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Abstract 

Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive lung disease that leads to 

gradual decline in lung function. The molecular mechanism and risk factors of this disease are 

still obscure. Poorly understood etiology of this disease is the major obstacle in the identification 

of potential biomarkers and drug targets. In this study, microarray gene expression data of 

normal and IPF patient has been utilized for the statistical analysis of differentially expressed 

genes (DEGs) with a view to identifying potential molecular signatures using network-based 

system. Then their functional enrichment analysis revealed their predominant involvement in 

transcription, protein acetylation, extracellular matrix organization, apoptic process, 

inflammatory response etc. Protein-Protein Interaction (PPI) network revealed (UBC, PTEN, 

SOS1, PTK2, FGFR1, YAP1, FOXO1, RACK1, BMP4 and CD44) as hub proteins in IPF. 

Subsequent regulatory network analysis suggested (E2F1, STAT3, PPARG, MEF2A, FOXC1, 

GATA3, YY1, GATA2, NFKB1, and FOXL1) as the best regulatory transcriptional signatures 

and (hsa-mir-155-5p, hsa-mir-16-5p, hsa-mir-17-5p, hsa-mir-19a-3p, hsa-mir-192-5p, hsa-mir-

92a-3p, hsa-mir-26b-5p, hsa-mir-335-5p, hsa-mir-124-3p, and hsa-let-7b-5p) as the best post-

transcriptional signatures. This study represents proteome and RNA signatures of IPF which 

might be useful to uphold the present efforts in the discovery of potential biomarkers and 

treatments of this disease. 
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1. Introduction 

Idiopathic Pulmonary Fibrosis (IPF) is a progressive and degenerative interstitial pneumonia that 

results in the abnormal scarring of the lungs of affected individual (Selman et al., 2001). 

Historically IPF was thought to be a chronic inflammatory process but there is now growing 

evidence that IPF response is mediated by abnormally activated alveolar epithelial cells (AECs) 

which secrete mediators that drive the growth of fibroblast and myofibroblast foci. These foci in 

turn secrete excessive extracellular matrix which then form abnormal scarring resulting in the 

alteration of lung architecture (King et al., 2001; Fernandez and Eickelberg, 2012). Previously 

IPF was accused to lead to the steady and predictable decline in lung function but now there are 

enough evidences that IPF also leads to the heart failure, pulmonary embolism and acute 

respiratory deterioration (Collard et al., 2007). The clinical epidemiology of IPF remains poorly 

understood since the first identification of this disease. However, environmental exposures, 

genetic factors and tobacco smoking are considered as the potential risk factors of IPF. There are 

now two approved drugs i.e., Pirfenidone and Nintedanib but unfortunately surgical therapy and 

lung transplantation are merely accessible to every people (Ley and Collard, 2013; Hughes et al., 

2016). Older age with a median of 66 years is the major clinical feature of IPF and in addition, 

older age has also been shown to exhibit poorer prognosis (Ley et al., 2011). Report suggests 

that, IPF prevalence in USA varies between 43 and 67 cases per 100,000 population. Moreover, 

the occurrence and prevalence of IPF increases with age and the incidence in males is higher 

than females (Nalysnyk et al., 2012).  
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Microarray technology now allows the easy identification of variance in gene expression which 

in turn contributes in the identification of potential biomarkers of specific interest (Giltnane and 

Rimm, 2004; Kerr et al., 2000). Analysis of differential gene expression signatures is crucial in 

the identification of biomarkers and understanding of lung pathologies in IPF (DePianto et al., 

2015; Li et al., 2014).  However, although these studies provide fruitful findings but the 

prediction of actual mechanism of biological condition using the data of differentially expressed 

genes (DEGs) is often difficult and may come with erroneous interpretation sometime (Crow et 

al., 2019).  

In this study, we have employed integrated network-based strategies to predict potential 

biomarkers which may contribute in the identification of new drug target, and early diagnosis of 

IPF. Thereafter we have also tried to discuss the specific roles of identified signatures in IPF 

(Figure 1).  

