-phenotype correlation in the CReATe PGB 

cohort showed robust relationships in independent cohorts from the UPenn Biobank to 

both in vivo cortical thinning and post-mortem cortical neuronal loss. Anatomically, 

these findings were largely consistent with prior in vivo structural imaging studies of 

neurodegeneration associated with cognitive dysfunction and with post mortem 

investigations of cortical thinning in ALS [28,29,38]. Thus, in addition to indicating 

polygenic contribution to cognitive dysfunction in ALS, our findings suggest a possible 

mechanism of observed findings via disease pathophysiology.  

 

Beyond the potential biological mechanism of identifying polygenic contributions to ALS 

disease heterogeneity, we additionally suggest that sCCA may provide a tool for 

defining polygenic factors of disease risk. While sCCA has been widely applied to 
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imaging-genetic studies [39], we are unaware of prior applications using sCCA to define 

a polygenic score based on rich clinical phenotypic and biomarker data. Traditional 

approaches to the generation of polygenic scores include using data from established, 

typically case-control GWAS, but practical considerations involve the selection of how 

many variants to include in a model and how to define the weights of an appropriate 

statistical model [40]. Critically, rather than an arbitrary selection of variants and their 

weights, the sparsity parameter of sCCA facilitates an unsupervised, data-driven 

method to select the number of variants to include and also provides data-driven 

canonical weights to define the statistical model. The positive or negative direction of 

model-derived weights is potentially biologically informative, and could reflect ‘risk’ (i.e. 

positive weight) or ‘protective’ (i.e. a negative weight) effects. Further investigation is 

necessary to clarify the relationships between model-selected SNPs and model-derived 

canonical weights from both biological (e.g., some SNPs and/or genes may contribute 

more strongly to risk factors) and mathematical (e.g. weights may be constrained by 

minor allele frequency) perspectives. Nonetheless, sCCA may provide a promising 

method for future studies of polygenic variation and may direct research efforts towards 

model-selected variants. 

 

Several limitations should be considered in the present study. Here, we focus our 

analysis on a relatively small set of SNPs selected a priori from previous large-scale 

GWAS based on genome-wide association with ALS [12] or shared risk between ALS 

and FTD [15]. Other genetic variants not included in the present study may also 

contribute to cognitive dysfunction in ALS and related disorders, and future genome-
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wide analyses or broad genotype selection strategies (e.g., targeted pathways) are 

necessary to elucidate discovery of novel genetic contributions to cognition that have 

not been identified through prior case-control studies. However, such larger scale 

studies will require validation in independent cohorts, many of which are lacking the rich 

phenotype data needed to identify cognitive dysfunction. We derived a weighted 

polygenic score from sCCA modeling to further investigate polygenic associations with 

longitudinal cognitive and motor performance, and with in vivo and post-mortem cortical 

disease burden in independent ALS cohorts from the UPenn Biobank. While we define 

our polygenic score from sCCA using adjusted estimates of baseline cognitive and 

motor performance, future work using longitudinal data as the starting point to define 

polygenic associations may further elucidate genetic risk for cognitive dysfunction in 

ALS. However, our finding that polygenic risk associated with baseline cognitive 

dysfunction also relates to longitudinal cognitive decline in the CReATe PGB cohort and 

relevant cortical disease anatomy in independent cohorts from the UPenn Biobank 

suggests its relevance to longitudinal cognitive phenotypes in ALS. Previous critique of 

polygenic scores suggests that 1) calculation based on GWAS-defined odds ratios for 

univariate risk loci, and 2) undue influence by population variance, limit their use in 

clinical and prognostic settings [41]. To avoid these potential confounds, our 

computation of a weighted polygenic risk score is based on model-selected parameters 

derived from an analysis including all genetic variants and, in addition, covariates for 

genetic mutation status and sex in an effort to account for multivariate genetic 

relationships. We also included the first two principal components in our model from a 
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PCA conducted in the PGB CReATe cohort in an effort to account for differences in 

population substructure [42].  

 

Our analyses focused on the investigation of genetic contribution to cognitive 

dysfunction in ALS, yet it is well established that behavioral impairment is also part of 

the ALS spectrum disease [43]. Further research is necessary to investigate polygenic 

risk for behavioral dysfunction in ALS, and whether loci included in our calculated 

polygenic score confer risk for both cognitive and behavioral dysfunction. While this 

study demonstrates converging, multimodal evidence for polygenic risk in independent 

neuroimaging and autopsy cohorts, replication in additional, large cohorts that allow for 

robust cross-validation is warranted. However, alternative datasets for ALS that contain 

detailed genotyping and cognitive phenotyping are currently lacking and the CReATe 

PGB cohort represents the largest of its kind. Future research investigating additional 

large-scale patient cohorts is necessary.  

