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ABSTRACT 

A common genetic variant near MBOAT7 (rs641738C>T) has been previously 

associated with hepatic fat and advanced histology in non-alcoholic fatty liver 

disease (NAFLD), however, these findings have not been consistently 

replicated in the literature. Therefore, we aimed to establish whether rs641738 

is a risk factor for NAFLD through meta-analysis. Data from 131,096 

participants (7,692 with liver biopsies and 45,419 with imaging) was included 

in the meta-analysis. The minor T-allele of rs641738C>T was associated with 

higher liver fat on CT/MRI using an additive genetic model (+0.05 standard 

deviations [95% CI: 0.01 – 0.09], p=0.025), and with an increased risk of 
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NAFLD (per-allele OR: 1.09 [95% CI: 1.01 - 1.17]), nonalcoholic 

steatohepatitis (OR: 1.11 [95% CI: 1.02 - 1.21]), advanced fibrosis (OR: 1.14 

[95% CI: 1.05 - 1.23]), and hepatocellular carcinoma (OR: 1.43 [95% CI: 1.22 

- 1.67]) in adults with NAFLD. Sub-group analysis did not demonstrate a 

difference in Caucasians and non-Caucasians. Rs641738C>T was not 

associated with markers of insulin resistance but was associated with higher 

risk of stroke in the UK Biobank. These data validate rs641738C>T near 

MBOAT7 as a risk factor for the development, activity, and stage of NAFLD 

including hepatocellular carcinoma. 
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INTRODUCTION 

Since the first genome-wide association study (GWAS) of liver fat (1), more 

than 20 genetic single nucleotide variants (SNVs) have been associated with 

non-alcoholic fatty liver disease (NAFLD)(2). These studies have deepened 

our understanding of the condition, its heritability, and its relationship with 

cardio-metabolic disease. 

 

Rs641738C>T near MBOAT7 (membrane bound O-acyltransferase domain 

containing 7) was initially identified as a genome-wide significant risk locus for 

alcohol-related cirrhosis(3). It has since been implicated in the pathogenesis 

of NAFLD(4), hepatocellular carcinoma(5), as well as in fibrosis development 

in chronic hepatitis B and C.  

 

This SNV is located a few hundred base pairs downstream of the 3’ 

untranslated region of MBOAT7, which belongs to a family of genes that code 

for specific acyl donors and acceptors. MBOAT7 encodes 

lysophosphatidylinositol acyltransferase 1 (LPIAT1), which contributes to the 

regulation of free arachidonic acid in cells(6). Rs641738C>T is associated 

with lower hepatic expression of MBOAT7 at both the mRNA(7) and protein 

level(4). Given its role in inflammatory lipid pathways, most mechanistic work 

relating to rs641738 has focused on MBOAT7. 

 

In NAFLD, the rs641738 variant was first demonstrated to be associated with 

increased hepatic fat content and severity of fibrosis in individuals of 

European descent(4). Proton magnetic resonance spectroscopy data from 
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2736 individuals showed a modest increase in hepatic fat in those with TT-

genotype (4.1%) compared to those with CT- (3.6%) or CC-genotype (3.5%) 

(p=.005). Follow-up studies of European subjects corroborated the initial 

findings, and suggested a role in development of hepatocellular 

carcinoma(8,9). However, these results were not replicated in adults of other 

genetic ancestries(4,10–12) or in children(13). It is recognised that 

investigation of candidate genes in relatively small cohorts can generate false-

positive findings(14).  

In addition, biallelic loss of function mutations in MBOAT7 cause autosomal 

recessive mental retardation 57 (OMIM #617188) and no liver phenotype has 

been reported in these patients to date(15), however, rare likely pathogenic 

variants in MBOAT7 are associated with HCC in NAFLD(16). In summary, the 

association between rs641738 and hepatic fat content, as well as its effects 

on severity of NAFLD, remain unclear. Moreover, the broader metabolic 

effects of this SNV, including its association with diabetes and cardiovascular 

outcomes, have not been assessed. 

