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Abstract 

Intratumor heterogeneity (ITH) of genomic alterations may impact prognosis of lung adenocarcinoma 

(LUAD). We investigated ITH of somatic copy number alterations (SCNAs), DNA methylation, and 

point mutations in lung cancer driver genes in 292 tumor samples from 84 LUAD patients. We found 

substantial SCNA and methylation ITH, and clonal architecture analyses showed congruent evolutionary 

trajectories for SCNAs and DNA methylation aberrations. Interestingly, methylation ITH mapping to 

gene promoter areas or tumor suppressor genes was low. Moreover, ITH composed of genetic and 

epigenetic mechanisms altering the same cancer driver genes was found in several tumors.  To quantify 

ITH for valid statistical association analyses we developed an average pairwise ITH index (APITH), 

which does not depend on the number of samples per tumor. APITH indexes for SCNAs and methylation 

aberrations were both significantly associated with poor prognosis. This study further establishes the 

important clinical implications of genetic and epigenetic ITH in LUAD.  
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Introduction 
Lung cancer is the leading cause of cancer mortality, causing more than one million deaths worldwide 

annually 1. Lung adenocarcinoma (LUAD) is the most common histologic subtype and accounts for about 

40% of lung cancer incidence. While hundreds of LUAD tumors have been profiled extensively based on 

a single biopsy per patient 2,3, fewer subjects have been investigated for diversity within the tumor 

through multi-sampling. A few studies have analyzed the extent of intratumor heterogeneity (ITH) of 

somatic nucleotide variants (SNVs) and/or somatic copy number aberrations (SCNAs) 4-6 , and others of 

DNA methylation 7,8 in LUAD.  Some of these studies found a positive association between SNV ITH 

and risk of relapse 4 or SCNA ITH and cancer free survival (combining risk of mortality and of 

recurrences) 6.  However, ITH in these studies was estimated without adjusting for the number of samples 

examined for each tumor and the methylation analysis did not take into account sample purity.  

Using multiple samples per tumor it is possible to reconstruct the cancer evolutionary history. In prostate 

and brain tumors, congruent evolutionary trajectories of genetic and epigenetic mechanism have been 

reported 9,10, but to what extent epigenetic changes occur alongside phylogenetic changes in LUAD 

remains largely unknown.  

Here, we performed a comprehensive analysis of ITH of somatic mutations in cancer driver genes, copy 

number aberrations and DNA methylation in 292 tumor samples from 84 LUAD patients. We also 

investigated genetic/epigenetic ITH affecting cancer driver pathways. Moreover, we ordered genetic and 

epigenetic events along the LUAD evolutionary trajectories, and tested the hypothesis that co-occurrence 

of genetic and epigenetic mechanisms characterizes the evolution of lung adenocarcinomas. Finally, we 

assessed the clonality of targetable cancer driver genes and evaluated the association of ITH with clinical 

outcomes (survival and, separately, risk of metastasis) correcting for sample purity and using a novel 

unbiased statistical model which takes into account the number of samples examined from each tumor.   

Results 
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Patient Characteristics 

To determine clonal evolutionary patterns in the genome and epigenome, we performed multi-region 

sampling from 84 LUAD patients, of whom 76 (90%) reported past or current smoking. All the samples 

were treatment-naïve and surgically excised.  The demographic characteristics are summarized in Table 1 

and Supplementary Table 1. The clinical outcome analyses were based on a median follow up time of 

40.0 months. In total, 292 tumor tissue samples and 157 non-tumor samples (including 74 normal tissue 

samples, 81 blood samples and 2 buccal cell sample) were collected from 84 subjects. ITH was estimated 

for tumors that included between 2 and 11 tumor samples for each assay type. For reference, we used 

blood or buccal cells for deep target sequencing and, to factor out high tissue specificity, normal tissue 

samples for methylation. For SNP arrays we used only tumor samples. Samples used for each assay type 

are shown in Fig. 1 and Supplementary Fig. 1.  