 

With these limitations in mind, our research demonstrates converging clinical, 

neuroimaging, and pathologic evidence for polygenic contribution to cognitive 

dysfunction and cortical neurodegeneration in ALS.  These findings should stimulate 

further investigation into polygenic risk for cognitive disease vulnerability in ALS and 

suggest their importance in prognostic consideration and treatment trials. More broadly, 

this work provides insight into genetic contribution to heterogeneous phenotypes in 

neurodegenerative disease and supports evidence for polygenic architecture in these 

conditions.  
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Materials and Methods 

Participants: CReATe Consortium 

Participants consisted of 339 individuals clinically diagnosed by a board-certified 

neurologist with a sporadic or familial form of amyotrophic lateral sclerosis (ALS), 

amyotrophic lateral sclerosis with frontotemporal dementia (ALS-FTD), progressive 

muscular atrophy (PMA), or primary lateral sclerosis (PLS) who were enrolled and 

evaluated through the CReATe Consortium’s Phenotype-Genotype-Biomarker (PGB) 

study. All participants provided written informed consent. The PGB study is registered 

on clinicaltrials.gov (NCT02327845) and the University of Miami Institutional Review 

Board (IRB) (the central IRB for the CReATe Consortium) approved the study. This 

study entails participant blood DNA samples available for genetic screening and 

longitudinal evaluation at regularly-scheduled visits (ALS, ALS-FTD, and PMA: 0 

(baseline), 3, 6, 12, and 18 months; PLS: 0 (baseline), 6, 12, 18, and 24 months). 

Participants were evaluated at each visit using the ALSFRS-R [44] and alternate 

versions of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) [26] designed 

for longitudinal use. UMN and LMN burden scores were calculated from a detailed 

elemental neuromuscular examination by summing within and across each spinal region 

resulting in a score ranging from 0 (none) to 10 (worst). Site (e.g. limb, bulbar) and date 

of motor symptom onset were recorded for each participant. We excluded nine 

individuals with missing or incomplete data that precluded subsequent analysis and, in 

an effort to avoid confounds associated with clear outliers, three individuals with 

extreme values at baseline on the ECAS Visuospatial Score (i.e. >5 standard deviations 

from group mean), resulting in a total of 327 participants. Of the nine excluded 
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individuals with missing or incomplete data, one had no genotyping data available, one 

had no information for UMN burden score, and seven had no information for date of 

motor symptom onset. 

 

Genotyping: CReATe Consortium   

Peripheral blood mononuclear cell DNA was extracted using the QIAamp DNA Blood 

Mini Kit Qiagen #51106 and quantified using the Quant-iT dsDNA Assay Kit (Life 

Technologies cat#Q33130). The DNA integrity was verified by agarose gel 

electrophoresis (E-Gel, Life Technologies, cat#G8008-01). Unique samples were 

barcoded and whole genome sequencing (WGS) was performed at the HudsonAlpha 

Institute for Biotechnology Genomic Services Laboratory (Huntsville, Alabama) (HA) 

using Illumina HiSeq X10 sequencers to generate approximately 360 million paired-end 

reads, each 150 base pairs (bp) in length. Peripheral DNA was extracted from 

participant blood samples and screened for known pathogenic mutations associated 

with ALS and related diseases.   

 

Screening included repeat-primed polymerase chain reaction (PCR) for C9ORF72 

repeat expansions and WGS curated and validated via Sanger sequencing for 

pathogenic mutations associated with ALS and/or FTD in ANG, CHCHD10, CHMP2B, 

FUS, GRN, hnRNPA1, hnRNPA2B1, MAPT, MATR3, OPTN, PFN1, SETX, SOD1, 

SPG11, SQSTM1, TARDBP, TBK1, TUBA4A, UBQLN2, VCP (see Table 1 for 

participant mutation status).  The PGB study also includes patients with hereditary 

spastic paraplegia (HSP) that were excluded in the current analysis, but we additionally 
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screened individuals for pathogenic mutations in 67 additional genes associated with 

HSP and 7 genes associated with distal hereditary motor neuropathy, and all cases 

were negative for pathogenic mutations in these genes.  

 

Whole genome sequencing (WGS) data were generated using paired-end 150 bp reads 

aligned to the GRCh38 human reference using the Burrows-Wheeler Aligner (BWA-ALN 

v0.7.12) [45] and processed using the Genome Analysis Toolkit (GATK) best-practices 

workflow implemented in GATK v3.4.0 [46]. Variants for individual samples were called 

with HaplotypeCaller, producing individual variant call format files (gVCFs) that we 

combined using a joint genotyping step to produce a multi-sample VCF (pVCF). Variant 

filtration was performed using Variant Quality Score Recalibration (VQSR), which 

assigns a score to each variant and a pass/fail label and evaluated this in the context of 

hard filtering thresholds (Minimum Genotype Quality (GQ)≥ 20, minimum mean depth 

value (DP)≥ 10). Variant annotation was performed using Variant Effect Predictor (VEP) 

[47] and in-house pipelines including non-coding variant allele frequencies from 

Genome Aggregation Database (gnomAD) [48]. In-house scripts were used to identify 

false positives resulting from paralogous mapping or/and gaps in the current human 

genome assembly. VCFs were further decomposed prior to analyses using the 

Decompose function of Vt [49]. 

