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Abstract

Agent-based simulations are widely used nowadays in public health research for
comparing different strategies for mitigating epidemics and for planning appropriate
responses in the aftermath of crises in large urban areas because they can capture fine
scale heterogeneities that may have important non-linear effects on the results. Given
the costs of implementing strategies, decision-makers have to be convinced that the
proposed treatment/procedure leads to a statistically significant improvement.

This paper presents an innovative method for constructing paired agent-based
simulations where exactly the same set of random effects is applied to simulations with
and without the treatment/procedure. Statistical Analysis of Variance distinguishes the
sum of squares between groups (BSS) from the sum of squares within groups (WSS).
Our aim was to filter out the within sum of squares (WSS) leaving only the sum of
squares between the control group and the treatment group (BSS). We propose to filter
out the WSS by constructing paired simulations because as is well known, when paired
t-tests can be used, they are much more powerful than ordinary t-tests. Pearson’s
Chi-squared goodness of fit, the Kolmogorov-Smirnov statistic and the Kullback-Leibler
Divergence are then used to test whether the effect is statistically significant. This
procedure has been tested on a case-study on the propagation of the Zika epidemic in
Rio de Janeiro in 2015.

Author summary

Agent-based simulations are emerging as a powerful tool in computational biology
because they can capture fine scale heterogeneities that can have important effects on
the propagation of epidemics. In silico experiments can be used to test different
strategies for mitigating epidemics quickly and inexpensively. Given the inherent
variability from one simulation to another, it is difficult to statistically prove their
effectiveness. We have developed a powerful method rather like paired t-tests, for
testing whether a given treatment is statistically better than the control. We do this by
generating paired simulations with exactly the same random variables in the control
simulation and the one with a treatment. Using the terminology of analysis of variance,
we want to filter out the sum of squares within the group, leaving only the sum of
squares between the control and the treatment. This procedure has been applied to a
case-study to see whether enclosing and air-conditioning the transport hub in Rio de
Janeiro would have slowed down the propagation of Zika.
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1 Introduction 1

Over the past 20 years, several infectious diseases have reached epidemic proportions in 2

different parts of the world: SARS and MERS in Asia, Ebola in Africa and Zika in 3

Latin America. As the Zika virus causes microcephaly and serious neurological damage 4

in unborn babies [1], and Guillain Barré syndrome in adults [2], it is important to 5

understand how it propagates from one region to another and also within cities, so as to 6

control it more effectively. The Zika virus is transmitted by mosquitoes of the Aedes 7

genus1. As mosquitoes only fly short distances and usually remain near where they 8

hatched [5], [6], [7], [8], human movement is a key component of vector-borne 9

epidemiology [9]. In particular, transmission is influenced by social connections and the 10

transport system [10], [11], [12], [13]. 11

1.1 Case-study that motivated our research 12

An unusually large number of cases of microcephaly occurred in northeastern Brazil 13

early in 2015. A few months later cases started occurring in the city of Rio de Janeiro. 14

Figure 1 shows the total number of cases2 per “bairro” (suburb) from October 2015 to 15

January 2016. These cases occurred in the northern part of the city along an east-west 16

line and then towards the city center, apparently following the main transport routes. 17

After 4 months none had occurred in the southern part of the city (called “Zona Sul”). 18

Fig 1. Number of cases of microcephaly from Oct 2015 to Jan 2016.
Schematic representation of the layout of the 33 administrative regions (RAs) in Rio de
Janeiro with the number of cases up to the end of January 2016. Cases are concentrated
in the poorer northern suburbs especially Bangu and Campo Grande but there were
none in the more affluent Zona Sul (Lagoa, Copacabana and Botafogo). As far as the
favelas are concerned, there were no cases in Rocinha and Jacarezinho, and only 1 case
in each of three other important favelas: Complexo da Maré, Complexe do Alemão and
Cidade de Deus.

1Sexual transmission from men to women does occur but it is secondary compared to transmission
by mosquitoes [3], [4].

2Confirmed and probable cases, and those still under investigation by the Rio de Janeiro Health
Secretariat.
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The objective of this research project was to model the propagation of the virus 19

within this city with 6 million inhabitants, and in particular to understand what had 20

delayed its arrival in Zona Sul because this might suggest ways to prevent the spread of 21

vector-borne diseases. In the northern part of the city, the train and metro stations are 22

above ground whereas in the southern part they are underground with forced 23

ventilation in stations and tend to be mosquito-free. So our hypothesis is that people 24

waiting at stations in the northern suburbs were often bitten by mosquitoes thereby 25

facilitating the transmission of the virus, but not in the southern part. In that case, 26

enclosing and air-conditioning stations in the northern part and the transport hub in 27

the city center could significantly reduce the impact of mosquito-borne diseases: dengue 28

fever, chikungunya, as well as Zika. Given the cost of enclosing and air-conditioning 29

stations, the city authorities would want to be sure that it was cost-effective. So we 30

needed a procedure for statistically testing this hypothesis. 31

1.2 Choosing the most appropriate model to use 32

The standard SEIR stochastic model [14] which assumes perfect mixing is clearly not 33

appropriate in this case because the cases of Zika were preferentially located in certain 34

areas, whereas our hypothesis is based on a detailed knowledge of mobility within the 35

city. Recent work on the propagation of communicable/infectious diseases especially 36

those transmitted by vectors, has emphasized the importance of taking account of the 37

network structure of contacts [15] [16], of the dynamics of the mosquito 38

populations [17], [18], [19], [20], [21], of the effect of local rainfall patterns [22], and of 39