 

Here, we conducted a large meta-analysis of published and unpublished data 

to determine if rs641738 influences the development or stage of NAFLD and 

associated cardio-metabolic phenotypes.  
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PATIENTS AND METHODS 

 

Data sources and study selection 

Two data sources were included in the meta-analysis: published studies (and 

abstracts) and unpublished GWAS (or targeted genotyping) data. 

 

Published studies were sourced through Medline and Embase using the 

search terms “(MBOAT7 or membrane-bound-o-acyltransferase) or (rs641738 

or rs626283) or (TMC4)”. There were no restrictions on date or language, and 

the study selection included all original studies including AASLD Liver Meeting 

and EASL meeting abstracts. The search was completed on 1st October 2019. 

Reference lists of relevant publications were also reviewed. Titles and 

abstracts were screened for eligibility independently by two authors, with 

inclusion/exclusion criteria applied to potentially eligible full texts. 

 

A search was conducted for all GWAS in NAFLD, NASH, and steatosis. 

Authors of all potentially relevant GWAS were contacted to request extraction 

of data regarding rs641738C>T. To assess for cardiometabolic phenotype 

associations, Phenoscanner(17) and GeneATLAS(18) were searched for 

summary statistics from published GWAS. 

 

HuGENet guidelines were followed throughout. This study was prospectively 

registered on PROSPERO Database of Systemic Reviews 

(CRD42018105507) Available from: 
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http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018105

507 

 

Inclusion and exclusion criteria 

Cohort and case-control studies related to NAFLD were included if genotyping 

of rs641738C>T (or other SNVs in linkage disequilibrium [LD, R2>0.8]) was 

conducted and data on one of the outcomes of interest were reported. Review 

articles, in vitro studies, and investigations involving animal, fish, and 

invertebrates were excluded. Studies which investigated liver disease of other 

etiologies were also excluded. 

 

Data collection 

For each study, data on participant demographics (sex, age, ethnicity) were 

collated. Hepatic steatosis or NAFLD (as diagnosis) was evaluated as a 

dichotomous variable where radiological assessment (liver ultrasound, 

controlled attenuation parameter [CAP, with cut-off >240m/s], CT, MRI) were 

used. Hepatic fat content (from CT, MRS, MRI, PDFF), serum lipid profile, 

fasting insulin, and alanine aminotransferase levels were collected as 

continuous variables. Hepatic fat content was also assessed using semi-

quantitative scoring in the Fenland cohort, as previously described(19), and 

using CAP. Histology data were extracted according to the NASH Clinical 

Research Network scoring system and, where not otherwise diagnosed by a 

pathologist’s assessment, NASH was defined using the Fatty Liver Inhibition 

of Progression (FLIP) algorithm. The above data were collected for each 

genotype separately (CC, CT, and TT). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2019. ; https://doi.org/10.1101/19013623doi: medRxiv preprint 

http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018105507
http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018105507
https://doi.org/10.1101/19013623
http://creativecommons.org/licenses/by-nc/4.0/


 

Phenoscanner was used to assess for disease associations with 

rs641738C>T at P<0.01. Phenotype associations were filtered for those 

related to cardio-metabolic and liver disease. 

 

The authors of 21 published studies were contacted for additional data, all of 

whom replied. Several studies reported outcomes from overlapping cohorts: 

ref (4) and ref (20); ref (9) and ref (21). In these instances, data only from the 

larger of the overlapping cohorts were included in analyses. 

 

Cohorts with genome-wide data 

The authors of 9 potentially relevant GWAS (and cohort studies with genome-

wide data) were contacted, of which 8 replied and data were included from 6. 

These cohorts have been described elsewhere(1,22–24). Densely imputed 

genotyping data were available for rs641738C>T in all with >0.98 call rate. 

Unpublished data from Wilman et al.(25) was extracted from the UK BioBank 

under Application ID 9914 (‘Determining the Outcomes of People with Liver 

Disease’). 

 

Study quality assessment 

Two reviewers independently assessed risk of bias in each study by applying 

the Cochrane Risk of Bias in Cohort Studies tool. 

 

Statistical Analysis: 
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For dichotomous outcomes, the effect statistic was calculated as an odds ratio 

between groups. Genetic association analyses were performed using an 

additive model to estimate the effect per T-allele as almost all included studies 

had used this model.  