 

To control for population substructure, we additionally derived the first two principal 

components scores for each in the CReATe PGB cohort using principal components 

analysis (PCA) implemented using Eigenstrat [42].  
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From the WGS data we extracted 45 hypothesized variants from WGS that previously 

achieved genome-wide significance for association with ALS [12] or joint association 

with ALS and FTD [15]. Proxy loci were genotyped (linkage disequilibrium (LD) R2 > 

0.80) when genetic data were not available for previously-published loci (see 

Supplementary Table 1 for a complete list). One locus, rs12973192, was common to 

both references, and another locus (rs2425220 [15]) was excluded from analysis due to 

high level of missingness across samples; no LD proxy was identified. We then used 

PLINK software [50] to recode participant genotypes according to additive genetic 

models (e.g. 0 = no minor allele copies, 1 = one minor allele copy, 2 = two minor allele 

copies), since the dominant or recessive nature of the loci included in this study remains 

unknown.  

 

Linear Mixed-Effects Modeling of the ECAS and clinical measures  

We conducted linear mixed-effects modeling of performance on the ECAS, ALSFRS-R, 

and UMN and LMN burden scores using the nlme package in R. Each model was fit 

using maximum likelihood. In addition to the ECAS Total Score, we analyzed Executive 

Function, Language, Verbal Fluency, Memory, and Visuospatial sub-scores and ALS-

Specific and ALS-Non-Specific summary scores each as dependent variables to 

analyze patient performance in separate cognitive domains and in clinically-grouped 

cognitive domains. Fixed effects included age at baseline visit (in years), lag between 

age of symptom onset and age at baseline visit (in years), college education (yes / no), 

bulbar onset (yes / no) and visit time-point (in months), and we included individual-by-
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visit time-point as a random effect. This allowed us to obtain adjusted estimates of 

baseline performance (i.e. intercept) and rate of decline (i.e. slope) per individual, 

having regressed out potential confounding variables as fixed effects.  

 

We conducted Spearman’s rank-order correlations between baseline performance and 

rate of decline using a Bonferroni family-wise error correction for multiple comparisons 

(see Figure 1B).  

 

Sparse Canonical Correlation Analysis 

We conducted sparse canonical correlation analysis (sCCA) to select a parsimonious 

linear combination of variables that maximize the correlation between two multivariate 

datasets using the PMA package in R [27]. The first dataset comprised scaled 

intercepts from each clinical variable per participant (i.e. adjusted baseline performance 

on the ALSFRS-R, UMN and LMN assessments, and ECAS). The second comprised 

minor allele counts per individual for each of the 45 SNPs (e.g. 0 = no minor allele 

copies, 1 = one minor allele copy, 2 = two minor allele copies), binary variables for sex 

(0 = Female, 1 = Male), C9ORF72 repeat expansion status (0 = noncarrier, 1 = carrier), 

and other mutation status (0 = noncarrier, 1 = carrier) and, in an effort to account for 

potential population differences in population substructure, we also included the raw 

estimates for the first two principle components per participant derived from a PCA 

conducted in the CReATe PGB cohort; this method has previously been demonstrated 

to account for the majority of population structure [42]. 
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We assumed standard (e.g. unordered) organization of each dataset, and selected 

regularization parameters for the sCCA analysis using a grid search of 100 

combinations of L1 values between 0 (most sparse) and 1 (least sparse) in increments 

of 0.1. We selected the combination of L1 values yielding the highest canonical 

correlation of the first variate for subsequent analysis, as similarly reported [51].  

 

Using these L1 parameters, we ran 10,000 bootstrap sCCAs and in each iteration 

employed randomly-generated subsamples comprising 75% of the PGB cohort. We 

calculated the median canonical correlation for sCCA and the median canonical weights 

for each variable across all iterations. We utilized the median in these estimates rather 

than the maximum or mean value in an effort to avoid bias from outliers and to increase 

the reliability and reproducibility of model estimates.  

 

We next investigated model performance under a null hypothesis (i.e. no association 

between clinical and genetic datasets) by using randomly-permuted data. Using the 

same L1 parameters, we again ran 10,000 bootstrap sCCAs and in each iteration 

employed randomly-generated subsamples of 75% of participants; however, in each 

iteration we randomly permuted each dataset 100 times using the randomizeMatrix 

function from the picante package in R. We calculated a p value by reporting the 

probability under the null of observing a canonical correlation greater than or equal to 

the median canonical correlation under sCCA modeling of the true data. We also 

examined the proportion of iterations each variable was selected by the model (i.e. 

achieving a non-zero canonical weight).  
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Polygenic Score 

We used the output of sCCA modeling to calculate a weighted polygenic score (wPGS) 

for each individual.  A wPGS for each individual in the PGB cohort, and in the 

neuroimaging and autopsy UPenn Biobank cohorts, was constructed by multiplying 

allele dosage or binary coding at each genetic variable by its median canonical weight 

from sCCA modeling, and summing across all values. 

 

To investigate construct validity, we first conducted Spearman’s rank-order correlations 

between the wPGS and adjusted estimates of baseline performance (i.e. LME-derived 

intercepts) on the most frequently selected clinical measure(s) selected from sCCA.  

 

Then, to investigate longitudinal performance associated with the wPGS, we conducted 

Spearman’s rank-order correlations between the wPGS and adjusted rates of decline 

(i.e. LME-derived slopes) on all clinical measures using a Bonferroni family-wise error 

correction. We restricted this analysis to participants in the CReATe PGB cohort with 

data at 2 or more timepoints (N=277 out of 327 participants), or 84.7% of the cohort. 

