Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Development of a Mixture Model (SMM) Allowing for Smoothing Functions of Trajectories

Ming Ding, Jorge E. Chavarro, Garrett M. Fitzmaurice
doi: https://doi.org/10.1101/2019.12.13.19014928
Ming Ding
1Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, U.S.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mid829{at}mail.harvard.edu
Jorge E. Chavarro
1Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, U.S.
2Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
3Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Garrett M. Fitzmaurice
4Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
5Department of Psychiatry, Harvard Medical School, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

In the health and social sciences, two types of mixture model have been widely used by researchers to identify heterogeneous trajectories of participants within a population: latent class growth analysis (LCGA) and the growth mixture model (GMM). Both methods parametrically model trajectories of individuals, and capture latent trajectory classes, by using an expectation-maximization (E-M) algorithm. However, parametric modeling of trajectories using polynomial functions or monotonic spline functions results in limited flexibility for modelling trajectories; as a result, group membership may not be classified accurately due to model misspecification. In this paper, we propose a mixture model (SMM) allowing for smoothing functions of trajectories using a modified E-M algorithm. In the E step, participants are reassigned to only one group for which the estimated trajectory is the most similar to the observed one; in the M step, trajectories are fitted using generalized additive mixed models (GAMM) with smoothing functions of time. This modified E-M algorithm is straightforward to implement using the recently released “gamm4” macro in R. The SMM can incorporate time-varying covariates and be applied to longitudinal data with normal, Bernoulli, and Poisson distributions. Simulation results show favorable performance of the SMM in terms of classification of group membership. The proposed method is illustrated by its application to body mass index data of individuals followed from adolescence to young adulthood and the relationship with incidence of cardiometabolic disease.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by grants R03 AG060247, P30-DK046200 and U01-HL145386 from the National Institutes of Health.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data is available upon request.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted December 18, 2019.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Development of a Mixture Model (SMM) Allowing for Smoothing Functions of Trajectories
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Development of a Mixture Model (SMM) Allowing for Smoothing Functions of Trajectories
Ming Ding, Jorge E. Chavarro, Garrett M. Fitzmaurice
medRxiv 2019.12.13.19014928; doi: https://doi.org/10.1101/2019.12.13.19014928
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Development of a Mixture Model (SMM) Allowing for Smoothing Functions of Trajectories
Ming Ding, Jorge E. Chavarro, Garrett M. Fitzmaurice
medRxiv 2019.12.13.19014928; doi: https://doi.org/10.1101/2019.12.13.19014928

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (428)
  • Allergy and Immunology (753)
  • Anesthesia (220)
  • Cardiovascular Medicine (3286)
  • Dentistry and Oral Medicine (362)
  • Dermatology (276)
  • Emergency Medicine (478)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1168)
  • Epidemiology (13349)
  • Forensic Medicine (19)
  • Gastroenterology (898)
  • Genetic and Genomic Medicine (5140)
  • Geriatric Medicine (481)
  • Health Economics (781)
  • Health Informatics (3261)
  • Health Policy (1140)
  • Health Systems and Quality Improvement (1189)
  • Hematology (429)
  • HIV/AIDS (1015)
  • Infectious Diseases (except HIV/AIDS) (14618)
  • Intensive Care and Critical Care Medicine (912)
  • Medical Education (476)
  • Medical Ethics (126)
  • Nephrology (522)
  • Neurology (4914)
  • Nursing (262)
  • Nutrition (725)
  • Obstetrics and Gynecology (880)
  • Occupational and Environmental Health (795)
  • Oncology (2517)
  • Ophthalmology (722)
  • Orthopedics (280)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (542)
  • Pediatrics (1299)
  • Pharmacology and Therapeutics (549)
  • Primary Care Research (555)
  • Psychiatry and Clinical Psychology (4198)
  • Public and Global Health (7489)
  • Radiology and Imaging (1703)
  • Rehabilitation Medicine and Physical Therapy (1010)
  • Respiratory Medicine (980)
  • Rheumatology (479)
  • Sexual and Reproductive Health (496)
  • Sports Medicine (424)
  • Surgery (547)
  • Toxicology (72)
  • Transplantation (235)
  • Urology (204)