Clonal architecture of somatic mutations and somatic copy number aberrations 

Across all patients, deep target sequencing revealed SNVs in 35 out of the 37 cancer driver genes assayed 

(Supplementary Table 2). On average, 3.4 genes had nonsynonymous SNVs in each patient. The five 

most frequently mutated genes were TP53 (50%), KRAS (46.4%), KMT2C (39.3%), STK11 (28.6%) and 

KEAP1 (25%), consistent with previous studies for LUAD 2,11,12 (Fig. 2, Supplementary Table 2). For 

each patient, SNVs were classified as public if all tumor samples from the same tumor carried the SNVs 

and private otherwise. 65.3% (126 of 193) of SNVs were public, a higher proportion than what was 

observed in the TRACERx study6 (public SNVs = 50.5%), if we apply the same definition of public vs. 

private events. In total, 24.3% (47/193; 30 public, 17 private) of SNVs were predicted to strongly alter 

protein functions (e.g., frameshift or gain of stop codon mutations). The public SNVs showed slightly 

higher dN/dS ratio than the private SNVs (public SNVs: 3.40 (95% CI: 1.80-6.44), private SNVs: 2.55 

(95% CI: 1.29-5.05)). Overall, the functional impact and selective pressure showed no significant 

difference between public and private SNVs. 
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Next, we performed unsupervised clustering based on the global SCNA profiles (see Methods). 

Intratumoral heterogeneity was lower than intertumoral heterogeneity, with 226/268 (84.3%) samples 

from the same tumors clustered together and another 7/268 (2.6%) samples from the same tumors in close 

proximity to each other (Supplementary Fig. 2). 

In order to quantify levels of intratumoral heterogeneity, we developed a novel metric, the average 

pairwise ITH index (APITH, see Methods) and applied it to the SCNA profiles of all patients (Fig. 3A). A 

major advantage of APITH is that its value is not biased by the number of multi-region samples per tumor 

while a previously used method 6 is strongly affected (Fig. 3B). APITH ranged from 0 to 0.68 with a 

mean=0.184, median=0.157 and standard deviation=0.153 (Fig. 3C), suggesting ~18.4% of the genome 

had different copy number status on average for any pair of tumor samples from the same patient. Of 

note, the largest APITH values (>0.5) were from patients with only two tumor samples, likely because of 

large variance in the APITH estimate.  

Previous TCGA studies 2,13 have reported recurrent SCNA regions for LUAD and identified in these 

regions 32 candidate driver genes, including 25 amplified and 7 deleted genes.  In our samples, SCNA 

ITH in the recurrently altered regions was similar to SCNA ITH across the whole genome 

(Supplementary Fig. 3). SCNAs of candidate driver genes were observed in 11.3-72.5% tumors, 

comparable to the TCGA study (Supplementary Table 3). SMARCA4 deletion and MCL1 amplification 

were the most frequent SCNA events (72.5% and 68.75% respectively). KRAS and EGFR amplification 

were also observed in 38.75% and 41.25% of tumors, respectively, of which 41.9% and 33.3% were 

public. 

We do not report APITH of SNVs since we conducted target sequencing of 37 cancer driver genes only, 

with resulting low number of mutations identified. 

Intratumoral heterogeneity of DNA methylation  
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We first performed unsupervised hierarchical clustering based on methylation profiles using the 5000 

most variable CpG sites across the genome (Fig. 4A) and, separately, limited our analysis to CpGs in 

promoter regions (Supplementary Fig. 4). Both analyses confirmed that normal tissue samples from 

almost all subjects (59/61) clustered together. Similarly, 183/205 (89.3%) samples from the same tumors 

clustered together, showing higher intertumoral heterogeneity than intratumoral heterogeneity. 

Previous studies have identified high levels of methylation in promoter regions of some genes, also 

referred to as the CpG island methylator phenotype (CIMP) in multiple cancer types, including lung 

cancer 2,14,15. 16/68 (23.5%) patients had significantly altered CpG island methylator phenotype (CIMP-H) 

and 47/68 (69.1%) had a normal-like pattern (CIMP-L). In five patients, both CIMP-H and CIMP-L 

patterns were observed in the same tumor. 

We next examined the distribution of DNA methylation ITH based on either the probes across the whole 

genome or those mapping to specific genomic regions (Fig. 4B). The CpG probes mapping to CpG island 

regions had a significantly lower APITH compared to those mapping to other regions (P = 1.09x10-10), as 

previously observed in aggressive prostate cancer 10. Moreover, the CpG probes mapping to gene 

promoter regions (TSS1500, TSS200, 5’ UTR and 1st exon) had lower APITH compared to those mapping 

to gene bodies, 3’ UTR regions and intergenic regions (P =1.626x10-8).   