 

Participants: UPenn Biobank neuroimaging cohort  

We retrospectively evaluated 114 patients with ALS and 114 healthy controls matched 

for age, sex, and education from the UPenn Biobank who were recruited for research 

between 2006 and 2019 from the Penn Comprehensive ALS Clinic and Penn 

Frontotemporal Degeneration Center (Table 2) [25]. Inclusion criteria for ALS patients 
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consisted of complete genotyping at the 45 analyzed SNPs, screening for genetic 

mutations (e.g. C9ORF72, SOD1), white non-Latino racial and ethnic background 

(population diversity is known to influence allele frequencies across individuals), 

disease duration from symptom onset < 2.5 standard deviations from respective group 

means (to avoid confounds associated with clear outliers), and T1-weighted MRI. All 

patients were diagnosed with ALS by a board-certified neurologist (L.E., L.M., M.G., 

D.I.) using revised El Escorial criteria [52] and assessed for ALS frontotemporal 

spectrum disorder using established criteria [53]; those patients enrolled in research 

prior to 2017 were retrospectively evaluated through chart review. All ALS patients and 

controls participated in an informed consent procedure approved by an IRB convened at 

UPenn. 

 

Participants: UPenn Biobank autopsy cohort  

We evaluated brain tissue samples from 88 ALS autopsy cases identified from the 

UPenn Biobank [25] who were diagnosed by a board-certified neuropathologist (J.Q.T., 

E.B.L.) with ALS due to TDP-43 pathology using immunohistochemistry [54] and 

published criteria [55]; this cohort included 21 patients from the ALS neuroimaging 

cohort. Inclusion criteria consisted of complete genotyping at the 45 analyzed SNPs, 

screening for genetic mutations (e.g. C9ORF72, SOD1), white non-Latino racial and 

ethnic background (population diversity is known to influence allele frequencies across 

individuals), disease duration from symptom onset < 2.5 standard deviations from 

respective group means (to avoid confounds associated with clear outliers), and brain 

tissue samples from the middle frontal, motor, cingulate, and superior / temporal 
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cortices, and the cornu ammonis 1 (CA1) / subiculum of the hippocampus for analysis of 

neuronal loss and TDP-43 pathology. Nine individuals were missing neuronal loss or 

TDP-43 pathology data for at least one sampled region (Supplementary Table 2). 

 

Genetic Screening and SNP Genotyping: UPenn Biobank 

DNA was extracted from peripheral blood or frozen brain tissue following the 

manufacturer’s protocols (Flexigene (Qiagen) or QuickGene DNA whole blood kit 

(Autogen) for blood, and QIAsymphony DNA Mini Kit (Qiagen) for brain tissue). All 

patients were screened for C9ORF72 hexanucleotide repeat expansions using a 

modified repeat-primed PCR as previously described [56], and we excluded any patient 

with > 30 hexanucleotide repeats.  Of the remaining individuals, we evaluated family 

history using a three-generation pedigree history, as previously reported [57]. For cases 

with a family history of the same disease, we sequenced 45 genes previously 

associated with neurodegenerative disease, including genes known to be associated 

with ALS (e.g. SOD1 [19], TBK1 [10]). Sequencing was performed using a custom-

targeted next-generation sequencing panel (MiND-Seq) [25] and analyzed using 

Mutation Surveyor software (Soft Genetics, State College, PA).  

 

DNA extracted from peripheral blood or cerebellar tissue samples was genotyped for 

each case using the Illumina Infinium Global Screening Array through the Children’s 

Hospital of Philadelphia (CHOP) Center for Applied Genomics Core according to 

manufacturer’s specifications. PLINK [50] was then used to remove variants with <95% 

call rate, Hardy-Weinberg equilibrium (HWE) p-value<10-6 and individuals with >5% 
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missing genotypes.  Using the remaining genotypes from samples passing quality 

control, we performed genome-wide imputation of allele dosages with the Haplotype 

Reference Consortium reference panel r1.1 [58] on the Michigan Imputation Server [59] 

to predict genotypes at ungenotyped genomic positions, applying strict pre-phasing, 

pre-imputation filtering, and variant position and strand alignment control. 

 

Neuroimaging Processing and Analyses 

High-resolution T1-weighted MPRAGE structural scans were acquired for neuroimaging 

participants using a 3T Siemens Tim Trio scanner with an 8-channel head coil, with 

T=1620ms, T=3.09ms, flip angle=15°, 192x256 matrix, and 1mm3 voxels. T1-weighted 

MRI images were then preprocessed using Advanced Normalization Tools (ANTs) 

software [60]. Each individual dataset was deformed into a standard local template 

space in a canonical stereotactic coordinate system. ANTs provide a highly accurate 

registration routine using symmetric and topology-preserving diffeomorphic 

deformations to minimize bias toward the reference space and to capture the 

deformation necessary to aggregate images in a common space.  Then, we used N4 

bias correction to minimize heterogeneity [61] and the ANTs Atropos tool to segment 

images into six tissue classes (cortex, white matter, cerebrospinal fluid, subcortical grey 

structures, brainstem, and cerebellum) using template-based priors and to generate 

probability maps of each tissue. Voxel-wise cortical thickness was measured in 

millimeters (mm3) from the pial surface and then transformed into Montreal Neurological 

Institute (MNI) space, smoothed using a three sigma full-width half-maximum Gaussian 

kernel, and downsampled to 2mm isotropic voxels.  
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We used randomise software from FSL to perform nonparametric, permutation-based 

statistical analyses of cortical thickness images from the UPenn Biobank neuroimaging 

cohort. Permutation-based statistical testing is robust to concerns regarding multiple 

comparisons since, rather than a traditional assessment of two sample distributions, this 

method assesses a true assignment of factors (e.g. wPGS) to cortical thickness 

compared to many (e.g., 10,000) random assignments [62].   