2. Materials and Methods 

2.1. Data Retrieval and Identification of Differentially Expressed Genes 

We retrieved GSE24206 microarray data from NCBI-GEO (National Center for Biotechnology 

Information-Gene Expression Omnibus) database (Meltzer et al., 2011). The dataset comprises 

the expression profile of lung tissues from different parts of lungs of 5 normal donors and 11 IPF 

patients. After retrieval, the data was analyzed using GEAP (Gene Expression Analysis 

Platform) to differentiate the upregulated and downregulated genes (Nunes et al., 2018).  Log2 

transformation was applied and differentially expressed genes (DEGs) were sorted with adjusted 

P value<0.01 filter since the lower value corresponds to more accurate prediction.   

2.2. Functional Enrichment Analysis of DEGs 
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Both upregulated and downregulated gene sets were analyzed by DAVID (Database for 

Annotation, Visualization, and Integrated Discovery) (version 6.8) for gene over-representation 

to elucidate gene ontology (GO) terms and pathways involved with DEGs (Shermanand and 

Lempicki, 2009). P values were adjusted using the Hochberg and Benjamini test and gene count 

>2 were set as the cut-off point during the analysis. 

2.3. Construction of Protein-Protein Interaction Network and Identification of Hub Proteins 

STRING database was utilized for the reconstruction of protein-protein interaction (PPI) network 

with NetworkAnalyst (Szklarczyk et al., 2017; Xia et al., 2015). Topological and expression 

analysis of the DEGs were performed using NetworkAnalyst. Hub proteins in the generic PPI 

network with top 10 most connected nodes were identified with cytoHubba plugin using 

bottleneck interaction matrix on Cytoscape (version 3.7.2) (Chin et al., 2014; Shannon et al., 

2003).  Top 2 modules in the network was also analyzed using MCODE plugin (Saito et al., 

2012).  

2.4. Identification of Regulatory Molecules 

DEGs were searched against JASPAR with the help of NetworkAnalyst to construct transcription 

factor (TF)-DEGs interaction network (Sandelin et al., 2004). Micro RNA (miRNA)-DEGs 

interaction network was constructed searching the DEGs against TarBase (Sethupathy et al., 

2006). Top 10 interacting TFs and miRNAs were selected and analyzed.  

3. Result 

3.1. Transcriptome Signatures 
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Publicly available GEO data from NCBI was utilized in this study in order to identify 

differentially expressed genes. A total of 660 DEGs were identified with 276 downregulated 

genes and 384 upregulated genes within the selected parameters after statistical analysis (Figure 

2).   

Thereafter the selected genes were analyzed to understand the functional enrichment reflecting 

significant GO terms and enriched pathway. Top 5 GO terms were retained for both upregulated 

and downregulated genes (Table 1). The DEGs were then subjected to analyze their involvement 

in biological pathway. Selected genes showed sign of their involvement in KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathway (Figure 3). 

3.2. Proteome Signatures 

DEGs were used to construct generic PPI network which generated almost scale free topological 

densely connected network (Figure 4). Then the generic PPI network was utilized in the 

construction of hub protein network with top 10 most connected nodes (Figure 5). UBC, PTEN, 

SOS1, PTK2, FGFR1, YAP1, FOXO1, RACK1, BMP4 and CD44 were identified as most 

interacted hub proteins. After that, top 2 modules in the existing network was also analyzed 

(Figure 6). Then the functional enrichment of best 2 modules were also analyzed. Module 1 was 

mostly involved in protein predominantly in protein acetylation function (P value: 6.86×10-6) and 

module 2 was reported to be involved in G-protein coupled receptor (GPCR) signaling (P value 

2.8×10-4).   

3.3. Regulatory Signatures 

To identify the regulatory signatures, transcriptional regulatory elements (Figure 8) and post-

transcriptional regulatory elements (Figure 9) were identified from TF/miRNA-DEGs networks. 
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Top 10 transcription factors (E2F1, STAT3, PPARG, MEF2A, FOXC1, GATA3, YY1, GATA2, 

NFKB1, and FOXL1) and miRNAs (hsa-mir-155-5p, hsa-mir-16-5p, hsa-mir-17-5p, hsa-mir-

19a-3p, hsa-mir-192-5p, hsa-mir-92a-3p, hsa-mir-26b-5p, hsa-mir-335-5p, hsa-mir-124-3p, and 

hsa-let-7b-5p) were selected from the networks as the best signatures.  

