






 Page 12 

Figure 8 shows a heatmap that compares the unpreserved modules (labelled A, B, C based on the 
study they come from) with the unpreserved modules from the other two studies. The color of 
each individual element of the heatmap represents its p-value with another module. We establish 
a threshold for the Fisher’s test for overlap of p < 0.05. We are interested in all modules that 
share a significant similarity value with at least one other module in both other networks.  
 

 
Figure 8. Heatmap of p-values of Fisher’s exact test across the dysregulated modules in asthma. 

 
Figure 9. Heatmap of significance of similarity across dysregulated modules in asthma. Those 
modules (highlighted in red) with significant similarity with a module in both other studies is 
considered “asthma-unique.” 
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Figure 9 shows the same heatmap in Figure 8, but only p-values of 0.05 or less are distinguished 
by the white color. We also highlight the modules that satisfy the condition of having 
conservation in both other networks. These are all the “asthma-unique” modules.  
 
In Table 5, we present all “asthma-unique” modules as well as GO term analysis of their gene 
sets. Because these are modules that we hypothesize play a functional role in their own networks, 
we expect a generally consistent series of highly significant GO terms.  
 
Table 5. GO term analysis of “asthma-unique” modules found in the three studies. “MagentaA” 
module is selected based on its critical role in asthma disease yet consistent dysregulation. 

Module Size GO Terms 
darkturquoiseA 158 protein transport, peptide transport, amide transport, 

protein localization, nitrogen compound transport, 
digestive tract development, 

magentaA 274 cellular component organization, regulation of cellular 
process/biological process, signaling, cell 
communication, developmental process. 

palevioletred3B 46 anatomical structure, organ morphogenesis, regulation 
of cellular process/glutamate secretion. 

salmonB 120 thrombopoietin-mediated signaling, regulation of 
biological process, cellular process, regulation of 
biological quality, homeostatic process, cellular 
biosynthetic process. 

steelblueB 86 acute-phase response, cellular protein metabolic 
process, macromolecule modification, response to 
wounding, regulation of phosphate/phosphorus 
metabolic process. 

thistle2B 51 blood circulation, circulatory system process, 
regulation of autophagy, response to drug, cellular 
response to chemical stimulus. 

saddlebrownC 81 DNA biosynthetic process, cellular component 
assembly, DNA metabolic process, regulation of 
protein phosphorylation. 

 
We highlight the “magentaA” module for its GO terms and their implications on the asthma 
condition. The GO terms expressed in this module are those that are responsible for key 
ontological pathways, such as cell communication and signaling. As the largest “asthma-unique” 
module with 274 genes, its differential expression across conditions seems to suggest a larger 
implication about the disease as a whole; thus, we will select this module for further analysis.  
 
Topological analysis of the magenta module 
We create the hive plots for the magentaA module, shown in Figures 10 and 11, for the 
correlation networks of the healthy and asthma conditions, respectively.  
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Figure 10. Hive plot of the healthy network of the magenta module. Important interactions 

include the CHD4-CCL26 and CHD4-TMEM79 connections.  

 
Figure 11. Hive plot of asthma network of the magenta module. Key dysregulations are 

highlighted with respect to the transcription factors. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 19, 2019. .https://doi.org/10.1101/19012377doi: medRxiv preprint 

https://doi.org/10.1101/19012377
http://creativecommons.org/licenses/by/4.0/


 Page 15 

 

Materials and Methods 
 
Methodology Overview 
In Figure 12, we present a pipeline of the study’s methodology. In short, we use three 
heterogeneous publicly available datasets (GEO) in conjunction to determine key biomarkers and 
drug targets in asthma. We first apply the MetaIntegrator framework to determine a set of 
differentially expressed (DE) genes across all three datasets in asthma. Then, we use the WGCNA 
framework to determine biological modules that show consistent dysregulation in asthma. We then 
subset specific networks, based on functional analysis, for topological analysis to determine key 
interactions and drug targets in asthma.  
 