 

First, we used randomise set to 10,000 permutations to identify reduced cortical 

thickness in ALS patients relative to healthy controls. We constrained this analysis using 

an explicit mask restricted to high probability cortex (>0.4) and reported clusters that 

survive p<0.05 threshold-free cluster enhancement (TFCE) [63] corrected for family-

wise error. 

 

Next, we again used randomise set to 10,000 permutations to identify regions of 

reduced cortical thickness associated with wPGS in ALS patients, constraining analysis 

to an explicit mask defined by regions of reduced cortical thickness in ALS patients 

relative to controls (see above). The statistical model for this analysis included covariate 

adjustment for age, disease duration, and scanner acquisition. We report clusters that 

survive uncorrected p<0.01 with a cluster extent threshold of 10 voxels; we employ an 

uncorrected threshold to minimize the chance of Type II error (not observing a true 

result). 
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Neuropathology Processing and Analyses 

The extent of neuronal loss and of phosphorylated TDP-43 intraneuronal inclusions 

(dots, wisps, skeins) in sampled regions from the middle frontal, cingulate, motor, and 

superior / middle temporal cortices, and the CA1 / subiculum of the hippocampus were 

assessed on an ordinal scale: 0=none/rare, 1=mild, 2=moderate, 3=severe/numerous. 

All neuropathological ratings were performed by an expert neuropathologist (J.Q.T., 

E.B.L.) blinded to patient genotype. We conducted ordinal logistic regression using the 

MASS package in R to investigate whether extent of neuronal loss rated using 

Hematoxylin and eosin (H&E) and burden of TDP-43 pathology rated using mAbs 

p409/410 or 171 [64,65] immunohistochemistry differed according to wPGS, with 

covariate adjustment for age and disease duration at death.  
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Figure Legends. 
1. Clinical and genetic heterogeneity in the CReATe PGB cohort. A) Differences in 
baseline performance and rate of decline on each clinical measure for each participant; 
the heatmap indicates each participant’s standard deviation (SD) from the group mean. 
B) Spearman’s correlations between baseline performance and rate of decline for all 
clinical measures. C) Allele dosage or binary status for each genetic variable for each 
participant. 
 
2. Sparse, polygenic relationship between clinical and genetic variation in ALS. 
Variable selection and median canonical weight strength from bootstrap sparse 
canonical correlation analysis (sCCA) modeling in the CReATe PGB cohort. 
 
3. Polygenic risk score correlates with cognitive performance on the ECAS in the 
CReATe PGB cohort. Weighted polygenic risk score (wPGS) correlates with A) 
adjusted baseline performance on the Edinburgh Cognitive and Behavioral ALS Screen 
(ECAS) ALS-Specific, Total, Executive Function, and Language scores, and B) rate of 
decline on the ALS-Specific, ALS-Non-Specific, and Total scores.  
 
4. Reduced cortical thickness and greater cortical neuronal loss relates to higher 
polygenic risk score in independent validation cohorts. A) ALS patients (N=114) 
from the UPenn Biobank neuroimaging cohort with higher weighted polygenic risk score 
(wPGS) exhibited greater reduction of cortical thickness in the orbital prefrontal cortex, 
anterior cingulate cortex, premotor cortex, lateral temporal cortex, and hippocampus. 
The heatmap indicates the associated T-statistic for each voxel, with light blue 
representing the highest value. B) Magnitude of motor cortex neuronal loss in ALS 
cases (N=88) from the UPenn Biobank is associated with higher wPGS.  
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Supplementary Figure Legends. 
 
1. Gridsearch for sparse canonical correlation analysis (sCCA) L1 parameters. 
Each column indicates 1 of 100 unique combinations of L1 parameters (ranging 0.1 to 
1) applied to clinical and genetic datasets, and each row lists a variable entered into the 
sCCA. The heatmap denotes the canonical weight strength for each variable; warmer 
colors indicate positive weights and cooler colors indicate negative weights. 
 
2. Bootstrapped sparse canonical correlation analysis (sCCA) modeling. Each 
column indicates 1 of 10,000 iterations of sparse canonical correlation analysis (sCCA); 
in each iteration a randomly-bootstrapped subsample of 75% of participants in the 
CReATe PGB cohort was employed. Each row lists a variable entered into the sCCA. 
The heatmap denotes the canonical weight strength for each variable; warmer colors 
indicate positive weights and cooler colors indicate negative weights. 
 
3. p value calculation for sCCA modeling. Histogram showing the frequency of 
canonical correlations achieved from sparse canonical correlation analysis (sCCA)  
modeling under the null hypothesis. The vertical turquoise line denotes the median 
canonical correlation achieved under true sCCA modeling, and the p value 
demonstrates the proportion of times the median canonical correlation under true 
modeling was achieved by sCCA modeling under the null hypothesis.  
 