factors such as vaccination and immunity levels [23]. The papers [24], [25] concluded 40

that agent-based simulations are better suited than standard approaches. 41

1.3 Comparing agent-based simulations without a treatment 42

to those with the treatment 43

Our aim is to compare the number of cases of Zika, with and without treatment, as a 44

function of time. Initially, we had run several hundred simulations under control 45

conditions and independently the same number with the proposed treatment. As there 46

was a huge variability within each set of simulations, it was not clear whether the 47

difference between the mean of the control simulations and the mean of those with the 48

treatment was due to the treatment or merely to the stochastic variability within each 49

set of simulations. In statistics, Analysis of Variance distinguishes the sum of squares 50

between groups (BSS) from the sum of squares within groups (WSS) [26]. Our aim was, 51

if possible, to filter out the sum of squares within groups (WSS) leaving only the sum of 52

squares between the control group and the treatment group (BSS). In classical statistics, 53

it is well-known that when paired t-tests can be used, they are much more powerful 54

than ordinary t-tests [27]. The innovative aspect of our work is the development of 55

paired simulations in which exactly the same random effects are used in the simulations 56

with and without the treatment. This procedure will be applied to agent-based 57

simulations of Zika transmission within Rio de Janeiro, but it could be applied any 58

other type of epidemic where social contacts are important. 59

In epidemiological models such as the SIR and SEIR models, the basic reproduction 60

number R0 determines whether the epidemic should propagate (if R0 > 1) or die out 61

naturally [14]. But in the presence of stochasticity the cutoff between the two regimes is 62

not black and white, there is a grey zone where the epidemic could die out 63

naturally [28]. Another innovation in this work is that the paired agent-based 64

simulations provide an estimate of the probability of this occurring. 65

In determining whether a treatment is effective, the paired simulations can be 66

divided into three classes: 67
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1. Those simulations where the epidemic died out in both simulations. As these 68

would not be seen in practice, they were eliminated from further study. 69

2. Those where the control simulation took off, but where the simulation with 70

treatment was extinguished – clearly the desired result. 71

3. Those where both simulations took off. In almost all cases the one without 72

treatment took off faster and affected a larger number of people 73

In our study on the propagation of the Zika epidemic in Rio de Janeiro, there were 74

no cases where the simulation with treatment took off but the control one was 75

extinguished. 76

The paper is structured as follows: Section 2 reviews agent-based simulations and 77

their applications. In Section 3 we explain how to construct paired simulations. Section 78

4 reviews different statistics for testing whether the differences between the paired 79

simulations are significant. In their study on the properties of different power 80

divergence statistics, Cressie and Read [29] recommended using Pearson’s chi-squared 81

goodness of fit if the distribution in the alternative hypothesis was peaked. They also 82

noted that the Kullback-Leibler divergence is a constant multiple of the classic log 83

likelihood ratio. A hypothesis test based on the Kullback-Leibler divergence using 84

Hoeffding’s inequality was developed by Nowak3. In addition to these, we also propose 85

to use the classic Kolmogorov-Smirnov statistic. Section 5 presents the case-study on 86

Zika propagation originally presented in [30] . The results are discussed in section 6. 87

Our conclusions and perspectives for future work are presented in Section 7. 88

2 Literature review on agent-based simulations 89

Agent-based simulations are widely used nowadays for modelling the propagation of 90

infectious diseases, for comparing the different strategies for mitigating epidemics and 91

for planning appropriate responses in the aftermath of crises in large urban areas, 92

because they can capture fine scale heterogeneities that may have important non-linear 93

effects on the results. In public health research, they have been used to evaluate 94

different strategies for mitigating the severity of influenza-type pandemics [31–33], for 95

modelling measles outbreaks [23], for modelling hospital-acquired infections [34], for 96

determining the best way to allocate vaccines [35], [36] and for modelling the impact of 97

sexual transmission of the Ebola virus [37]. Agent-based simulations have been used in 98

research on malaria to model the infectious reservoir in humans [38] and to study the 99

spatial and temporal heterogeneities of malaria incidence in a rainforest 100

environment [39,40]. Manore et al. [41] compared the transient and endemic behaviour 101

of dengue and chikungunya in order to evaluate the risk of emergence of different 102

virus-vector assemblages. Going further afield, these methods have been used to 103

simulate infectious diseases in the immune system [42], biomolecular networks [43], 104

myxobacterial development [44] and dosimetry in a virtual hepatic lobule [45]. Disaster 105

preparedness policies and interventions in the event of a large human-initiated crisis 106

such as a nuclear strike in an urban area have also been studied [46], [47]. 107

The sensitivity of agent-based simulations to small changes in the parameter values 108

was evaluated by using massive parallel computation and interactive data 109

visualization [48]. Rizzi et al. [49, 50] have developed computationally efficient ways of 110

simulating large epidemiological models by using a bit-string approach. Considerable 111

work has been carried out to determine the best way to set up these models and how to 112

scale them [33,51–54]. 113

3http://nowak.ece.wisc.edu/ece830/ece830 lecture7.pdf
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2.1 How to test different strategies 114

In the literature, strategies are usually tested by comparing the values of a few statistics 115

such as the attack rate and the reproduction number R0 computed after running a 116

limited number of simulations [31, 32, 37]. For example, Dorratoltaj et al. [31], measured 117

the attack rate, the reproduction number R0 and the economic costs for three strategies 118