 

Figure 12. Overview of analysis methodology. Using three microarray matrices, we end up with 
the comprehensive hive plots that can be analyzed for key interactions and drug targets. 

The basis for this pipeline is that it combines an exhaustive series of analyses that test for different 
forms of significance: statistical, functional, and topological. By combining these forms of 
analysis, we can be sure that our findings are the rigorous and significant with regards to asthma. 
 
All analysis and figure generation is done by the R software.  
 
Data pre-processing 
Using the three microarray GEO datasets (GSE64913, GSE63142, GSE65204), we use their 
corresponding GPL files to map the probe readings to gene IDs. In order to establish a bijection 
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between probe readings and gene IDs, we average the readings for those genes which correspond 
with multiple probes. We then perform quantile normalization across individual studies to convert 
the raw counts as given by GEO into a data matrix.  
 
Gene-expression meta-analysis 
For our three datasets, we use the MetaIntegrator pipeline to determine a list of differentially 
expressed genes. We use a mixed models effect size test to combine the relative gene expression 
values from each of the individual cohorts. Using a two-sided p-value threshold of 0.05, we 
determine a set of differentially expressed genes in the asthma condition, for both under-expression 
and overexpression. 
 
Gene co-expression network reconstruction 
The Weighted Gene Co-expression Network Analysis (WGCNA) R package was used to build co-
expression networks based on the values in each of our individual cohorts. Through WGCNA, we 
arrived at six networks, three sets of healthy and asthma networks corresponding to our three 
studies. Pairwise Pearson’s correlations were used to create the adjacency matrix. Soft-
thresholding was used to select powers that yielded scale-free topology.  
 
Module preservation in networks 
The adjacency matrices are used to calculate Topological Overlap Measure (TOM) for each of the 
networks. We determine biological modules using the dynamic tree cut algorithm at a height of 
0.99. Modules are labelled by colors, which have no biological meaning themselves other than as 
a source of identification. We also identified hub genes in each of the modules.  
 
Module preservation is performed using the WGCNA permutation test, which computes a 
Zsummary score for each module based on how well this module clusters in a different network. 
We perform three permutation tests, one for each study, to determine Zsummary scores for each 
of the modules in asthma. We use the metric outlined by Langfelder et al., which indicates that a 
module is considered not significantly preserved if it has a Zsummary score less than 10, and 
strongly preserved otherwise 32,33. We choose, across our three comparisons, the modules in asthma 
that have a Zsummary score less than 10. 
 
Gene prioritization 
We determine the parent GO terms and hub genes associated with the modules that we found to 
be dysregulated in asthma (in the previous section). For each module, we determine the all the GO 
terms that are expressed at a 0.001 level of significance. From these terms, we compute the parent 
GO term based on the gene ontology hierarchy. In each network, we find all such GO terms that 
are the parent GO term for more than one module. We present these GO terms that correspond 
with the hub genes of their modules. 
 
Identification of asthma-unique modules 
Our identification of “asthma-unique” modules revolves around the use of the Fisher’s exact test 
for similarity at a threshold of 0.05: those modules that are highly similar (in terms of their 
overlapping genes relative to their size) will exhibit smaller p-values and those modules which are 
completely disjoint will have a p-value of 1. 
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We perform a pairwise Fisher’s test on all of the 𝑛 dysregulated modules. We then arrive at a 𝑛 × 𝑛 
heatmap of all the p-values for the modules. We call a module “asthma-unique” if it has a 
significant p-value with at least one module from both of the other networks. The rationale behind 
this algorithm is that a module that is well-preserved in both other studies is likely dysregulated 
consistently across the disease.   
 
GO term analysis is performed on the “asthma-unique” modules to determine ones which are 
fruitful for future analysis.  
 