For analysis of effect on liver fat, data were inverse normalized and an 

additive genetic model (coding the number of T alleles as 0, 1, and 2) was 

used with linear regression, adjusted for age, sex, and principal components 

of genetic ancestry (where available). In addition, data from the GOLD 

Consortium were adjusted for number of alcoholic drinks consumed. 

Continuous quantitative liver fat data (from CT, MRI, MRS, or PDFF) and 

semi-quantitative data (ultrasound and CAP) were analyzed separately. 

For other continuous variables, effect summary was calculated as a mean 

difference between CC and TT groups. 

Meta-analysis was performed using random effects throughout. 

Summary statistics were reported with 95% confidence intervals (CI). Data 

from paediatric and adult studies were analyzed separately. Sub-analysis was 

performed using only studies with Caucasian (Non-Finnish or Finnish 

European ethnicity) where data were available from at least four studies. This 

sub-analysis was selected due to initial identification of this variant in 

Caucasian individuals, further sub-analysis by ethnicity may be affected by 

differences in linkage disequilibrium between genetic ancestries. 

Leave-one-out sensitivity analysis was performed for all outcomes using 

additive model of inheritance and random effects. 

Heterogeneity between groups was described using the Q statistic and I2. 
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Bias was assessed using Egger’s test and visually using funnel plots where 

more than 5 studies were included. P <0.025 (i.e. P<0.05/2) was considered 

statistically significant due to testing outcomes twice: in individuals of all 

ethnicities and Caucasians only. Analysis was performed using STATAv14 for 

Windows (StataCorp. 2015. Stata Statistical Software: Release 14. College 

Station, TX: StataCorp LP), DistillerSR Forest Plot Generator from Evidence 

Partners (https://evidencepartners.com/resources/forest-plot-generator/), 

GraphPad Prism (v8.0 for Mac, GraphPad Software, La Jolla California, USA), 

and MetaGenyo(26). 
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RESULTS 

Database search identified 405 abstracts, of which 18 studies were included. 

In addition, unpublished data were extracted from 12 cohorts (Table 1, 

Supplementary Fig. 1, and Supplementary Table 1). 
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Study 
Age group 

Genetic 
ancestry 
(country) 

Study design 
and sample size 
(N) 

Female, 
n (%) 

Features and patient characteristics Liver 
biopsy 
(N) 

Published 

Di Sessa, 2018; 
Paediatric (27) 

Non-Finnish 
European 
(Italy) 

Cases-only  
Hospital-based 
N=1002 

466 (46.5%) Children with hepatic steatosis 
measured by US 

NA 

Di Costanzo, 
2018; 
Adult (28) 

Non-Finnish 
European 
(Italy) 

Case-control 
N=445 

150 (33.7%) Hepatic steatosis measured by US NA 

Dongiovanni, 
2018b; 
Adult (29) 

Mixed: Non-
Finnish European 
and Finnish 
European 

Cases-only 
N=1,388 (LBC) 

728 (52.4%) NAFLD diagnosed by LB (LBC) 1515 

Lin, 2018; 
Paediatric (30) 

East Asian 
(China) 

Population-based 
N=831 

257 (31.4%) Hepatic steatosis measured by US NA 

Viitasalo, 2016; 
Paediatric (31) 

Finnish European 
(Finland) 

Population-based 
N=512 

222 (47.5%) Population cohort of children with 
measurement of ALT 

NA 

Koo, 2018; 
Adult (10) 

East Asian 
(Korea) 

Case-control 
Hospital-based 
N=525 

264 (50.3%) Adults with NAFLD diagnosed by LB, 
or US/MRI/CT 

416 

Published and unpublished data 

Hudert, 2018; 
Paediatric (13) 

Non-Finnish 
European 
(Germany) 

Case-control 
Hospital-based  
N=270 
 

92 (34%) Patients: children with NAFLD 
diagnosed by LB 
Controls: healthy population (adult) 
controls 

70 

Mann, 2018a; 
Adult (32) 

Non-Finnish 
European 
(England) 

Population cohort 
N=10,934 

5,823 
(53.2%) 

Hepatic steatosis measured by US NA 
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Mann, 2018b; 
Paediatric (33) 