4. Variables selected in sCCA modeling. A) Bar graphs demonstrating the proportion 
of times out of 10,000 iterations that each of the 11 clinical variables were selected by 
sparse canonical correlation analysis (sCCA) under true modeling (turquoise) and 
modeling under the null hypothesis (coral).  B) Bar graphs demonstrating the number of 
times out of 10,000 randomly-bootstrapped sCCAs that each of the 45 SNPs were 
selected by sCCA under true modeling (turquoise) and modeling under the null 
hypothesis (coral). SNPs are organized according to prior genome-wide association 
with ALS or joint association with ALS and FTD.  
 
5. Polygenic risk score correlates with rate of decline in cognitive performance on 
the ECAS. Scatterplots demonstrating relationships between weighted polygenic risk 
score (wPGS) and rate of decline on each Edinburgh Cognitive and Behavioral ALS 
Screen (ECAS) score, the ALS Functional Rating Scale – Revised (ALSFRS-R), and 
upper motor neuron (UMN), lower motor neuron (LMN) burden scores in the CReATe 
PGB cohort. 
 
6. Reduced cortical thickness in ALS patients relative to healthy controls. ALS 
patients (N=114) from the UPenn Biobank neuroimaging cohort displayed widespread 
cortical thinning relative to age, sex, and education-matched healthy controls in the 
frontal and temporal lobes. The heatmap indicates the associated T-statistic for each 
voxel, with light yellow representing the highest value. 
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7. Magnitude of neuronal loss in ALS patients relative to wPGS. Beeswarm 
boxplots of ordinal measures of neuronal loss in ALS cases (N=88) from the UPenn 
Biobank autopsy cohort relative to wPGS in the cingulate cortex, motor cortex, middle 
frontal cortex, superior / middle temporal cortex, and hippocampus. 
 
 
8. Magnitude of TDP-43 pathology in ALS patients relative to wPGS. Beeswarm 
boxplots of ordinal measures of TDP-43 pathology in ALS cases (N=88) the UPenn 
Biobank autopsy cohort relative to wPGS in the cingulate cortex, motor cortex, middle 
frontal cortex, superior / middle temporal cortex, and hippocampus. 
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Tables 

Table 1: Demographic Characteristics of the CReATe PGB cohort.  
  ALS ALS-FTD PLS PMA 

N  279 13 22 13 
Sex Male (%) 163 (58.4) 11 (84.6) 11 (50.0) 8 (61.5) 

Number of Visits M (SD) 3.09 (1.37) 3.00 (1.15) 2.86 (1.28) 3.38 (1.45) 

Age at Symptom Onset  M (SD) 56.32 (12.56) 64.00 (9.11) 49.68 (7.39) 48.08 (15.31) 
Symptom Onset to 
Baseline (years) M (SD) 3.59 (4.98) 3.62 (2.63) 8.45 (6.12) 7.77 (7.17) 
Site of Symptom Onset 

Bulbar 
Bulbar & Limb 
Bulbar & Other 
Limb 
Limb & Other 
Other 

N (%) 

 
45 (17.1) 
7 (2.7) 
7 (2.7) 

175 (66.5) 
22 (8.4) 
7 (2.7) 

 
4 (33.3) 

- 
1 (8.3) 
3 (25) 

- 
4 (33.3) 

 
5 (22.7) 
3 (13.6) 

- 
13 (59.1) 
1 (4.5) 

- 

 
- 
- 
- 

11 (84.6) 
1 (7.7) 
1 (7.7) 

College Education or 
greater N (%) 196 (71.3) 9 (69.2) 20 (90.9) 10 (76.9) 

Mutation Carrier 
C9ORF72 
C9ORF72 and UBQLN2 
SOD1 
SQSTM1 
TARDBP 
TBK1 

N (%) 

34 (12.2) 
22 (7.9) 
1 (0.4) 
8 (2.9) 
1 (0.4) 
1 (0.4) 
1 (0.4) 

3 (20.0) 
3 (20.0) 

- 
- 
- 
- 
- 

0 (0.0) 
- 
- 
- 
- 
- 
- 

0 (0.0) 
- 
- 
- 
- 
- 
- 

Baseline ALSFRS-R (0-48) M (SD) 35.00 (7.09) 35.00 (5.99) 36.50 (5.95) 33.62 (7.83) 

UMN Score (0-10) M (SD) 2.70 (1.68) 2.45 (2.00) 4.54 (1.33) 0.87 (0.73) 

LMN Score (0-10) M (SD) 2.54 (1.48) 2.81 (1.76) 0.59 (0.96) 4.84 (1.93) 
ECAS 
 

ALS-Specific (0-100) 
Language (0-28) 
Verbal Fluency (0- 24) 
Executive (0-48) 
 

ALS-Non-Specific (0-36) 
Memory (0-24) 
Visuospatial (0- 12) 
 

Total (0-136) 

M (SD) 

 
 

80.94 (10.85) 
25.85 (2.66) 
16.62 (5.11) 
38.47 (5.94) 

 
28.04 (3.78) 
16.45 (3.54) 
11.59 (0.79) 