Restricting the analysis to CpG probes mapping to 250 oncogenes and 300 tumor suppressor genes 

predicted by TUSON Explorer 16 revealed that methylation ITH mapping to tumor suppressor genes was 

significantly lower than that of oncogenes (p=1.68x10-17) and that of other genes (1.50x10-16 ) (Fig. 4C). 

Inactivation of tumor-suppressor genes by hypermethylation at promoter regions has been observed in 

multiple cancer types including lung cancer17-19. Lower DNA methylation ITH in these regions suggests 

greater selective pressure which is consistent with their high putative impacts in oncogenic 

transformation. 

Intratumoral heterogeneity of genomic alteration types in cancer driver pathways 
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We analyzed genetic and epigenetic aberrations of 13 cancer driver genes in the RTK/RAS/RAF pathway 

that are frequently mutated in LUAD2 (Fig. 5). For SCNAs, we only included amplification of oncogenes 

and deletion of tumor suppressor genes. For DNA methylation, we determined abnormality based on 

probes located in CpG islands at promoter regions of the target genes.  

Across the 13 genes, 77/84 (91.7%) tumors harbored genetic or epigenetic alterations in this pathway; 

ITH was observed in 69 (89.6%) tumors. SNVs, SCNAs and methylation of the driver genes altered 

7.28%, 17.5%, and 4.19% of the tumors, respectively. Different types of genetic or epigenetic alterations 

affected different samples in the same tumor. For example, in tumor IGC 11-1130, four samples were 

tested and all had alterations in the KRAS pathway. Among them, two samples had amplification in ROS1 

and the other two samples had aberrant DNA methylation in the promoter regions of ALK (Fig.5).   

In the cell cycle pathway, genetic or epigenetic changes in RB1, CDKN2A or SWI/SNF components were 

observed in 57/84 (67.9%) tumors, with ITH in 33 (57.9%) tumors. 

Evolutionary trajectories inferred from genetic and epigenetic aberrations 

To reconstruct the evolutionary trajectories, we inferred clonal relationships for tumors that were assayed 

for both SCNA and DNA methylation in multiple regions. For each pair of tumor samples per tumor, we 

first calculated the Euclidean distance separately for SCNA profiles and the DNA methylation levels of 

the 5000 most variable CpG probes. We found that the pairwise SCNA distances were positively 

correlated with DNA methylation distances (Fig. 6A, Spearman's correlation coefficient’s = 0.586, 

p<1x10-16). To exclude the possibility that the DNA methylation changed purely as a consequence of the 

changed ratio between alleles, we carried out a sensitivity analysis by testing the correlation between 

SCNA and methylation distances only in regions with homogeneous copy number status and observed 

consistent results (Supplementary Fig. 5, Spearman's correlation coefficient’s = 0.638, p<1x10-16). 

Consequently, the topology of evolutionary trees inferred from SCNAs and DNA methylation exhibited 

similarity (Fig. 6B for 6 tumors with at least 5 samples each, and Supplementary Fig. 6 for 8 tumors with 
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at least 4 samples each). These results support the co-occurrence of the two mechanisms in shaping the 

cancer genome.  

Of note, when we overlaid the SNVs in target genes on the SCNA- and methylation-derived trees, we 

observed that some genes were altered by different mechanisms in the same trees. For example, tumor 

IGC-10-1179 had STK11 mutated in the trunk and deleted in a branch (Fig. 6C).  

Associations between intratumoral heterogeneity and clinical outcomes 

We tested the association of SCNA and DNA methylation APITH with clinical data and observed no 

significant correlations with age, sex, tumor stage or grade (Supplementary Table 4). Smokers had higher 

APITH of SCNAs (P=0.035, nominally significant) but similar APITH of methylation compared with 

non-smokers. Other smoking behaviors (e.g., smoking intensity and duration) were not associated with 

APITH of SCNA or DNA methylation. 

Next, we examined the associations between APITH and survival or risk of distant metastasis. For each 

analysis, we performed a Cox proportional-hazards model weighted or unweighted by the variance of the 

estimated APITH. For significant associations, we found that weighted analysis had smaller p-values than 

unweighted analysis, as expected. Thus, we report below results based on weighted analyses (summary of 

weighted and unweighted results is in Supplementary Tables 5 and 6).  