Non-Finnish 
European 
(Italy) 

Hospital-based 
N=67 

34 (50.7%) Children with NAFLD diagnosed by LB 67 

Umano, 2018; 
Paediatric (12) 

Mixed: Non-
Finnish 
European, 
African American, 
Hispanic 
(USA) 

Cases-only 
Hospital-based 
N=860 

509 (59.2%) Hepatic steatosis measured by MRI NA 

Krawczyk, 2018; 
Adult (21) 

Non-Finnish 
European 
(Germany) 

Cases-only 
N=237 

24 (38.1%) Adults with NAFLD diagnosed by LB, 
or US/MRI/CT 

63 

Krawczyk, 2017; 
Adult (9) 

Non-Finnish 
European 
(Germany) 

Cases-only 
N=515 

280 (54.4%) Adults with NAFLD diagnosed by LB, 
or US/MRI/CT 

320 

Kawaguchi, 
2018; 
Adult (34) 

East Asian 
(Japan) 

Case-control 
Mixed hospital- 
and population-
based 
N=8,608 

5111 
(59.6%) 

Patients: Adults with NAFLD 
diagnosed by LB 
Controls: healthy population controls 

936 

Dongiovanni, 
2018; 
Adult (20) 

Mixed: Non-
Finnish 
European, 
African American, 
Hispanic 
(USA) 

Population cohort: 
N= 4,570 (DHS), 
 
Cases-only 
Hospital-based: 
N=1,515 (LBC) 

3,330 
(54.7%) 

Hepatic steatosis measured by H-MRS 
(DHS) or NAFLD diagnosed by LB 
(LBC) 

1515 

Mancina, 2016; 
Adult (4) 

Mixed: Non-
Finnish 
European, 

Population cohort: 
N= 3,854 (DHS) 
 

2754 
(54.4%) 

Hepatic steatosis measured by H-MRS 
(DHS) or NAFLD diagnosed by LB 
(LBC) 

1149 
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African American, 
Hispanic 
(USA) 

Cases-only 
Hospital-based: 
N=1,149 (LBC) 

Luukkonen, 
2016; 
Adult (8) 

Finnish European 
(Finland) 

Cases-control 
Hospital-based 
N=125 

83 (66.4%) Adults assessed for NAFLD by LB 125 

Donati, 2017; 
Adult (5) 

Non-Finnish 
European 
(Italy / UK) 

Case-control 
Hospital-based 
N=765 (Italian) 
N=358 (UK 
NAFLD) 

188 (24.6%) 
143 (39.4%) 
387 (34.5%) 

Adults with NAFLD diagnosed by LB 1123 

Sookoian, 2018; 
Adult (11) 

Caucasian 
(Argentina) 

Case-control 
Hospital-based 
N=634 

360 (57.0%) Patients: adults with NAFLD diagnosed 
by LB 
Controls: hepatic steatosis absent on 
US 

372 

Unpublished data 

Wilman, 2019; 
Adult (25) 

Non-Finnish 
European 
(UK) 

Population-based 
N=7,078 

3,822 
(54%) 

GWAS of hepatic steatosis measured 
by MRI from the UK BioBank. 

NA 

DiStefano, 2015; 
Adult (22) 

Non-Finnish 
European 
(USA) 

Cases-only 
Hospital-based 
N=1,868 

1,512 
(80.9%) 

GWAS of adults with NAFLD 
diagnosed by LB 

1868 

Adams, 2013; 
Paediatric (23) 

Non-Finnish 
European 
(Australia) 

Population-based 
N=928 

444 (47.8%) GWAS of adolescents with hepatic 
steatosis measured by US 

NA 

Lauridsen, 2018; 
Adult (35) 

Non-Finnish 
European 
(Denmark) 

Population-based 
N=7511 

775 
(53.9%) 

Hepatic steatosis measured by CT, 
part of the Copenhagen General 
Population Study 

NA 
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Luukkonen, 
2018; 
Adult (36) 

Finnish European 
(Finland) 

Cases-only 
Hospital-based 
N= 38 

21 
(55%) 

Hepatic steatosis measured by MRS NA 

Speliotes 2011; 
Adult (1) 