Topological analysis of key modules 
Selected “asthma-unique” modules are subjected to topological analysis via the hive plots. From 
our original correlation matrices, we develop an aggregate correlation matrix that contains the 
maximum correlations for the three datasets. We have one aggregate correlation matrix for both 
healthy and asthma conditions. The gene sets from our selected “asthma-unique” module(s) are 
used to extract a subnetwork, which we represent using the igraph framework34. 
 
Of the genes in these subnetworks, we classify them as one of three types of genes:  

• Transcription factors: 114 genes identified by TFDB 35 
• Differentially expressed genes: genes identified by the MetaIntegrator analysis at p < 0.1 
• All other genes 

 
We are particularly interested in the interactions between transcription factors and DE genes, as 
such an interaction would be doubly relevant to the study of regulatory networks in asthma. 
 
Of our networks, we compute the topological degree of each of the genes, or the number of genes 
that are connected to each other based on a correlation cutoff. We then use this information to 
create hive plots with the HiveR package 36. 
 
Hive plots are representations of networks along three axes, each representing one of the categories 
shown above. Genes are plotted categorically on these axes, and their degrees are used to determine 
quantitatively where they lie on the axes. Genes with high degree are plotted more radially outward 
than those with lower degrees. Genes that are connected in the graph are then connected. We 
perform this analysis on the module(s) of interest across healthy and asthma conditions, allowing 
us to analyze the topology and identify dysregulations. 
 
With these hive plots, we are able to uncover the possible interactions as genes that may serve as 
drug targets or biomarkers for further exploration.  

Discussion 
 
The magenta module is chosen based on a series of stringent criteria that serve as qualifiers for 
its high relevance to the asthma disease. The module represents a group of genes that play a 
common functional role in the genome. Through the permutation test, we identified that its 
expression is not conserved in healthy condition, which suggests a degree of dysregulation or 
abnormality. Then, via the Fisher’s test, we found that this module is well-conserved across all 
three studies as a module that is differentially expressed, or “asthma-unique.” From here, 
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functional analysis using GO terms shows that this module is key for fundamental cell processes, 
which suggests that its statistical dysregulation has biological implications on asthma as a whole. 
 
Indeed, of the interactions whose differential topologies are highlighted by the hive plots, we 
find many of the genes to be key biomarkers and genes in established literature. For example, 
CHD4 is cited as a key transcription factor that controls Th2 inflammation in asthma 37.Because 
it seems that the CHD4 complex is a regulator of Th2 inflammation, a known biomarker of 
asthma, the sparse topology in Figure 11 as compared to Figure 10 seems to confirm that a 
dysregulation of this nature as also a biomarker of asthma. In this way, the CHD4 complex may 
serve as a key drug target for the control of inflammation, which is known to be applicable to 
medicine as asthma control 38,39. 
 
Another area of analysis involves the topological behavior of the CCL26, whose behavior in 
Figures 10 and 11 suggest a bit of nuance to be explored through the hive plots. In the healthy 
condition, we find the intact CHD4-CCL26 interaction, which seems to align with an indication 
of a healthy gene network. In the asthma condition shown in Figure 11, however, this interaction 
is no longer intact; however, CCL26 shows a great increase in its degree in the asthma network, 
make it the DE gene with highest degree. CCL26 is a gene that has been cited as responsible for 
recruiting eosinophils, which could explain its connection with CHD4 as being characteristic of 
the healthy condition 38,40. However, according to Larose et al., CCL26 levels have been shown 
to increase in the asthma condition, which suggest that its prominence may increase in response 
to asthma. Thus, it seems that the critical difference in CCL26 may actually depend on its 
interaction with CHD4 rather than simply its over-expression. Future biological analysis should 
take into account this nuance with regards to CCL26: it does serve as a biomarker for asthma, but 
its expression level and degree are less meaningful than its interactions with transcription factors. 
 
Ultimately, this analysis pipeline is able to, with high levels of confidence, explore the 
complexity of the CHD4-CCL26 interaction, which seems to have biological implications 
beyond the simple “over-expression, under-expression” framework that is typical in classic 
bioinformatics pipelines. 
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