(no vaccine, static vaccination and dynamic vaccination) for three severity levels of the 119

epidemic (catastrophic, strong and moderate) after running 25 simulations while 120

Ferguson et al. [32] compared the attack rates and the reproduction numbers for 121

different strategies. In the study on the Ebola virus, the average number of days during 122

which the epidemic continued, was computed [37]. In many ways it would be more 123

informative to study the effect of the epidemic over time. 124

3 Constructing paired simulations 125

This section is divided into two parts: first we describe the general procedure for 126

generating agent-based simulations of the propagation of the Zika virus in Rio de 127

Janeiro, then we explain how to construct paired agent-based simulations by extending 128

the previous procedure. Those who are familiar with agent-based simulations and are 129

primarily interested in constructing paired simulations can skip the first section. 130

3.1 Agent-based simulation of the propagation of the Zika 131

virus 132

In order to simulate the propagation of the Zika virus within Rio de Janeiro, we 133

constructed a simplified (”toy”) example of the transport system consisting of 5 suburbs 134

(RAs): 135

• three in the northern suburbs along the above ground train lines (Bangu, Campo 136

Grande and Meier) where many microcephaly cases had occurred, 137

• the city center with the main business area (Centro) and the transport hub 138

• and the southern suburbs (Zona Sul) where the metro is underground. 139

Following Barmak et al [12] and Barmak, Dorso and Otero [13] we divided each RA 140

into two areas: the area around the station and the rest of the RA. This gave us 10 141

sub-zones each with its own mosquito and human population. According to the 2010 142

census, only 41,000 people live in the central area compared to about 400,000 in Bangu 143

and in Meier, and about 550,000 in Campo Grande and in Zona Sul. So in our model 144

there are no inhabitants in Centro. The populations in the other four RAs were divided 145

into two groups: those that go to the city center to work each day and those who 146

remain in their home area. The latter could go to work or school there, or could stay at 147

home. People who stay in their residential area mix freely with each other, but not with 148

those from other areas. In contrast, people who go to work in the business area, mix 149

freely with other workers while doing business and while having lunch, and then again 150

on the platform waiting to go home. Similarly, the mosquito populations are distinct 151

and do not mix with mosquitoes from other areas. 152

3.1.1 Interactions between mosquitoes and people 153

We divided the day into four periods: early morning when those who go to the city 154

center wait on platforms and get bitten by mosquitoes), midday (when people are in 155

contact either with those in their home area or with those in the city center), late 156
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afternoon when travellers wait on platforms at Centro and can be bitten by mosquitoes) 157

and finally the evening (when everyone is at home and can be bitten by the mosquitoes 158

there). Table 4 summarizes the interactions in the control case between the 10 mosquito 159

populations and the 8 human populations over the course of each day. For example, the 160

human populations P1, P3, P5 and P7 wait for a train home late in the afternoon and 161

can get bitten by mosquitoes from the M9 population. In the evening the human 162

populations P1 and P2 are at home in Bangu and can be bitten by mosquitoes from the 163

population M2. Given the importance of the central transport hub in mixing people 164

from different suburbs, the treatment that we consider is enclosing and air-conditioning 165

it. To model this we eliminate the mosquito population at Centro. 166

Table 1. Location of human and mosquito populations in the control case
Human populations, P1, P3, P5 and P9, travel to work in the central business area
during the day. Populations, P2, P4, P6 and P10, remain in their residential area all
day. No people reside in the central area. The mosquito populations, M1 ...M10 remain
in their areas all day.

Stations Mos. Pop Morning Midday Afternoon Evening
Bangu Station M1 P1
Bangu Area M2 P2 P2 P2 P1+P2

Campo Grande Station M3 P3
Campo Grande Area M4 P4 P4 P4 P3+P4

Meier Station M5 P5
Meier Area M6 P6 P6 P6 P5+P6

Zona Sul Station M7 P7
Zona Sul Area M8 P8 P8 P8 P7+P8
Centro Station M9 P1+P3

+P5+P7
Centro Area M10 P1+P3

+P5+P7

3.1.2 Updating at the end of each day 167

At the end of each day, after the four sets of interactions between the mosquitoes and 168

people, the status of each individual agent is updated. For example, people who were 169

exposed to the virus for the incubation period become infectious, and likewise for 170

mosquitoes. Mosquitoes which ”died” during the day are replaced by a new susceptible 171

mosquito, etc. 172

Note these updating operations do not change the number of agents in each 173

population; they can at most change their current state. This is important when setting 174

up paired simulations because it makes it simpler to assign exactly the same random 175

effects to the right individual agents. One does not have to worry about agents 176

disappearing or new ones appearing. 177

The relationship between the four sets of interactions and the daily updating are 178

shown in the flowchart in figure 2. 179

3.1.3 Parameters of the model 180

We assumed that, in the control case, each of the 10 mosquito populations consisted of 181

NM=100 agents. Similarly there were a total of 1600 people, 200 in each of the 8 182

human populations. As the treatment that we wish to study consisted of enclosing 183
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Fig 2. Schematic flowchart for generating agent-based simulations. This
figure shows the key steps in the procedure for agent-based simulations of the
propagation of the Zika virus in Rio de Janeiro.