Mixed: Non-
Finnish 
European, 
African American, 
Hispanic 
(USA, Iceland, 
Europe) 

Population-based 
N=4,244 

- GWAS of hepatic steatosis measured 
by CT 

NA 

Strnad, Buch, & 
Hamesch, 2018; 
Adult (37,38) 

Non-Finnish 
European 
(Germany, 
Austria, & 
Switzerland) 

Case-control 
Hospital-based 
N=1184 

573 
(48.4%) 

Adults with NAFLD diagnosed by LB 672 

Emdin, 2019; 
Adult (39) 

Non-Finnish 
European 
(UK) 

Population-based 
N=77,464 

42,144 
(54%) 

Adults with coded diagnosis of NAFLD 
and/or cirrhosis 

NA 

Reichert, 2019; 
Adult (40) 

Non-Finnish 
European 
(Germany) 

Hospital-based 
N= 54 

24 (42.1%) Adults with NAFLD cirrhosis diagnosed 
by LB, or US/MRI/CT 

NA 

Guzman, 2018; 
Adult (41) 

Mixed:  Hispanic 
and non-Hispanic 
(USA) 

Case-control 
N=246 (GLDI 
study) 
 
Case-control 
N=158 (GLDJ 
study) 

104  
(42.3%) 
 
57 
(36.1%) 

Adults with Type 2 Diabetes with 
hepatic steatosis measured by MRI 

NA 
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Wattacheril, 
2017; 
Paediatric (42) 

Hispanic 
(USA) 

Cases-only 
N=208 

0 
(all male) 

GWAS of Hispanic boys with NAFLD 
diagnosed by LB 

208 

Chatterjee, 2019; 
Adult (43) 

South Asian 
(India) 

Hospital-based 
N=354 

138 (38.9%) GWAS of adults with NAFLD 
diagnosed by LB or US 

132 

Table 1. Characteristic of studies included in the meta-analysis. CT, computerized tomography; GWAS, genome-wide 

association study; LB, liver biopsy; LBC, Liver Biopsy Cohort; MRI, magnetic resonance imaging; MRS, magnetic resonance 

spectroscopy; NA, not applicable; US, ultrasound. 
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<Table 1.> 

 

In total, 131,096 individuals (4,174 children) were included in the meta-

analysis. Most studies were in adults (23/30, 77%) and in individuals of 

European ancestry (20/30, 67%). Of the 30 included studies, 15 (totaling 

7,692 unique participants, hereof 345 children) reported data on liver 

histology. 

 

Liver fat, NAFLD, and severe steatosis in adults 

Seven studies (21,924 participants) reported data on hepatic fat as a 

continuous variable assayed by CT or MR(1,20,25,35,41,43). In meta-analysis 

across these seven studies, rs641738 was associated with increased liver fat, 

with a per T-allele increase of 0.05 (95% CI 0.01 - 0.09) standard deviations in 

inverse normalized liver fat (Figure 1). There was significant heterogeneity 

between studies with I2 = 67% and Tau2=.002. This trend of association 

remained on sub-analysis including only cohorts with Caucasian (European) 

ethnicity (Supplementary Figure 2). 
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Figure 1. The effect of rs641738C>T on liver fat. Data from 21,924 

individuals with CT or MRI liver fat. T-allele was associated with a small 

increase in liver fat, where data represents standard deviation change in 

normalized liver fat per T-allele. CGPS, Copenhagen General Population 

Study; CI, confidence interval; ES, effect summary; GOLD, Genetics of Liver 

Disease; N, number of individuals included. 

 

The rs641738 variant C>T was also associated with NAFLD as a trait (OR 

1.09 (95% CI 1.01, 1.17) using an additive model of inheritance (Figure 2A). 

Sensitivity analysis using the leave-one-out method did not demonstrate any 

individual study to affect the estimate (Supplementary Figure 3) and there was 

no evidence of study distribution bias on funnel plot (Supplementary Figure 4). 