 
108.97 (13.02) 

 
 

52.62 (12.07) 
21.38 (3.93) 
7.83 (5.36) 

24.00(10.51) 
 

19.69 (8.30) 
9.46 (7.15) 

11.08 (1.24) 
 

72.31 (18.53) 

 
 

87.95 (7.47) 
26.82 (1.97) 
26.82 (1.97) 
26.82 (1.97) 

 
29.73 (2.76) 
17.95 (2.84) 
11.77 (0.43) 

 
117.68 (9.12) 

 
 

81.62 (11.61) 
26.62 (1.26) 
16.77 (4.36) 
38.23 (7.50) 

 
27.62 (6.31) 
15.69 (6.20) 
11.92 (0.28) 

 
109.23 (16.47) 

PGB = Phenotype-Genotype-Biomarker; CReATe = Clinical Research in ALS and Related 
Disorders for Therapeutic Development; ALS = Amyotrophic lateral sclerosis, ALS-FTD = ALS-
Frontotemporal dementia; PLS = Primary lateral sclerosis, PMA = Progressive muscular atrophy; 
ALSFRS-R = Revised ALS Functional Rating Scale; UMN = upper motor neuron; LMN = lower 
motor neuron; ECAS = Edinburgh Cognitive and Behavioral ALS Screen; M= mean, SD = standard
deviation.  
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Table 2. Demographics for independent neuroimaging (A) and autopsy (B) amyotrophic 
lateral sclerosis (ALS) and healthy control cohorts from UPenn Biobank. 
A. Neuroimaging Cohort 

 ALS Healthy Control 

N (Male) 114 (64) 114 (64) 

Age at MRI in Years, M (SD) 59.34 (10.92) 61.87 (12.18) 
Education in Years, M (SD) 15.09 (2.98) 15.87 (2.47) 

Disease Duration in Years, M (SD) 3.02 (2.52)  - 
Mutation Carrier, N (%) 

C9ORF72 
SOD1 

VCP 

 
14 (12.28) 
1 (0.87) 
1(0.87) 

 
- 
- 
- 

Site of Symptom Onset, N (%) 
Bulbar 
Limb 

Cognitive 

 
26 (22.81) 
79 (69.3) 
9 (7.89) 

 
- 
- 
- 

ALSFRS-R, M (SD) 33.23 (7.32) - 
 

B. Autopsy Cohort 
N (Male) 88 (49) 

Age at Death Years, M (SD) 63.72 (10.24) 
Disease Duration at Death in Years, M (SD) 4.24 (3.41) 

Mutation Carrier, N (%) 
C9ORF72 

 
15 (17.04) 

Site of Symptom Onset, N (%) 
Bulbar 
Limb 

Cognitive 
Respiratory 
Unknown 

 
23 
60 
3 
1 
1 

Abbreviations: ALSFRS-R = ALS Functional Rating Scale – Revised, M = Mean, SD = 
standard deviation 
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Supplementary Tables 

Supplementary Table 1: List of genetic variants analyzed in the CReATe PGB Study. 