Centro station and air-conditioning it to eliminate mosquitoes, the mosquitoes were 184

removed from this station in the model of the treatment case. 185

As we consider an SEIR model for people and and SEI model for mosquitoes, the 6 186

key parameters are the incubation times for people and for mosquitoes (i.e. the time 187

between being exposed to the virus and becoming infectious), the time for people to 188

recover from the virus, the daily mortality rate for mosquitoes and the probability of 189

the virus being transmitted to a susceptible person from an infectious mosquito, and 190

similarly from a infectious person to a susceptible mosquito. As we only consider a 191

period of 120 days, human mortality has been ignored. 192

The values of the main parameters in the model listed in Table 5 were taken 193

from [55]. When a mosquito dies it is replaced by a new susceptible mosquito. We did 194

not allow for vertical transmission of the virus between mosquitoes and their progeny. 195

For simplicity, the incubation periods and the time to recovery were taken to be 196

deterministic. 197

3.2 Constructing paired agent-based simulations 198

The results of a simulation depend on the sequence of (pseudo-) random numbers that 199

are used.The flowchart for each pair of agent-based simulation is shown on figure 3. 200

Random numbers (or random variables) are required at each of the four time periods in 201
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Table 2. Main parameters in model

Prob human to mosquito Prob mosquito to human
0.2 0.2

Incubation period in humans Incubation in mosquitoes
5 days 7 days

Daily mortality mosquitoes Time before recovery in humans
0.05 6 days

each day (morning, noontime, etc), to decide which people are bitten by mosquitoes and 202

whether they are infected. 203

So the key to generating paired agent-based simulations is using exactly the same 204

sequence of random numbers with and without the treatment. There are two ways of 205

getting the same sequence: either by storing the sequence if it is not too long or 206

alternatively by regenerating the exactly same sequence given the random seed, and the 207

parameters of the algorithm. Until about 2005, linear congruential random number 208

generators were the most commonly used generators [56]; nowadays the Mersenne 209

twister [57] is more widely used. See [58] for a clear description of how the latter works. 210

Fig 3. Schematic flowchart for generating paired agent-based simulations.
This figure shows the key steps in the procedure for agent-based simulations of the
propagation of the Zika virus in Rio de Janeiro. The full suite of programs used to
generate the simulations on Github: https://github.com/fccoelho/PairedSimulations .
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4 Statistics for comparing the distributions 211

4.1 The Cressie-Read family of power divergences 212

Cressie & Read (1984) investigated a family of power divergence statistics, I(λ), for
testing the fit of observed frequencies {Xi; i = 1, ..., k} to a theoretical distribution π0,
or to expected frequencies Ei [29]. These are defined by

2nI(λ) =
2

λ(λ+ 1)

∞∑
n=1

Xi

[(
Xi

nπ0i

)λ
− 1

]
;λ ∈ R

2nI(λ) =
2

λ(λ+ 1)

∞∑
n=1

Xi

[(
Xi

Ei

)λ
− 1

]
;λ ∈ R

Pearson’s χ2 corresponds to the case λ = 1; the log likelihood ratio G2 is the case λ = 0; 213

the Freeman-Tukey statistics T 2 corresponds to the case λ = −1/2; the modified log 214

likelihood ratio GM2 is the case λ = −1 while the Neyman modified χ2 corresponds to 215

the case λ = −2. They noted that the log likelihood ratio is a constant multiple (twice) 216

of the Kullback-Leibler divergence [59,60]. After extensively testing these estimators, 217

their recommendations were to use: 218

1. any λ ∈ [0, 1.5] when no knowledge about the alternative hypothesis is available 219

2. λ = 0 (i.e. the log likelihood ratio) if the alternative is dipped, 220

3. λ = 1 (i.e. Pearson’s χ2) if the alternative is peaked 221

As our alternative hypothesis is peaked, we use Pearson’s χ2 (λ = 1). As the log 222

likelihood ratio λ = 0 is twice the Kullback-Leibler divergence and as Cressie and Read 223

recommended using it when the alternative is dipped (not our case), we suspect that 224

the Kullback-Leibler divergence will not be very powerful in our case. 225

4.2 Kullback-Leibler using Nowak’s hypothesis test 226

The Kullback-Leibler divergence is defined as 227

KL = DKL(p ‖ q) =
ND∑
j=1

pj log

(
pj
qj

)
(1)

where p is the null hypothesis and q is the alternative hypothesis. 228

Using Hoeffding’s inequality [61], Nowak established bounds for the Type 1 and 229

Type 2 errors, for two distributions, p and q, having the same support and such that 230

0 < α ≤ p(x) ≤ β <∞ and 0 < α ≤ q(x) ≤ β <∞ (2)

in terms of the two Kullback-Leibler divergences D2(p ‖ q) and D2(q ‖ p): 231

Pr(Type1Error) ≤ exp[−2nD2(p ‖ q)/c2] (3)

232

Pr(Type2Error) ≤ exp[−2nD2(q ‖ p)/c2] (4)

Here c2 = 2[log(β)− log(α)] 233
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4.3 Kolmogorov-Smirnov hypothesis test 234

Hypothesis tests using the Cressie and Read’s family are all based on the multinomial 235

distribution, and consequently they involve the expected and observed frequencies in 236

predefined classes. Another way of looking at the problem is by comparing the 237

cumulative number of cases over time. If these are expressed as a fraction of the total 238

population, then classic tests such as the Kolmogorov-Smirnov test can also be 239

used [62], [63], [64], [65]. 240

The two-sample Kolmogorov-Smirnov statistic is 241

Dn,m = sup|F1,n(x)− F2,m](x)| (5)

where F1,n(x) and F2,m are the empirical distributions of the first and second samples. 242