Similar to the TRACERx study 6, we found that increased SCNA APITH was associated with poor overall 

survival with p=0.05 using all patients and p=0.0044 (HR=1.77, 95% CI=1.2-2.6) when restricting the 

analysis to patients with ≥3 tumor samples per tumor (Supplementary Table 5 and Fig. 7a). SCNA APITH 

was not significantly associated with risk of developing distant metastases (Supplementary Table 5). Of 

note, for both overall survival and distant metastasis, APITH based on SCNAs in the 37 cancer driver 

genes provided lower prognostic value than the APITH of SCNAs in the whole genome.  

We then tested the association of DNA methylation-based APITH with overall survival and the risk of 

distant metastases. We found that APITH based on the 5000 most variable CpG probes was associated 
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with overall survival (HR= 1.27, 95% CI=1.05-1.55, p=0.016, Supplementary Table 6 and Fig. 7B) but 

not significantly associated with risk of metastasis (p=0.14). APITH based on CpG probes mapping to 

island regions had the strongest association with overall survival (HR=1.31, 95% CI=1.10-1.57, 

p=0.0028, Fig. 7C) and were also found to be associated with risk of distant metastasis (HR=1.35, 

95%CI=1.07-1.72, p=0.012, Fig. 7D).  The results for APITH defined based on other genomic regions are 

in Supplementary Table 6. The CIMP phenotype did not show substantial ITH, i.e., there were only a few 

tumors with CIMP-H and CIMP-L across samples from the same tumor. Therefore, we could not analyze 

the association of APITH of CIMP with clinical outcomes. 

Discussion 

In this study, we investigated genetic and epigenetic intra-tumor heterogeneity based on multi-region 

sampling per tumor across 84 lung adenocarcinoma patients. On average, 35% of SNVs in targeted genes 

were private and ~18.4% of the genome had SCNA ITH for any pair of samples from the same tumor.  

Methylation in CpG islands or gene promoter regions, particularly of tumor suppressor genes, had low 

ITH.  Different types of somatic alterations across samples from the same tumors affected cancer driver 

genes in the RTK/RAS/RAF or cell cycle pathways. SCNAs and DNA methylation changes showed 

congruent evolutionary trajectories. Notably, we developed a statistical approach to correctly estimate 

ITH for any pair of tumor samples from the same patient and showed that ITH of SCNAs and DNA 

methylation was associated with poor prognosis. 

The findings of substantial ITH across different genomic types and of similar tumor evolutionary 

trajectories for genetic and epigenetic changes are important to understand the biology and natural history 

of LUAD. Moreover, they are crucial to inform clinical management and therapeutic strategies. Using 

multi-region sampling, we identified private events in cancer driver genes, which may not be detected by 

a single biopsy or by limiting the analyses to point mutations. For example, combining genetic and 

epigenetic changes, 95.2% of tumors had activating events in the RTK pathway, of which ~36% were 

private.  
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ITH of SCNA and ITH of DNA methylation (overall and in CpG islands) were similarly associated with 

shorter survival in our study, and ITH of methylation in CpG islands was also associated with higher risk 

of developing metastasis. Adding both measures in the same model did not significantly improve the 

prediction value (data not shown), likely because the two measures were highly correlated to each other. 

In previous studies, ITH of SCNAs was quantified as the fraction of SCNAs not shared by all samples in 

the tumor 6. Clearly, this ITH index positively depends on the number of tumor samples per tumor (Fig. 

3B) and thus hinders valid cross-patient comparisons or testing associations with clinical outcomes. 

Moreover, unobserved factors that are associated with the number of tumor samples per patient, e.g., 

tumor size or different study sites, may confound the association analysis with clinical outcomes. We 

propose APITH as an index for ITH, similar in spirit to that previously proposed for quantifying ITH from 

the observation of SNVs 20. This index, defined by pairwise distances of genomic profiles, is not biased 

by the number of samples per tumor and thus allows association testing for any genomic profiling 

platforms.  Crucially, the variance of APITH estimates depend on the number of samples per tumor and 

thus a naïve statistical association test between APITH and any outcome may have low statistical power. 