Marker Name Nearest Gene Chr 
1000 

Genome 
GMAF 

GRCh38 Position Proxy Marker Proxy 
HG19.Position 

rs2068667 NFASC 1 0.208 chr1:204948552 rs11240317 chr1:204920322 

rs11185393 AMY1A 1 0.368 chr1:104209379 rs67205957 chr1:104752258 

rs515342 ASB1 2 0.214 chr2:238458655 rs508986 chr2:239337691 

rs9820623 MOBP 3 0.406 chr3:39452367 rs6765697 chr3:39493239 

rs13079368 MOBP 3 0.275 chr3:39471060 rs1464047 chr3:39526874 

rs1768208 MOBP 3 0.323 chr3:39481512 rs616147 chr3:39534481 

rs10463311 TNIP1 5 0.431 chr5:151031274 - - 

rs3828599 GPX3 5 0.417 chr5:151022235 rs4958872 chr5:150402334 

rs538622 ERGIC1 5 0.32 chr5:172920676 rs2446192 chr5:172352369 

rs17111695 NAF1 5 0.183 chr5:151052885 rs12518386 chr5:150438085 

rs757651 REEP2 5 0.016 chr5:138455779 rs149312547 chr5:137792021 

rs10488631 TNPO3 7 0.059 chr7:128954129 rs12539741 chr7:128596805 

rs17070492 LOC101927815 8 0.208 chr8:2563763 - - 

rs7813314 BC045738 8 0.2 chr8:2558274 rs6996532 chr8:2417678 

rs10869188 C9ORF72 9 0.49 chr9:72614090 rs7032232 chr9:75229116 

rs870901 AK097706 9 0.133 chr9:107086201 rs60743641 chr9:109854824 

rs10511816 MOBKL2B 9 0.206 chr9:27468463 rs12551344 chr9:27466817 

rs3849943 C9ORF72 9 0.183 chr9:27543384 - - 

rs3849942 C9ORF72 9 0.183 chr9:27543283 - - 

rs13302855 C9ORF72 9 0.086 chr9:27595997 rs34460171 chr9:27594491 

rs3849943 C9ORF72 9 0.183 chr9:27543384 - - 

rs732389 AK294518 10 0.205 chr10:78584745 rs7071538 chr10:80338173 

rs7118388 CAT 11 0.454 chr11:34432600 rs1962369 chr11:34456941 

rs12803540 CAT 11 0.138 chr11:34471200 rs17881488 chr11:34492443 

rs117027576 KIF5A 12 0.00913 chr12:56922819 - - 

rs113247976 KIF5A 12 0.007 chr12:57581917 - - 

rs142321490 KIF5A 12 0.006 chr12:58282349 - - 

rs74654358 TBK1 12 0.012 chr12:64488187 - - 

rs118082508 KIF5A 12 0.005 chr12:5692503 - - 

rs116900480 KIF5A 12 0.006 chr12:58262322 - - 

rs1578303 HTR2A 13 0.204 chr13:47389011 rs144877054 chr13:47962781 

rs10492593 PCDH9 13 0.121 chr13:66919985 rs73208976 chr13:67486924 

rs17446243 TTL/TEL 13 0.116 chr13:40174794 rs78375967 chr13:40751567 
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rs10139154 SCFD1 14 0.428 chr14:30678292 - - 

rs10143310 ATXN3 14 0.339 chr14:92074037 - - 

rs12886280 NUBPL 14 0.412 chr14:31829453 rs35875023 chr14:32298974 

rs6603044 BTBD1 15 0.332 chr15:83015059 rs12904695 chr15:83700365 

rs9901522 PMP22 17 0.18 chr17:14770617 - - 

rs739439 KIAA0524 17 0.105 chr17:28396803 rs35714695 chr17:26719788 

rs2240601 MSI2 17 0.192 chr17:57673751 rs16942143 chr17:55748611 

rs2285642 GGNBP2 17 0.407 chr17:36556904 rs10707226 chr17:34916453 

rs7224296 NSF 17 0.472 chr17:46722680 rs9912530 chr17:44836302 

rs12973192 UNC13A 19 0.278 chr19:17642430 - - 

rs12608932 UNC13A 19 0.43 chr19:17641880 rs12973192 chr19:17753239 

rs4239633 UNC13A 19 0.28 chr19:17631660 rs71162163 chr19:17744075 

rs75087725 C21orf72 21 0.003 chr21:44333234 - - 

Abbreviations: GMAF = global minor allele frequency; Chr = chromosome; GRCh38 = 
Genome Reference Consortium Human Build 38; HG19 = Human Genome Project 19  
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Supplementary Table 2: Number of UPenn Biobank ALS autopsy cases for each 
neuropathological measurement in each sampled neuroanatomical region. 

Region Neuropathological 
Measurement N 

Middle frontal cortex Neuronal loss 87 
Middle frontal cortex TDP-43 87 

Cingulate cortex Neuronal loss 88 
Cingulate cortex TDP-43 87 

Motor cortex Neuronal loss 84 
Motor cortex TDP-43 86 

Superior / middle temporal cortex Neuronal loss 87 
Superior / middle temporal cortex TDP-43 84 
CA1 / subiculum (hippocampus) Neuronal loss 88 
CA1 / subiculum (hippocampus) TDP-43 85 

Abbreviations: CA1 = cornu ammonis 1; TDP-43 = TAR DNA-binding protein [43 kDa] 
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 Supplementary Table 3:  Peak voxel coordinates for regions of reduced cortical 
thickness in ALS patients relative to healthy controls, and peak voxel coordinates for 
regions of reduced cortical thickness associated with higher weighted polygenic score 
(wPGS) in patients with ALS from the UPenn Biobank neuroimaging cohort. 

Neuroanatomic region (BA) 
L
/
R 

MNI Coordinates 
x        y        z 

T  
statistic p value Voxels 

Reduced cortical thickness in ALS relative to healthy controls1: 

      <.001 42994 

Anterior cingulate cortex (32) L -2 48 10 7.2   

Dorsolateral prefrontal cortex (9) L -2 48 18 7.08   

Anterior premotor cortex (8) L -2 30 36 6.76   

Orbitofrontal cortex (11) R 8 26 -26 6.71   

Insula (13) R 40 16 -12 6.46   

Insula (13) R 36 22 4 6.37   

Anterior prefrontal cortex (10) R 26 58 0 6.32   

Insula (13) R 42 2 0 6.26   

Dorsolateral prefrontal cortex (9) R 2 48 18 6.22   

Anterior cingulate cortex (32) R 2 30 22 6   

Reduced cortical thickness associated with wPGS in ALS: 

Lateral temporal cortex (21) L -66 -46 -8 3.01 0.003 34 

Premotor cortex (6) R 36 -14 70 3.05 0.001 23 

 Premotor cortex (6) L -14 -8 76 3 0.002 21 

Orbital prefrontal cortex (47) R 34 42 -8 2.67 0.005 18 

Lateral temporal cortex (21) L -66 -44 6 2.54 0.002 13 

Anterior cingulate cortex (32) R 14 40 0 2.59 0.004 13 

Hippocampus (54) L -24 -30 -8 2.74 0.004 10 

Abbreviations: BA = Brodmann area, L/R = Left/Right, MNI = Montreal Neurological 
Institute. 
Note.1 Cortical regions identified from peak voxel coordinates in an effort to describe 
sub-peaks within a larger, contiguous cluster. 
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