For large samples, the null hypothesis is rejected at level α if 243

Dn,m > c(α)

√
n+m

nm
and c(α) =

√
−0.5 lnα (6)

In particular, c(0.05) = 1.224. 244

5 Case study on Zika in Rio de Janeiro 245

To test these statistics we ran 200 sets of paired simulations of our model for the 246

propagation of Zika in Rio de Janeiro. As this paper focuses on the methodology for 247

testing whether the effect of the treatment is statistically significant, we will not present 248

the case-study in detail here. It is summarized in Appendix 2 and is described in detail 249

in [30]. 250

In 36 out of the 200 sets of paired simulations, the epidemic died out in both the 251

control case and the case with treatment. As these cases would never have been 252

observed in the real world, they were removed from further study, leaving 164 pairs of 253

simulations in the study. In 4 of these cases the treatment was quite effective; at most 254

two cases occurred in addition to the two index cases. These four cases were treated 255

separately. In Figure 4 the cumulative number of cases is shown in black in the control 256

simulation and in red in the one with treatment. 257

Fig 4. Paired simulations N°78. The cumulative number of cases up to 120 days
are shown with the control case in black and the one with treatment in red. Even
though the epidemic took off in the control case, it died out in the case with treatment,
which is a very favourable result.
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Figure 5 presents the cumulative number of cases for four typical pairs out of the 258

remaining 160 paired simulations with control case shown in black and the one with 259

treatment in red. Note how variable the results are. This variability makes it difficult to 260

test whether the treatment is effective.

Fig 5. Four typical sets of paired simulations. Four typical sets of paired
simulations showing the cumulative number of cases up to 120 days, with the control
case in black and the one with treatment in red. Note how variable the simulations are.

261

5.1 Choosing the size of the classes for the tests 262

The simulations give the cumulative number of cases of Zika as a function of time up to 263

120 days (this corresponds to the summer period when mosquitoes reproduce in Rio de 264

Janeiro). On many days there were no incremental cases in the control simulation. 265

Looking back at the formulas for the Chi-squared goodness of fit, we see that the 266

expected number Ei has to be positive in all the classes. In addition for the 267

Kullback-Leibler divergence, the number of observations Oi in each class must also be 268

positive. So we defined the classes to have a minimum length of 6 days and if Ei or Oi 269

is zero we increased the length until some new cases occurred. This led to 16 or 17 270

classes. Exactly the same classes are used for the two simulations in a pair (control and 271

with treatment), but necessarily from one pair to another. 272

6 Results and discussion 273

6.1 Comparing the average cumulative curves 274

The standard way of testing whether a treatment is effective is by comparing the 275

average number of cases for the the control case and the one with treatment. In Fig 6 276
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the average of the control cases is shown in black, with the treatment in red. The values 277

of the Chi2 goodness of fit and the KS statistics were 93.103 and 0.1734. As their 278

critical values at the 95 % level of confidence are 26.30 and 0.1242, both are significant. 279

The weak point about using averages is that it does take account of the variability of 280

the individual cumulative curves around their respective averages. To illustrate this 281

point, we superimposed the first 30 individual curves out of 160 in blue on top of the 282

corresponding average curve, with the control case on the left and the treatment ones 283

on the right (Fig 7). 284

Fig 6. Average Number Cumulative Cases as a function of time. The control
case is in black, and the one with treatment in red.

Fig 7. Average Number Cumulative Cases and 30 of the 160 simulations.
The average of the 160 simulations is shown in bold, with the control case on the left
and the one with treatment on the right. The first thirty individual simulations out of
the 160 are in blue to show their variability.
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6.2 Statistics for the paired simulations 285

Next we computed the statistics and determined how many sets of paired simulations 286

exceeded the 95% confidence level. Nowak’s test for the Kullback-Leibler divergence 287

performed very poorly. This is hardly surprising because it is a multiple of the log 288

likelihood ratio and Cressie and Read had recommended using that only when the 289

alternative distribution was dipped whereas it is peaked in our case. As was mentioned, 290

the critical values for the KS statistic and the Chi2 goodness of fit at the 95 % level of 291

confidence are 0.1242 and 26.30 respectively. In the KS case 86 out of the 160 sets of 292

paired simulations exceeded this value, compared to 122 out of the 160 sets for the 293

chi-squared test. In Fig 8 the values of the two statistics are presented. Empty circles 294

correspond to pairs of simulations where neither statistic is significant; red circles, to 295

cases where both are significant while the yellow circles refer to cases where the 296

chi-squared goodness of fit was significant but the Kolmogorov-Smirnov was not. 297

Fig 8. Kolmogorov-Smirnov statistic vs the chi-squared goodness of fit. The
empty circles correspond to pairs of simulations where neither the chi-squared goodness
of fit (Chi2) nor the Kolmogorov-Smirnov statistic (KS) are significant; the red circles,
to cases where both are significant and the circles coloured yellow refer to cases where
the chi-squared goodness of fit was significant but the Kolmogorov-Smirnov was not.

The results presented above indicate that the chi-square test is more sensitive than 298

the KS. For a more complete assessment of the performance of both tests, we calculated 299

the precision (or positive predictive value) and the specificity(or true negative rate) for 300

both tests [66]. To calculate these metrics, we need to establish a few basic quantities 301

for each test, namely the number of true positives(tp), i.e. the pairs (control,treatment) 302

marked as different by the test; the number of true negatives (tn), i.e. the pairs 303

(control,control) marked as not different by the test and the number of false 304

positives(fp), i.e. pairs (control, control) marked as different by the test. We used 160 305

pairs of each kind (positives and negative) in these calculations. 306

Sensitivity is the fraction of (control, treatment) pairs correctly identified as 307

different, tp
p . Precision, tp

tp+fp , corresponds the fraction of pairs the test classifies as 308

different (positive) which are really different. The specificity, tn
tn+fp , measures the 309

proportion of actual negatives (control,control) that are correctly identified as such, in 310
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Table 3. Sensitivity, Precision and Specificity for both tests.