We explicitly addressed this issue by quantifying the variance of APITH and proposing a procedure for its 

numerical calculation. This variance was used to weight subjects in the regression analyses to achieve the 

best statistical power, as demonstrated in theoretical analyses (Supplementary Methods). As a 

confirmation, our empirical results showed that the weighted analyses produced more significant results 

than the unweighted analyses for the association between APITH and overall survival.  

A comparison between the previous TRACERx study6 and this study using APITH to estimate the ITH of 

SCNAs is reported in the Supplementary Notes.  

In conclusion, our results delineate the genetic and epigenetic ITH in LUAD and provide a rigorous 

statistical approach to estimate ITH for comparisons across individuals and for associations with clinical 

outcomes. DNA methylation and genomic changes followed similar evolutionary trajectories and strongly 
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impacted cancer driver genes and pathways in a complex manner. These findings can inform the clinical 

management of lung adenocarcinomas suggesting that taking multiple biopsies and analyzing multiple 

genomic types may be needed to capture the landscape of targetable events. Future larger studies are 

warranted to identify the combination of genomic types and genomic regions to best predict clinical 

outcomes.  

Methods 

Patients and multi-region tumor samples 

The current work includes 84 LUAD patients from the EAGLE study, a population-based case-control 

study conducted in Italy between 2002 and 2005 12,21,22. Samples were snap-frozen in liquid nitrogen 

within 20 min of surgical resection and the precise site of tissue sampling was recorded. All tumor 

samples were histologically confirmed as primary lung adenocarcinoma (not mixed types or 

undifferentiated cases) with at least 50% tumor nuclei and less than 20% necrosis. Normal tissue samples 

were taken at >3 cm from the tumor tissue and had to have no tumor nuclei at histological examination.  

Based on these characteristics and DNA quality, we were able to analyze between 2 and 11 samples from 

each tumor, for an overall 292 tumor samples and 157 non-tumor samples (including 74 normal tissue 

samples, 81 blood samples and 2 buccal cell samples).  Detailed information on tumor characteristics, 

recurrence, treatment, and follow-up data were recovered from patients’ medical records and follow-up 

visits and hospital admissions were identified by linkage with the region-wide Regional Health Authority 

database (Supplementary Table 1). Recurrence history was ascertained through December 31, 2010. The 

study protocol was approved by the Institutional Review Board of the US National Cancer Institute and 

the involved institutions in Italy.  Informed consent was obtained for all subjects prior to study 

participation.  

 

Genomic and epigenomic profiling of tumor samples 
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Somatic copy number alterations (SCNAs) in tumors were profiled using 705,667 probes from the Illumina 

HumanOmniExpress SNP arrays in 268 tumor samples from 80 subjects. SCNA segmentation was performed 

using ASCAT 23 based only on B allele frequencies to avoid hypersegmentation; copy number status of 

each segment was determined based on log R ratio. Bisulphite treatment and Illumina Infinium 

HumanMethylation450 BeadChip assays were performed to derive the DNA methylation levels in 205 

tumor samples and 74 normal tissue samples from 68 subjects; in the absence of paired normal tissue 

samples for 7 tumors, methylation levels were imputed based on the methylation levels of the overall 

normal samples. For DNA methylation, we analyzed 338,730 CpG probes after excluding probes 

annotated with genetic variants, in repetitive genomic regions or on the X-chromosome. Deep target 

sequencing was performed to identify SNVs for 37 established lung cancer driver genes 2,11,12 with an 

average sequencing depth of 500X in 180 tumor samples and 55 blood samples and 1 buccal sample from 

56 subjects. Sequence data were processed using the standard Ion Torrent Suite Software (Thermo Fisher 

Scientific) version 5.0.7 and somatic mutations were detected using TVC (Torrent variant caller) version 

5.0.9.  More details can be found in Supplementary Methods. Samples used for each assay are listed in 

Fig. 1 and Supplementary Fig. 1.  

Bioinformatic analyses 

DNA methylation: Bisulphite treatment and Illumina Infinium HumanMethylation450 BeadChip assays 

were performed to derive the DNA methylation levels. Raw methylated and unmethylated intensities were 

background-corrected, and dye-bias-equalized, to correct for technical variation in signal between arrays. 