 

 

4. Discussion 

In order to identify potential biomarkers or drug target in IPF gene expression pattern was 

analyzed from array data. 660 differentially expressed genes were identified after statistical 

analysis. Again, their involvement in different biological processes, cellular compartmentation 

and molecular functions were also analyzed. The selected DEGs indicated their predominant 

involvement in transcription, extracellular matrix organization, cell adhesion, apoptotic process 

and binding activity (Table 1). IPF is assumed to be occurred by the manifestation of multiple 

pathways. A range of cascades including apoptotic pathway, inflammatory cytokines, 

extracellular matrix regulatory factors, vascular endothelial remodeling have been implicated in 

animal models of fibrosis (Maher et al., 2007).  

Moreover, in order to identify hub proteins and regulatory biomolecules their PPI network and 

TF/miRNA-DEGs network were also analyzed. Protein-protein interaction is central to 

understand the functional relationships between different proteins and a protein-protein 

interaction map provides the functional organization of the proteome of specific interest 

(Xenariosand Eisenberg, 2001; Stelzl et al., 2005). We utilized BottleNeck method to construct 

the hub protein interactome. BottleNeck is more accurate in predicting the protein interactome 
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than degree matrix (Yu et al., 2007).   Among the top 10 hub proteins, UBC (Ubiquitin-C) 

mediates proteasome dependent proteolysis, transcriptional regulation, apoptosis and many other 

functions (Radici et al., 2013). Elevated level of UBC has been reported in patients with Chronic 

Obstructive Pulmonary Disease (COPD) and ubiquitination and proteolysis have been shown to 

play a crucial role in COPD (Létuvé et al., 2010; Debigaré et al., 2010). PTEN (Phosphatase and 

Tensin Homolog) is a cell membrane phosphatase.  Decreased PTEN activity has been 

demonstrated in the cell membrane of IPF fibroblast (Xia et al., 2010). Forkhead Box (FOXO) 1 

along with FOXO3 have been shown to have favorable inhibitory effect on fibrosis activation 

and reduction in extracellular matrix production. These two proteins have already been suggested 

as potential drug target in fibrosis (Xin et al., 2018; Al�Tamari et al., 2018). The transmembrane 

glycoprotein CD44 comprises several isoforms and plays crucial role in cell-cell adhesion. A 

different form of CD44 expression pattern was observed in plexiform lesions of idiopathic 

pulmonary arterial hypertension (IPAH) (Ohta�Ogo et al., 2012). Yet another study evident 

different expression patterns of CD44 including more isoforms in fibrotic lung samples (Kasper 

et al., 1995). Recent study with Yes-Associated Protein 1 (YAP1), a key regulator of Hippo 

pathway, revealed its overexpression leading to cell proliferation, migration and collagen 

production in IPF whereas knockdown of YAP1 resulted in reduced fibroblast aggregation with 

amelioration of the fibrosis condition bot in vivo and in vitro (Chen et al., 2019). FGFR1 

(Fibroblast Growth Factor 1) plays key role in the development of squamous cell lung cancer 

(Sekine et al., 2014). Upregulation of RACK1 (Receptor of Activated C Kinase 1) has been 

shown to induce hepatic fibrosis in mice (Jia et al., 2013).  

Moreover, two modules (Figure 6) were selected from the generic PPI network which was 

predicted to majorly be involved in protein acetylation and GPCR signaling. Abnormal pattern of 
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histone acetylation has been observed in IPF lung tissue which was evident by low level of 

COX-2 production in laboratory experiment (Coward et al., 2009). Moreover, abnormal histone 

deacetylation has also been reported in lung tissues of IPAH patient (Nozik-Grayck et al 2016).   