The trend of a positive association was seen on sub-analysis in Caucasians 

(OR 1.12 (95% CI 0.997, 1.26), Supplementary Figure 5A). 
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Figure 2. rs641738C>T is associated with higher odds of diagnosis of 

NAFLD and histological severity of steatosis. Data from 28,543 adults with 

radiologically defined steatosis for presence versus absence of NAFLD (2A), 

and from 4,572 adults with liver biopsy data for presence of severe steatosis 

(S0-2 versus S3, 2B) using an additive model of inheritance. 

 

 

In patients with NAFLD, rs641738C>T was associated with the presence of 

severe steatosis (S0-2 vs. S3) on liver biopsy (OR 1.26 [95% CI 1.12, 1.41], 

Figure 2B). This association remained on sub-analysis in Caucasian 

individuals (OR 1.28 [95% CI 1.14, 1.45], Supplementary Figure 5B). Similar 

results were observed using CAP and semi-quantitative ultrasound to assess 
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steatosis severity (β .03 (95% CI .001, .06) standard deviations of inverse 

normalized liver fat score per T-allele, Supplementary Figure 6). 

 

 

Histological NASH in adults 

Data from 9 studies (6,155 participants) showed that rs641738C>T was 

positively associated with the presence of NASH on biopsy in adults (OR 1.11 

(95% 1.02, 1.21, Figure 3). A similar magnitude of effect was observed on 

sub-analysis in Caucasian individuals (OR 1.13 (95% 1.01, 1.27, 

Supplementary Figure 7). 

 

 

Figure 3. rs641738C>T is associated with higher odds of NASH on 

biopsy. Data from 6,155 adults with NASH defined according to the FLIP 

algorithm for NAFL versus NASH, using an additive model of inheritance. 

NAFL, non-alcoholic fatty liver. 

 

 

Fibrosis in adults 
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Data from 8 studies (82,857 adults, 6,787 with liver biopsy data) were 

included in meta-analysis of fibrosis. Our primary outcome, presence of 

advanced fibrosis in adults (stage F0-2 versus stage F3-4), was positively 

associated with T-allele (OR 1.14 (95% 1.05, 1.23), Figure 4A) in adults. 

Sensitivity analysis, including omission of coded cirrhosis data from Emdin et 

al.(39), did not alter the effect summary (Supplementary figure 8). Presence of 

any fibrosis (stage 0 versus stage 1-4) was also positively associated with 

rs641738C>T (OR 1.14 (95% 1.01, 1.28), Figure 4B). On sub-analysis of 

Caucasian individuals, rs641738C>T was associated with advanced fibrosis 

(OR 1.16 (95% 1.06, 1.26)) but not with any fibrosis (OR 1.15 (95% 0.99, 

1.34)) despite a positive trend (Supplementary figure 9). 

 

 

Figure 4. rs641738C>T is associated with increased fibrosis in NAFLD. A, 

data from 6,787 adults with biopsy-proven NAFLD (plus coding data from 
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Emdin et al.) comparing advanced fibrosis (F3-4) versus F0-2, using an 

additive model of inheritance. B, data from 6,787 adults with biopsy-proven 

NAFLD comparing any fibrosis (F1-4) versus no fibrosis F0.  

 

Development of hepatocellular carcinoma 

Five cohorts (3,803 participants, 360 cases of NAFLD-HCC) reported on 

development of HCC in patients with NAFLD. Presence of T-allele was 

associated with increased odds of HCC in NAFLD (OR 1.43 (95% CI 1.22, 

1.67, Figure 5). 

 

 

Figure 5. rs641738C>T is associated with higher odds of NAFLD-HCC. 

Data from 3,803 adults with NAFLD assessing for the presence versus 

absence of HCC, using an additive model of inheritance. 

 

 

Effect on aminotransferases, lipids, and fasting insulin 

Data from 12 studies (17,148 participants) was available for meta-analysis of 

serum biochemical parameters. T-allele was associated with lower 

triglycerides (mean difference CC versus TT genotype -3.7 mg/dL (95% CI -
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7.2, -0.2)) but no other effect on aminotransferases, serum lipids, or fasting 

insulin (Table 2). 