For background correction, we applied a normal-exponential convolution, using the intensity of the 

Infinium I probes in the channel opposite their design to measure non-specific signal. For each CpG 

probe, the DNA methylation level was summarized as the fraction of signal intensity obtained from the 

methylated beads over the total signal intensity. After excluding CpG probes annotated with genetic 

variants, in repetitive genomic regions or on the X-chromosome, 338,730 CpG probes remained for 

analysis. Each CpG probe was annotated as in CpG Island (denoted as CGI), nonCGI (including shores 
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and shelves) or “open-sea”. Each CpG probe was also annotated as in promoter (TSS200, TSS1500 and 

first exon), body, 3’UTR in a specific gene or annotated as intergenic. Methylation ITH of specific 

genomic regions was computed using the average pair-wise distance of the top 10% variably expressed 

probes mapping to that region scaled by the number of probes. To identify potential driver DNA 

methylation events, we analyzed CpG island regions of cancer driver genes and compared the beta values 

of tumor samples and corresponding normal samples. We used 0.3 as the cutoff value to call differences 

in beta values7.  

Deep target sequencing: Deep target sequencing was performed to identify SNVs for 37 established lung 

cancer driver genes with an average sequencing depth of 500X. The genes were targeted with an Ion 

Ampliseq panel, and enriched libraries were sequenced using P1 chips on the Ion Proton sequencer.  All 

laboratory analyses were performed at the Cancer Genomics Research Laboratory (CGR) of the Division 

of Cancer Epidemiology and Genetics, NCI. Sequence data were processed using standard Ion Torrent 

Suite Software (Thermo Fisher Scientific) version 5.0.7. The data processing pipeline includes signal 

processing, base calling, quality score assignment, adapter trimming, read alignment to hg19, coverage 

analysis and somatic variant calling. We used TVC (Torrent variant caller) version 5.0.9 to detect somatic 

mutations. A somatic mutation was detected if the variant allele count >3, coverage >2 in both tumor and 

normal samples and variant allele fraction ≥ 0.1.  The dN/dS ratio was estimated using R package 

“dNdScv” 24. 

SCNA: We initially performed SCNA analysis using ASCAT 23 with default parameters, which uses both 

LRR (log R ratio) and BAF (B-allele frequency). Extensive SCNAs and very complex subclonality 

patterns made segmentation difficult. Thus, we modified the ASCAT to rely only on BAFs for 

segmentation. Segments with BAF values different from 0.5 were identified as SCNA regions. We 

compared LRR values between SCNA regions and segments with BAFs=0.5 using the Student’s t-test. If 

the SCNA region LRRs were significantly higher or lower at significance level of 0.05 after adjusting for 

multiple comparisons, the segments were identified as amplified or deleted, respectively. Otherwise they 
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were identified as LOH. In addition, amplifications with at least four copy numbers in oncogenes and 

deletions with zero copy number in tumor suppressor genes were identified as potential driver events. 

Statistical analyses 

Regional genetic and epigenetic evolutionary trees for each patient were built using “fastme.bal” in an R 

package “ape” that uses the minimum evolution algorithm based on a distance matrix of SCNA or 

methylation profiles 25. The consensus tree was built using a revised distance matrix combining both 

SCNA and DNA methylation profiles with methods described briefly below. Let 𝑑𝑑𝑖𝑖𝑖𝑖1  denotes SCNA 

distance and 𝑑𝑑𝑖𝑖𝑖𝑖2  denotes methylation distance. When both samples have SCNA and methylation profiles, 

the new distance was defined as 𝑑𝑑𝑖𝑖𝑖𝑖0 = 0.5(
𝑑𝑑𝑖𝑖𝑖𝑖
1

max𝑑𝑑𝑘𝑘𝑘𝑘
1 +

𝑑𝑑𝑖𝑖𝑖𝑖
2

max𝑑𝑑𝑘𝑘𝑘𝑘
2 ). When only SCNA profiles are available, we 

define 𝑑𝑑𝑖𝑖𝑖𝑖0 =
𝑑𝑑𝑖𝑖𝑖𝑖
1

max𝑑𝑑𝑘𝑘𝑘𝑘
1 . Here, the denominators are used to rescale distances so that they are comparable 

between SCNA and DNA methylation profiles.  