Chi-Square Kolmogorv-Smirnoff
Sensitivity 75% 63%
Precision 43% 85.7%
Specificity 1.2% 62%

this case how often the simulations are actually the same when the test says so. The 311

results from these calculations are presented in Table 3. From these metrics we see that 312

the KS test although less sensitive, is much more precise and specific. 313

6.3 If the simulations had not been paired 314

In this section we consider what would have happened if the simulations had not been 315

paired. In that case we could only have compared a control simulation with an arbitrary 316

simulation with treatment. As we have a total of 160 of each type of simulation, there 317

are a total of 160 x 160 possible combinations. Figure 9 shows the KS statistics plotted 318

against Chi-squared for all 25600 points, with Chi-squared on a log scale because of the 319

range of values. To be consistent with the previous figure, the red circles correspond to 320

cases where both the Chi-squared and the KS statistic were significant and the yellow 321

ones refer to cases where the Chi-squared was significant but the KS was not. The blue 322

circles correspond to paired sets where neither statistic was significant, that is, the 323

empty circles in the previous figure. 324

Note how the circles corresponding to the paired simulations lie along the left-hand 325

edge of the plot like a Markowitz efficient frontier [67]. The points along that frontier 326

satisfy the condition that these have the lowest Chi-squared value for any given KS 327

value. Or conversely they have the highest KS value for any Chi-squared value. The 328

advantage of pairing the simulations is that it captures only the effect of the treatment 329

and excludes the variability between control simulations. 330

Fig 9. Kolmogorov-Smirnov statistic vs the chi-squared goodness of fit. In
contrast to the previous figure, the two statistics were computed for every control
simulation combined with every treatment simulation (i.e. 160 x 160). The chi-squared
goodness of fit has been plotted on a log-scale.The aqua circles correspond to pairs of
simulations where neither the chi-squared goodness of fit (Chi2) nor the Kolmogorov-
Smirnov statistic (KS) are significant; the red circles, to cases where both are significant
and the yellow circles, to cases where the chi-squared was significant but the KS was
not.The paired simulations lie along the left-hand edge of the figure, and are similar to
Markowitz’s efficient frontier in portfolio theory. [67]
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6.4 Treatment effectively stops the epidemic 331

In the ideal case the treatment stops the epidemic in its tracks. This occurred in four 332

sets of paired simulations; that is, in 2.5% of the cases. 333

7 Conclusion 334

In this paper we consider the problem of deciding whether or not to introduce a new 335

treatment to prevent epidemics such as Zika, yellow fever, dengue etc. Decision-makers 336

have to weigh up the potential advantages of the proposed treatment against its cost. In 337

silico experiments can be used to test different strategies quickly and inexpensively. 338

Amongst the range of different simulation methods that are available now, agent-based 339

simulations are emerging as a powerful tool in computational biology because they can 340

capture fine scale heterogeneities and can reproduce the effects of interpersonal 341

networks that can have important effects on the propagation of epidemics. 342

However given the inherent variability within the set of control simulations and 343

within the set of simulations with treatment, it can be difficult to statistically prove 344

their effectiveness. To overcome this problem, we have developed the concept of paired 345

simulations - similar to paired t-tests. Paired simulations are generated using exactly 346

the same random variables in the control simulation and one with a treatment.This 347

approach is a powerful method for testing whether a given treatment is statistically 348

better than the control, because it effectively filters out the differences within the 349

control simulations and within the treatment simulations, leaving only the effect caused 350

by the treatment. 351

This procedure has been applied to a case-study to see whether enclosing and 352

air-conditioning the transport hub in Rio de Janeiro would have slowed down the 353

propagation of Zika by eliminating the mosquito population there. Three types of 354

statistics were compared for testing the hypothesis: Pearson’s chi-squared goodness of 355

fit, the Kolmogorov-Smirnov statistic, and the Kullback-Leibler Divergence. The 356

Kullback-Leibler Divergence performed poorly. This was to be expected because it is a 357

constant multiple of the classical log likelihood ratio and Cressie and Read [29] had 358

found that the latter performs well only when the alternative hypothesis has a dipped 359

distribution (which is not our case). So the choice comes back to the Kolmogorov- 360

Smirnov statistic or Pearson’s Chi-squared goodness of fit. To the best of our 361

knowledge, no research has compared the power of these two statistics. Our tests on the 362

sensitivity, precision and specificity of the two tests presented in Table 3 showed that 363

the KS test although less sensitive, is much more precise and specific. Consequently 364

we recommend the Kolmogorov-Smirnov test. 365

Although these new paired simulations were tested on the propagation of a 366

vector-borne disease, they could be used to test the effectiveness of any treatment 367

against epidemics and also in a wide range of other situations. 368
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Guillain-Barré Syndrome outbreak associated with Zika virus infection in French
Polynesia: a case-control study. The Lancet. 2016;387(10027):1531–1539.