 

 
Numbe

r of 
cohorts 

PQ I2 

Random effects 

Mean 
differenc

e 
[95% CI] Pz 

ALT, IU/L 
(n=17,102) 

14 .44 .01 -.27 -.91, 0.37 .41 

Triglycerides, mg/dL 
(n=17,148) 

15 .19 .23 -3.71 -7.22, -.20 .04 

Total cholesterol, 
mg/dL 

(n=16,822) 
13 .009 .52 .45 -2.41, 3.31 .76 

High-density 
lipoprotein, mg/dL 

(n=9,843) 
10 .08 .39 -.26 -1.31, .80 .63 

Low density 
lipoprotein, mg/dL 

(n=8,800) 
7 .18 .30 2.06 -.30, 4.42 .09 

Fasting insulin, mU/L 
(n=6,269) 

4 .004 .71 -.66 -2.52, 1.20 .49 

Table 2. Meta-analysis for the effect of rs641738C>T on biochemical 
indices liver damage dyslipidemia, and insulin resistance. Data 
represents the mean difference between CC and TT genotypes using random 
effects. N represents the sum of individuals with CC and TT genotypes 
included in each analysis. 
 

 

Disease outcomes in adults 

Using data from previous meta-analyses via Phenoscanner and UK BioBank 

data via GeneAtlas, rs641738C>T was weakly positively associated stroke (β 

0.0007, p=0.004), Supplementary table 2). There was no evidence of an 

association with type 2 diabetes, coronary artery disease, or chronic kidney 

disease. It was also associated with higher alkaline phosphatase (β 0.005, 

p=6.1x10-6). 

 

Effect of rs641738C>T on paediatric NAFLD 
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Data from seven studies (4,174 children) was used in the meta-analysis. 

rs641738C>T was not significantly associated with any disease outcome 

studied (Supplementary table 3 and Supplementary Figure 10). However 

there was a trend towards increasing hepatic fat fraction (0.19 SD (95% CI -

0.05, 0.42)) and severity of steatosis (OR 1.21 (95% 0.89, 1.64)). 
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DISCUSSION 

Identification of genetic variants associated with NAFLD has the potential to 

inform pre-clinical research and our understanding of hepatic metabolism. In 

this meta-analysis we have validated the importance of rs641738C>T near 

MBOAT7 on the full spectrum of NAFLD in adults. 

 

A two-stage GWAS initially identified rs641738C>T as a genome-wide 

significant locus for alcohol-related cirrhosis(3). MBOAT7 was a potentially 

interesting target as an enzyme involved in (phosphor)lipid metabolism, 

conceptually similar to other SNVs at GWAS-significance in alcoholic and 

non-alcoholic liver disease, namely TM6SF2 and PNPLA3. Later studies 

found the variant to influence the full spectrum of fatty liver disease, from 

steatosis to NASH, to fibrosis, cirrhosis and HCC(4,8). However, these 

associations have not been consistently replicated in the literature(11). We 

conducted a meta-analysis to firmly establish the association of rs641738C>T 

with NAFLD. 

 

Main findings 

We found that the T-allele of rs641738C>T was associated with higher liver 

fat content, and with an increased risk of NASH, fibrosis, and HCC. The 

effects sizes of rs641738C>T reported here are small compared to those of 

PNPLA3 p.I148M and TM6SF2 p.E167K, the two strongest steatogenic 

variants(2). Also, unlike NASH-associated variants in PNPLA3, HSD17B13, 

MARC1, and TM6SF2, there was no association between this MBOAT7 

variant and alanine or aspartate aminotransferase. The marginal positive 
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effect of this variant on hepatic triglyceride content may suggest alterations in 

the composition of hepatic lipid, rather than quantity(8). This is consistent with 

pre-clinical data on lipotoxicity, where the composition of hepatic fats 

influence development of NASH. On the other hand, a recent Mendelian 

randomization study using these variables as instruments to assess causality 

of fatty liver in determining fibrosis has shown the effect of steatosis highly 

correlates with fibrosis in all the genetic variables indicating that quantity of 

lipid rather than quality may be more important(20). Functional studies are 

needed to understand the relationship between quality/quantity of fat and 

hepato-toxic/-protective mechanism in causing progression of disease. 