Transcriptional signatures i.e., TFs and Post-transcriptional signatures i.e., miRNAs provide 

potential sources in biomarker identification and drug targeting (Islam et al., 2018). DEGs were 

mapped to construct TF/miRNA-DEGs interaction network in order to find regulatory 

biomolecule signatures. Among the top 10 selected TFs (Figure 7), GATA3 Binding Protein 

(GATA3) overexpression in mouse model has been shown to enhance the development of IPF 

(Kimura et al., 2006). Forkhead Box C1 (FOXC1) encoding gene has been found to be 

differentially methylated in laboratory experiment with IPF subject (Yang et al., 2014). MEF2A 

(Myocyte Enhancer Factor 2A) has been reported to influence the growth and proliferation of 

lung fibroblast (Han et al., 2015). PPARG (Peroxisome Proliferator-Activated Receptor Gamma) 

is assumed to control the gene expression in lung fibrosis and it has already been suggested as a 

potential drug target in IPF (Dumoulin et al., 2010).  GATA2 (GATA2 Binding Protein) 

deficiency is a frequent feature in pulmonary diseases. Association of GATA2 deficiency has 

been evident in both fibrosis and Pulmonary Alveolar Proteinosis (PAP) (Svobodova et al., 2015; 

Ballerie et al., 2016). STAT3 (Signal Transduce and Activator of Transcription 3) plays multiple 

crucial roles in maintaining lung homeostasis and it is assumed to be one major target in lung 

fibrosis (Prêle et al., 2012). YY1 (Yin Yang 1) is a transcriptional repressor which has been 

suggested as novel regulator of pulmonary fibrosis. Overexpression of YY1 has been reported in 

both human IPF and murine model and it has been claimed that YY1 promotes fibrogenesis at 

least in part by increasing collagen or α-SMA secretion (Lin et al., 2011).  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2019. ; https://doi.org/10.1101/2019.12.12.19014746doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.12.19014746
http://creativecommons.org/licenses/by/4.0/


Among the top 10 selected miRNAs, hsa-mir-155-5p, hsa-mir-16-5p and hsa-mir-26b-5p have 

been predicted to be involved in multiple pathways giving rise to interstitial lung diseases (ILD) 

and suggested as non-invasive biomarker (Mishra et al., 2018), hsa-mir-17-5p and hsa-mir-19a-

3p have been shown to be involved in the prognosis of small cell lung cancer (Hayashita et al., 

2005; Mancuso et al., 2016).  Again, downregulation of hsa-mir-335-5p expression has been 

reported in COPD patients with PiZZ (Glu342Lys) inherited alpha1-antitrypsin deficiency 

(AATD) (Esquinas et al., 2017). In yet other laboratory experiments, hsa-mir-124-3p has been 

shown to participate in pulmonary vascular remodeling in association with a long non-coding 

RNA (lncRNA) called MALAT1 (Metastasis Associated Lung Adenocarcinoma Transcript 1), 

and hsa-let-7b-5p has been shown to be downregulated in patients with cystic fibrosis (CF) 

(Wang et al., 2019; Ideozu et al., 2019).  

Finally, the identified hub proteins and regulatory biomolecules may provide potentials sources 

of non-invasive biomarkers which could be used in targeting drugs against IPF and early 

diagnosis of this disease. In vitro and in vivo experimental evidences also suggested their 

potential roles and connections with IPF and other related lung diseases. This study suggests 

(UBC, PTEN, SOS1, PTK2, FGFR1, YAP1, FOXO1, RACK1, BMP4 and CD44) as the best 

proteome signatures, (E2F1, STAT3, PPARG, MEF2A, FOXC1, GATA3, YY1, GATA2, 

NFKB1, and FOXL1) as the best transcription regulatory signatures, and (hsa-mir-155-5p, hsa-

mir-16-5p, hsa-mir-17-5p, hsa-mir-19a-3p, hsa-mir-192-5p, hsa-mir-92a-3p, hsa-mir-26b-5p, 

hsa-mir-335-5p, hsa-mir-124-3p, and hsa-let-7b-5p) as the best post-transcription regulatory 

signatures in IPF within the selected strategies employed in the exploration of biomarkers. 

5. Conclusion 
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The underlying mechanism of IPF is poorly understood and this is the major hindrance to 

develop effective drug and early diagnosis method. In this study network-based approach has 

been utilized to analyze microarray data in order to identify potential transcriptome, proteome 

and regulatory signatures. Different hub genes involved in apoptic process, transcription, 

inflammatory responses, extracellular matrix organization have been identified to play key role. 