The analysis of the CpG island methylator phenotype (CIMP) was performed using the hierarchical 

clustering based on the 5000 most variable CpG probes mapping to gene promoter regions and CpG 

island regions. 

Methylation analysis adjusted by sample purity  

For a given CpG probe, the observed DNA methylation was a linear combination of the data from the 

normal and the tumor tissue samples weighted by tumor purity. ITH may be overestimated if purity varies 

across tumor samples from the same patient. Thus, we estimated purity, 𝜋𝜋, for each tumor sample and 

derived the purity adjusted methylation values using R package InfiniumPurify 26. All downstream 

methylation analyses were based on purity-adjusted methylation.   

Quantification of ITH 

The frequently used index 6 that measures ITH for a patient using the fraction of aberrations present in all 

samples positively depends on the number of multi-region tumor samples. This estimate may vary across 
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tumors making the association analysis between ITH and clinical outcomes problematic. To address this 

problem, we defined a novel ITH metric, average pairwise ITH or APITH, for each patient. For a patient 

with 𝑘𝑘 tumor samples, and with 𝑑𝑑𝑖𝑖𝑖𝑖 defined as the genomic or epigenetic distance between a pair of 

samples (𝑖𝑖, 𝑗𝑗), the APITH is defined as the average across all pairs of samples:     

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
2

𝑘𝑘(𝑘𝑘 − 1)
� 𝑑𝑑𝑖𝑖𝑖𝑖

1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘

. 

The expectation of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 does not depend on the number of multi-region tumor samples. For SCNAs, 

𝑑𝑑𝑖𝑖𝑖𝑖 is calculated as the proportion of the 705,667 probes with different copy number status for (𝑖𝑖, 𝑗𝑗). To 

investigate ITH of lung cancer driver genes 2,11,12, we also calculated 𝑑𝑑𝑖𝑖𝑖𝑖 as the fraction of the genome in 

these driver gene regions with differing copy number state. For DNA methylation, we define 𝑑𝑑𝑖𝑖𝑖𝑖 as the 

Euclidean distance calculated for a given set of CpG probes, e.g., all CpG probes after quality control 

(QC), CpG probes mapping to CpG island and gene promoter regions. These analyses are informative to 

investigate whether ITH defined based on specific genomic regions would be useful for predicting 

prognosis.  

The variance of the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 estimate depends on the number of multi-region tumor samples. Intuitively, 

APITH is more accurate for patients with more multi-region tumor samples and should be weighted up in 

downstream statistical analyses to optimize statistical power. As described in Supplementary Methods, 

we heuristically derived sample weights that were used for the weighted Cox proportional-hazards model 

using “svycoxph” in the R package “survey” 27 to investigate the association between APITH and clinical 

outcomes (overall survival and the risk of distant metastasis). The survival analysis was adjusted for 

stage, age and smoking status. KM-plot were stratified by the median APITH of subjects with at least two 

tumor samples. 

Data availability 
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The target sequencing data have been deposited in SRA through dbGaP under the accession number 

PHS001239.V1.P1.  The SNP array and methylation array data have been deposited in dbGaP under the 

same accession number.  

Code availability 

The corresponding R code is available upon request from the authors. 
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Figure Legends 

Fig. 1. Summary of subjects and tumor samples that were analyzed on different platforms: ultra-deep 

targeted sequencing of cancer driver genes (180 tumor samples from 56 subjects), genome-wide 

methylation (205 tumor samples from 68 subjects) or SNP array profiling (268 samples from 80 subjects). 

Top panel (bar plot): the total number of tumor samples from each subject. Bottom panel (heatmap): the 

number of tumor samples from each subject profiled by different platforms. 

 

Fig. 2. Intratumor heterogeneity of single nucleotide variants for 35 lung driver genes. Only 

nonsynonymous mutations are included for analysis. Top panel: the number of public (shared by all 

tumor samples in a patient) and private (not shared by all tumor samples in a patient) mutations for each 

driver gene. Bottom panel: summary of intratumor heterogeneity for each gene in each tumor. Thick lines 

separate the different tumors. Multiple lanes within thick lines indicate multiple samples from the same 

tumor.   