3. Coelho FC, Durovni B, Saraceni V, Lemos C, Codeco CT, Camargo S, et al.
Higher incidence of Zika in adult women than adult men in Rio de Janeiro
suggests a significant contribution of sexual transmission from men to women.
International Journal of Infectious Diseases. 2016;51:128–132.

4. D’Ortenzio E, Matheron S, de Lamballerie X, Hubert B, Piorkowski G, Maquart
M, et al. Evidence of sexual transmission of Zika virus. New England Journal of
Medicine. 2016;374(22):2195–2198.
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A Appendix: Supporting Information

A.1 Summary of Zika Case Study

In October 2015, the Brazilian Ministry of Health (MoH) notified the World Health
Organization of an unusual increase in the number of microcephaly cases among
newborns in the state of Pernambuco, northeastern Brazil. On 28 November the MoH
officially announced that there was a link between microcephaly and the Zika virus.

From mid-2015 to the end of January 2016, 47 cases of microcephaly were observed
in the city of Rio de Janeiro, that were not due to other viral infections (syphilis,
toxoplasmosis, herpes and cytomegalovirus). As these children were conceived from Dec
2014 to April 2015, Zika must have been rampant in the city from late 2014 onward,
well before cases started to be recorded officially in October 2015.

A.1.1 Geographic spread within the city of Rio de Janeiro

Rio de Janeiro is divided into 160 areas called bairros which are regrouped into 33
administrative regions (RA for short). Their layout is given in Fig 10. The well-known
ocean beaches (Copacabana and Ipanema) are in Zona Sul. Figure 11 shows the
cumulative number of microcephaly cases due to Zika month by month from October
2015 until January 2016. Another reason for limiting the study to the end of January is
that as people became aware that Zika caused microcephaly, women who were thinking
of becoming pregnant started modifying their behavior to reduce the chances of
catching Zika.

Cases were not evenly spread in proportion to the number of births; they were
preferentially located in the northern suburbs, apparently following the public transport
routes, with virtually no cases in favelas and none in the southern suburbs (Zona Sul).
One key difference between the transport systems in the northern and southern suburbs
is that the metro and rail system in the north is above ground whereas in the southern
part the metro is underground with air-conditioning in carriages and forced ventilation
on the platforms. The train system does not extend to Zona Sul.

Fig 10. Location of the 33 administrative regions (RAs) in Rio de Janeiro. The five
RAs that will be used for the simulation study are also shown.
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Fig 11. Microcephaly cases in Oct 2015 in Rio de Janeiro. The five RAs that
will be used for the simulation study are also shown.
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A.1.2 Testing whether this spatial distribution could be random

Two separate hypotheses were tested to determine whether this spatial distribution
could have occurred by chance. First we determined the probability of having zero cases
in the Zona Sul out of the 47 microcephaly cases if they had been distributed randomly
in proportion to the number of live births in the area. This hypothesis was rejected.
Next after excluding Zona Sul, we computed the probability of 33 of the 47 cases
occurring in the 9 RAs (Santa Cruz, Campo Grande, Bangu, Realengo, Anchieta,
Pavuna, Madureira, Iraja and Meier) that lie along the above ground train and metro
lines. Again, the hypothesis was rejected.

A.1.3 Testing whether socio-economic factors could explain the spatial
distribution

The website of the city of Rio de Janeiro provides detailed information on the
population and the living conditions in each RA, including a Human Development Index
(HDI). In the 1990s, the UNDP developed a measure of human development that
covered three aspects: longevity, education and economic development. Here we used
the economic index which varies on a scale from 0 to 1 and measures the standard of
living. First we computed the number of microcephaly cases per 1000 live births as a
function of the HDI. The areas with the most microcephaly cases turned out to have an
intermediate Human Development Index; areas with zero or 1 cases were either affluent
areas in the Zona Sul or favelas which are much more disadvantaged. A linear
regression model was fitted to test the hypothesis that the number of microcephaly
cases per 1000 live births depends linearly on the municipal human development index,
against the null hypothesis of a constant. This hypothesis was rejected: that is, the
number of microcephaly cases per 1000 live births did not depend on the economic
human development index.

A.1.4 On the metro and rail system in Rio de Janeiro

The public transport in Rio de Janeiro consists of train lines which are above ground
and which take passengers from the northern suburbs into the city center (Fig 12) and
metro lines which are above ground from the city center out north to Pavuna and below
ground from the city center to Zona Sul in the southern suburbs (Fig 13), together with
bus routes. Most of microcephaly cases occurred in RAs that lie along the train lines
which are above ground, or along the metro lines in the northern part of the city which
are also above ground. Surprisingly, areas in Zona Sul along the metro lines where the
lines are underground have no cases.

Anyone who travels on the metro in Rio notices how cold it is in the carriages and
how windy it is on the platforms. We were curious to find out why it had been built
this way. Was the aim to keep mosquitoes away or was this just a lucky consequence?
The answer was provided by a former civil engineer who had worked on designing the
stations soon after graduating. It had nothing to do with mosquito prevention. The
fans and the air-conditioning in the carriages are for passengers’ comfort. Added to this,
when trains go through tunnels, they push a wedge of air through in front of them,
rather like a piston does, and large fans on the platforms increase the circulation of the
air. A side effect is that it makes it difficult for mosquitoes to bite people.
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Fig 12. Train lines in Rio de Janeiro Most cases of microcephaly were in areas
along the train lines, which suggested that the transport system helped propagate the
disease

Fig 13. Metro lines in Rio de Janeiro Cases also occured along the above ground
part of the metro line, but surprisingly not along the underground part of Line 1 in
Zona Sul

