Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Algorithmic discovery of dynamic models from infectious disease data

Jonathan Horrocks, Chris T. Bauch
doi: https://doi.org/10.1101/19012724
Jonathan Horrocks
1Department of Applied Mathematics, University of Waterloo, Waterloo, Canada N2L 3G1
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris T. Bauch
1Department of Applied Mathematics, University of Waterloo, Waterloo, Canada N2L 3G1
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cbauch@uwaterloo.ca
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Theoretical models are typically developed through a deductive process where a researcher formulates a system of dynamic equations from hypothesized mechanisms. Recent advances in algorithmic methods can discover dynamic models inductively– directly from data. Most previous research has tested these methods by rediscovering models from synthetic data generated by the already known model. Here we apply Sparse Identification of Nonlinear Dynamics (SINDy) to discover mechanistic equations for disease dynamics from case notification data for measles, chickenpox, and rubella. The discovered models provide a good qualitative fit to the observed dynamics for all three diseases, However, the SINDy chickenpox model appears to overfit the empirical data, and recovering qualitatively correct rubella dynamics requires using power spectral density in the goodness-of-fit criterion. When SINDy uses a library of second-order functions, the discovered models tend to include mass action incidence and a seasonally varying transmission rate–a common feature of existing epidemiological models for childhood infectious diseases. We also find that the SINDy measles model is capable of out-of-sample prediction of a dynamical regime shift in measles case notification data. These results demonstrate the potential for algorithmic model discovery to enrich scientific understanding by providing a complementary approach to developing theoretical models.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This research was funded by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to CTB. The funders had no role in the work.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The code used to generate the results is publicly available on Github. The infectious disease data for measles, rubella and chickenpox can be obtained from the International Infectious Disease Data Archive.

https://github.com/jonathanhorrocks/SINDy-data

http://iidda.mcmaster.ca/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 19, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Algorithmic discovery of dynamic models from infectious disease data
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Algorithmic discovery of dynamic models from infectious disease data
Jonathan Horrocks, Chris T. Bauch
medRxiv 19012724; doi: https://doi.org/10.1101/19012724
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Algorithmic discovery of dynamic models from infectious disease data
Jonathan Horrocks, Chris T. Bauch
medRxiv 19012724; doi: https://doi.org/10.1101/19012724

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (142)
  • Anesthesia (46)
  • Cardiovascular Medicine (415)
  • Dentistry and Oral Medicine (70)
  • Dermatology (48)
  • Emergency Medicine (144)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (171)
  • Epidemiology (4860)
  • Forensic Medicine (3)
  • Gastroenterology (183)
  • Genetic and Genomic Medicine (676)
  • Geriatric Medicine (70)
  • Health Economics (192)
  • Health Informatics (630)
  • Health Policy (320)
  • Health Systems and Quality Improvement (206)
  • Hematology (85)
  • HIV/AIDS (156)
  • Infectious Diseases (except HIV/AIDS) (5341)
  • Intensive Care and Critical Care Medicine (331)
  • Medical Education (93)
  • Medical Ethics (24)
  • Nephrology (75)
  • Neurology (686)
  • Nursing (42)
  • Nutrition (115)
  • Obstetrics and Gynecology (126)
  • Occupational and Environmental Health (208)
  • Oncology (439)
  • Ophthalmology (140)
  • Orthopedics (36)
  • Otolaryngology (90)
  • Pain Medicine (35)
  • Palliative Medicine (16)
  • Pathology (129)
  • Pediatrics (194)
  • Pharmacology and Therapeutics (131)
  • Primary Care Research (84)
  • Psychiatry and Clinical Psychology (780)
  • Public and Global Health (1816)
  • Radiology and Imaging (325)
  • Rehabilitation Medicine and Physical Therapy (138)
  • Respiratory Medicine (255)
  • Rheumatology (86)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (62)
  • Surgery (100)
  • Toxicology (23)
  • Transplantation (29)
  • Urology (37)