 

Fig. 3. Intratumor heterogeneity of somatic copy number alterations (SCNAs). (A) Left panel: SCNA 

landscape of 80 subjects with multi-region sampling. Right panel: fractions of genomes disrupted by a 

specific type of SCNA. (B) APITH score (left) and naive ITH (right) calculated based on the tumor 

samples of subject IGC-11-1044 with 7 tumor samples. For a given set of tumor samples, APITH was 

calculated as the average pairwise distance between any pair of tumor samples; naïve ITH index as 

calculated as the fraction of genome disrupted by private SCNAs that were not shared by all tumor 

samples. For a given number (K=2, … ,7) of tumor samples, we numerated all combinations of 𝐾𝐾 tumor 

samples to derive the distribution of ITH index. The naïve ITH index positively depends on the number of 

tumor samples while APITH does not. (C) Distribution of pairwise average ITH of SCNAs for 80 subjects 

with average APITH score 0.184.  
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Fig. 4. Intratumoral heterogeneity of DNA methylation profiles. (A) Unsupervised hierarchical clustering 

of 5000 most variable probes in CpG islands of the genome in 68 subjects. Different tumors are indicated 

by different colors in the column sidebar, with normal samples colored in gray. The numbers in 

parenthesis are the number of normal tissue samples for the ‘normal’ group, or the number of tumor 

samples in each patient. The beta values represent estimates of methylation levels, with 0 being 

unmethylated and 1 fully methylated.   (B) Distribution of ITH of DNA methylation in different genomic 

contexts. TSS 1500: 200–1500 bases upstream of the transcription start sites (TSS), TSS 200: 0–200 

bases upstream of the TSS. 5'UTR: Within the 5' untranslated region, between the TSS and the ATG start 

site. Gene body: Between the ATG and stop codon. 3'UTR: From the stop codon to poly A tail. Island: 

CpG island. Shore: 0–2 kb from island. Shelf: 2–4 kb from island. North: upstream (5’) of island. South: 

downstream (3’) of island. (C) ITH of DNA methylation in oncogenes, tumor suppressor genes and 

random gene sets. 

 

Fig. 5. Intratumor heterogeneity of genomic and epigenomic alterations of 13 cancer driver genes in 

RTK/RAS/RAF pathway. Shown are public and private SNVs, SCNAs and DNA methylation alterations 

in 84 subjects.  

 

Fig. 6. Reconstruction of evolutionary trajectories from SCNA and DNA methylation profiles. (A) 

Pairwise distance of tumor samples from the same tumor based on DNA methylation and SCNA profiles. 

Significant correlation coefficient is shown. (B) Phylogenetic analysis of subject IGC11-1044 based on 

DNA methylation and SCNA profiles, and the consensus phylogenetic tree built based on the distance 

incorporating both SCNA and DNA methylation profiles. (C) Consensus phylogenetic trees for six 

tumors with at least five samples assayed for both SCNAs and DNA methylation. SNVs, deletions of 

tumor suppressor genes and amplifications of oncogenes are marked on the inferred phylogenetic tree.  
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Fig. 7. Kaplan-Meier estimates of overall survival in patients with high and low ITH of (A) SCNAs, (B) 

DNA methylation based on the top 5000 most variable CpG probes and (C) DNA methylation at CpG 

islands. (D) Kaplan-Meier estimates of metastasis in patients with high and low ITH of DNA methylation 

at CpG islands. 
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Table 1. Distribution of demographic and clinical variables of 84 lung adenocarcinoma patients 

 

Age at first diagnosis (mean, range): 66.3 (49-80) 
Sex  
       Male 68 
       Female 16 
Smoking status  
       Never 7 
       Former 34 
       Current 42 
Cigarettes per day (mean+s.d.): 19.1 + 11.9  
       ≤ 10 21 
       > 10, ≤ 20 38 
       > 20, ≤ 30 13 
       > 30 9 
Cigarette smoking duration (mean+s.d.): 42.8 + 9.8  
       ≤ 30 years 7 
       > 30, ≤ 40 24 
       > 40, ≤ 50 29 
       > 50 years 14 
Tumor stage  
       IA 19 
       IB 18 
       IIA 13 
       IIB 8 
       IIIA 21 
       IIIB 3 
       IV 2 
Chemotherapy  
       yes 0 
       no 84 
Distant metastasis 44 
Deceased 50 
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Figure 2
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Figure 6
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Figure 7
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