A.2 Simulating the impact of the transport system on the
propagation of the Zika virus

It is widely recognized that human mobility is an important factor in spreading
arboviruses such as dengue fever, chikungunya and zika. We wanted to test the
hypothesis that air-conditioning in metro carriages and ventilation on the metro
platforms in Zona Sul has made it more difficult for mosquitoes to bite people waiting
on the platforms and hence led to a decrease in microcephaly cases in the southern
suburbs. We used agent-based simulations to test this on a simplified (“toy”) example
consisting of 5 RAs in Rio de Janeiro:

• three in the northern suburbs along the above ground train lines (Bangu, Campo
Grande & Meier) which had many microcephaly cases,

• the city center with the main business area (Centro) and the main transport hub

• and the southern suburbs (Zona Sul).

Following Barmak et al. [12] and Barmak, Dorso & Otero [13] we divided each of
these 5 RAs into two areas: the area around the train/metro station and the rest of the
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Table 4. Human and mosquito populations at stations and in areas.

Stations Bangu CGrande Meier Centro Zona Sul
Mos. Pop M1 M3 M5 M7 M9
Morning P1 P3 P5 P9
Midday

Afternoon P1+P3+P5+P9 Cell6
Evening

Home areas Bangu CGrande Meier Centro Zona Sul
Mos. Pop M2 M4 M6 M8 M10
Morning P2 P4 P6 P10
Midday P2 P4 P6 P1+P3+P5+P9 P10

Afternoon P2 P4 P6 P10
Evening P1+P2 P3+P4 P5+P6 P9+P10

RA. This gave us 10 sub-zones each with its own mosquito population and its human
population. or simplicity, we assumed the 10 mosquito populations are distinct and do
not mix. According to the 2010 census there were only 41,00O people living in the
Central area compared to 413,000 in Bangu, 542,000 in Campo grande, 398,000 in Meier
and 569,000 in Zona Sul. So we ignored their presence in our model. The populations in
the other four areas were split into two groups: those that go to the city center to work
each day and those who remain in the home area. The latter go to work or to school
there or they stay at home. People who stay in their residential area mix freely with
each other but not with those from other areas. In contrast, people who go to work in
the business area, mix with others there while doing business and while having lunch,
and then again on the platform while waiting to go home.

A.2.1 Interactions between mosquitoes and people

We divided each day into 4 periods: early morning (when those who go to the city
center wait on the platforms and get bitten by the station mosquitoes), midday (when
people are in contact with either those in the city center, or with those in their home
area), late afternoon when the travellers wait on the platforms at Centro and are bitten
by that population of mosquitoes) and finally the evening when everyone is at home and
gets bitten by the population of mosquitoes in that area.

Table 4 summarises the interactions between the 10 mosquito populations (M1 to
M10) and the 8 populations of people (P1 to P6, P9 & P10). For example, the
populations P1 + P3 + P5 + P9 wait for a train home late in the afternoon and can be
bitten by mosquitoes from the M7 population. In the evening, populations P1 + P2 are
at home in the Bangu area and can be bitten by mosquitoes from population M2.

A.2.2 Model parameters

We considered a SEIR model (susceptible, exposed, infectious and recovered) for people
and a SEI model for mosquitoes. Mosquitoes do not recover; but they do die. As we
only consider a period of several months, we ignored human mortality and people
moving their residence from one area to another. When a susceptible mosquito bites an
infectious person the virus is not always transmitted to it, and similarly when an
infectious mosquito bites a susceptible person. These transmissions are controlled by
two probabilities. The main parameters in the model listed in Table 5 were taken from
Bastos et al (2016). When a mosquito dies, it is replaced by a new susceptible mosquito.
We did not allow for vertical transmission between mosquitoes and their progeny. For

December 6, 2019 25/27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted December 9, 2019. ; https://doi.org/10.1101/19014043doi: medRxiv preprint 

https://doi.org/10.1101/19014043
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Caption

Prob human to mosquito Prob mosquito to human Daily mortality mosquitoes
0.2 0.2 0.05

Incubation period in human Time before recovery in humans Incubation in mosquitoes
5days 6 days 7 days

simplicity, the incubation periods and the time to recovery were taken to be
deterministic.

A.2.3 Simulation procedure

In our toy example we assumed that each mosquito population M1 to M10 consists of
10 mosquitoes and that there are 10 people in the each of the populations P1 to P6, P9
and P10. So there are 20 inhabitants in Bangu in the model: 10 who travel to the city
center each work day and 10 who remaining in the Bangu area. The simulation was run
three times for a total of 120 days, firstly with mosquito populations M1 to M10,
secondly with no mosquitoes on the metro station Zona Sul, and thirdly with no
mosquitoes at Centro.

Fig 14 shows the total number of cases in Zona Sul for the base case (red) and the
case when there are no mosquitoes in the station area. Removing the mosquitoes from
the station at Zona Sul (but leaving them in the Zona Sul living area) clearly reduces
the number of cases throughout the city, but removing them from the transport hub at
Centro is far more effective (Fig 15).

Fig 14. Total number of cases after 120 days in Zona Sul (out of a
maximum of 40, in the base case (red), with no mosquitoes in Zona Sul
(black)
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Fig 15. Results of three simulations. Total number of cases after 120 days (out of
a maximum of 160, in the base case (red), with no mosquitoes in Zona Sul (black) and
with no mosquitoes at Centro (mauve)
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