Thereafter multiple hub proteins, transcription factors and micro RNAs playing crucial roles in 

IPF and other related lung diseases were also identified and these findings were supported by 

other available laboratory experimental data. We suggest further exploration and possible 

laboratory experiments with the identified signatures to confirm their superiority in the diagnosis 

and drug targeting against IPF. Hopefully, this study will raise research interest among 

researchers and contribute in the discovery of non-invasive and effective biomarkers and 

potential drug targets. 
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Figure 1: Flowchart of strategies employed in the overall study. 
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Figure 2: Volcano plot of selected differentially expressed genes (DEGs). Colored (Blue: Down 
regulated genes; Red: Upregulated genes) DEGs have been selected with adjusted P value > 

0.01. filter. 
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Figure 3: KEGG pathway of differentially expressed genes: (A) Upregulated genes; (B) 
Downregulated genes. 
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Figure 4: Protein-protein interaction (PPI) network of differentially expressed genes (DEGs). 
Nodes represent DEGs (Green: Upregulated genes; Red: Downregulated genes). Edges represent 

interaction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Hub proteins from generated protein-protein interaction (PPI) network. Nodes 
represent proteins and edges represent interactions. 
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Figure 6: Best two modules obtained from protein-protein interaction (PPI) network in IPF 
Nodes represent proteins and edges represent interactions 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Interaction between transcription factor (TF) and differentially expressed genes 
network of differentially expressed genes (DEGs). Nodes represent DEGs (Green: Upregulated 

genes; Red: Downregulated genes; Blue: Transcription factors). Edges represent interaction. 
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Figure 8: Interaction between miRNA and differentially expressed genes network of 
differentially expressed genes (DEGs). Nodes represent DEGs (Green: Upregulated genes; Red: 

Downregulated genes; Blue: miRNA). Edges represent interaction. 
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Table 1: Top five gene ontology (GO) terms of differentially expressed genes (DEGs) in 
Idiopathic Pulmonary Fibrosis. 

 

 

 

 

 
 
Biological 
Processes 

Terms Gene Count Coverage (%) P-Value 
Transcription, DNA-templated 36 15.70 3.0×10-3 
Regulation of Transcription, DNA-
Templated 

26 11.40 2.8×10-2 

Cell Adhesion 12 5.20 1.4×10-2 
Extracellular Matrix Organization 11 4.80 7.0×10-5 
Positive regulation of Apoptic process 22 4.40 6.5×10-3 

 
Cellular 
Components 

Extracellular Region 28 12.20 2.2×10-2 

Intracellular 27 11.80 3.4×10-3 
Extracellular Space 25 10.90 1.4×10-2 
Extracellular Matrix 14 6.10 2.8×10-5 
Cell Surface 14 6.10 7.6×10-3 

 
 
Molecular 
Functions 

Metal Ion Binding 39 17.00 7.2×10-4 
DNA Binding 26 11.40 6.2×10-2 
Nucleic Acid Binding 25 10.90 1.7×10-4 
Actin Binding 9 3.90 1.1×10-2 
Heparin Binding 6 2.60 3.0×10-2 

Downregulated Genes 
 
 
 
 
Biological 
Processes 

Terms Gene Count Coverage (%) P-Value 
Inflammatory Response 11 6.80 1.5×10-3 
Positive Regulation of Cell Proliferation 10 6.20 1.8×10-2 
Immune Response 9 5.60 2.8×10-2 
Negative Regulation of Apoptic Process 9 5.60 4.1×10-2 

Positive Regulation of Apoptice Process 8 5.00 1.4×10-2 

 
Cellular 
Components 

Integral Component of Membrane 56 34.80 1.4×10-2 
Cytoplasm 52 32.30 7.9×10-2 
Plasma Membrane 48 29.80 7.3×10-3 
Extracellular Region 20 12.40 6.6×10-2 
Extracellular Space 19 11.80 2.7×10-2 

 
Molecular 
Functions 

ATP Binding 20 12.40 4.0×10-2 
Identical Protein Binding 13 8.10 2.2×10-2 
Protein Homodimerization Activity 12 7.50 4.2×10-2 
Ubiquitin Protein Ligase Activity 7 4.30 3.3×10-2 
Enzyme Binding 7 4.30 5.9×10-2 
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