 

The function of this variant is still relatively poorly understood and there is 

conflicting evidence as to whether rs641738 is associated with changes in 

hepatic expression of MBOAT7. Results from the GTEx Consortium show a 

strong negative association with T-allele(7), which is supported by data from 

Schadt et al.(44). MBOAT7 protein expression correlated with mRNA in liver 

biopsies from Mancina et al.(4) but this finding was not replicated by Sookoian 

et al.(11). MBOAT7 encodes LPIAT1, a 6 transmembrane domain protein 

involved in acyl-chain remodeling of membranes that influence intracellular 

membrane composition and circulating phosphatidylinositols(8). Further 

recent metabolite profiling data implicates MBOAT7 as the causal gene for 

this SNV(32). Moreover, TMC4 was found with a low expression in the liver(4) 

that is consistent with no mechanistic data supporting its role in NAFLD.  
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The hypothesis that MBOAT7 is the causal gene underlying the association 

with liver disease at the locus is supported by the observation that mice 

deficient for MBOAT7 have altered hepatic concentrations of polyunsaturated 

phosphatidylinositol(45). In addition, loss of MBOAT7, but not TMC4, 

increases the severity of NAFLD in mice fed a high-fat diet(46). It is not known 

whether these genetically modified animals have increased susceptibility to 

HCC.  

 

This variant shows a particularly strong association with development of HCC. 

It is unclear whether this reflects the effect on NASH-fibrosis or if there is a 

specific causal relationship between MBOAT7 and HCC.  

 

We found no evidence of rs641738 on insulin resistance: the key driver of 

hepatic steatosis, as determined by unaltered fasting insulin concentrations. 

GWAS meta-analyses of type 2 diabetes have implicated p.I148M in PNPLA3 

and p.E167K in TM6SF2 as significant risk loci(47) (albeit with very modest 

effect size as compared to their effects on liver disease) and a Mendelian 

randomization study indicates a causal role in determining insulin resistance 

mediated by the degree of liver damage(20). Similarly, these two variants are 

associated with reduced risk of coronary artery disease whereas rs641738 

has no effect. It does, however, appear to be weakly associated with higher 

prevalence of stroke in the UK BioBank(18). Our analysis also found lower 

serum triglycerides in those with TT-genotype versus CC-genotype, though 

this was not replicated in the Global Lipid Genetic Consortium data(48).  
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There is some evidence that genetic variants affect response to drug 

treatment (for PNPLA3(49)) but this is yet to be explored for MBOAT7. It will 

be equally interesting to assess whether somatic genotype of variants 

associated with HCC affects treatment response. 

 

A strength of this analysis is the inclusion of data from individuals of multiple 

ethnicities (and genetic ancestries). We found no difference in the impact of 

the variant on liver disease among Caucasian and non-Caucasian individuals. 

Another strength is the large number of individuals with liver biopsy-derived 

phenotypic data. 

 

Limitations and quality of evidence 

An important practical consideration is the population frequency of this variant 

in different ethnicities. The mean allelic frequency of the effect (T-)allele is 

highly variable: from 0.24 in East Asians compared to 0.53 in those of South 

Asian ancestry(50). 

 

Studies measured hepatic fat using several different imaging modalities, 

which have varying sensitivity for quantification of liver fat. This may have 

accounted for some of the heterogeneity observed in these analyses. There 

was a trend towards more positive associations in population-based studies 

using more sensitive techniques (MRI or MRS). It is possible that weighting 

towards large CT-based studies could have underestimated the true effect 

size. 
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We found significant differences between adult and paediatric histological 

analyses though a consistent trend was observed in the analysis of hepatic fat 

fraction. There are several potential reasons, including: sample size 

insufficient to demonstrate an effect, variations in imaging quantification of fat, 

too few clinical events (i.e. with fibrosis) to demonstrate an effect, different 

histology of paediatric NASH, or a true alternative effect of this variant on 

paediatric NAFLD. 

 

Though there was minimal heterogeneity across included studies, the 

numbers of individuals with NAFLD and HCC were comparatively low. Further 

work in this area may improve the accuracy of effect estimates. 

 

Conclusions 

rs641738C>T near MBOAT7 increases risk of NASH, fibrosis, and HCC in 

NAFLD with a small, positive effect on total liver fat and no impact on insulin 

resistance. These data validate this locus as significant in the pathogenesis of 

NAFLD.  
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