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Radiomic models, which leverage complex imaging patterns and ma-
chine learning, are increasingly accurate in predicting patient re-
sponse to treatment and clinical outcome on an individual patient
basis. In this work, we show that this predictive power can be uti-
lized in clinical trials to significantly increase statistical power to de-
tect treatment effects or reduce the sample size required to achieve
a given power. Akin to the historical control paradigm, we propose
to utilize a radiomic prediction model to generate a pseudo-control
sample for each individual in the trial of interest. We then incorpo-
rate these pseudo-controls into the analysis of the clinical trial of
interest using classical and well established statistical tools, and in-
vestigate statistical power. Effectively, this approach utilizes each
individual’s radiomics-based predictor of outcome for comparison
with the actual outcome, potentially increasing statistical power con-
siderably, depending on the accuracy of the predictor. In simulations
of treatment effects based on real radiomic predictive models from
brain cancer and prodromal Alzheimer’s Disease, we show that this
methodology can decrease the required sample sizes by as much
as a half, depending on the strength of the radiomic predictor. We
further find that this method is most helpful when treatment effect
sizes are small and that power grows with the accuracy of radiomic
prediction.
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In recent decades, rapid advances in technology have in-1

creased the amount of neuroimaging data available to re-2

searchers at an unprecedented rate (1, 2). Machine learning3

methods empower the integration of this high-dimensional4

data into powerful individualized predictive markers that have5

been shown to be useful for tasks such as diagnosis and prog-6

nosis in diseases such as Alzheimer’s disease and brain cancers7

(3, 4). Predictive modeling is poised to receive the benefits of8

the large and varied nature of this data.9

With the growing availability of big data in medical imaging,10

a central focus has emerged on the development of increas-11

ingly complex tools for their analysis with the primary goal of12

individualized predictions (5). In this paper, we propose har-13

nessing these powerful machine learning tools for the analysis14

of clinical trials by using them as a means to inform statistical15

analyses with individualized estimates of clinical outcome. We16

therefore arrive at the concept of individualized evaluation of17

treatment effects in clinical trials.18

There is an extensive literature on the use of historical19

controls to supplement data from new clinical trials (6, 7).20

These methods have largely relied on pooling methods or21

Bayesian modeling. Whereas these methods augment data22

for a current trial by incorporating historical data on the 23

group level, high-dimensional predictors offer the opportunity 24

to augment current trials by incorporating historical data to 25

develop individualized predictions, or synthetic control data 26

(8), at the individual level. This allows for a more precise 27

evaluation of the treatment effect for each person, rather 28

than relying on a group-level effect that determines average 29

outcome. 30

Here, we present a method that draws on these ideas while 31

leveraging powerful predictive biomarkers and the wealth of 32

data used to build them to generate personalized predictions of 33

outcome. These predictions can be used directly in the analysis 34

of data in clinical trials. We find that this methodology can 35

substantially improve statistical power for detecting treatment 36

effects, depending on the predictive power of the machine 37

learning-based model. Correspondingly, this approach can 38

substantially reduce the sample size needed to achieve the 39

same power in a clinical trial. 40

Methods 41

Our method relies on access to two sets of data: i) a current 42

clinical trial designed to study an outcome of interest and ii) 43

a cohort of similar subjects treated according to the current 44

standard of care. We narrow our focus in this work to radiomic 45

predictors and associated studies, so we assume that imaging 46

data has been gathered at study enrollment for both sets of 47

trials. However, more broadly we only require a predictive 48

model that is based on sufficient information measured at 49

baseline on each participant in both datasets to predict the 50

outcome under standard of care. The techniques proposed here 51

are also directly applicable to other -omic modeling scenarios, 52

and generally, to any predictive marker of standard of care 53

outcome. 54

Our basic premise herein is that we can utilize previously 55

collected imaging data to build a radiomic prediction model, 56

fully validate it, and use it to generate a single score that 57

summarizes imaging patterns that predict future clinical out- 58

come of interest, such as patient survival, progression-free 59

survival, or response to treatment (Figure 1). The model 60

that is built based on the historical trial can then be used 61

in conjunction with data collected from the current trial to 62
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Fig. 1. A: Workflow for implementing the proposed method in a new clinical trial. B and C: Schematic diagram for individualized predictions that are generated for each person
in the current trial, where the solid lines indicate observed outcome for the participants of the current trial and the dashed lines indicate predicted outcome for those participants
had they not been treated. Figure B illustrates the method for continuous outcomes, where the left side represents the controls and the right side represents the treated
participants. The predicted outcome values (vertical axis) for the control units had they not been treated would be exactly what they are observed to be, while the predicted
outcome values for the treated units had they not been treated are different from the observed outcome. Figure C illustrates the mechanism for survival outcomes, where the
predicted survival times (dashed lines) for the control units are the same as the observed survival times (solid lines), whereas the predicted survival for the treated individuals
are lower than the observed survival times.

generate individualized values of the radiomic score for each of63

the current participants. These individualized scores represent64

predicted values for how the treated individuals in the current65

trial would have fared had they instead been assigned to the66

control group. The incorporation of these predicted values67

lends power to the detection of the effect of a treatment in the68

final analysis of the current trial by modeling the inter-subject69

variability in the outcome in terms of baseline heterogeneity70

represented in the baseline imaging.71

To investigate the advantage of this approach, we consider72

two scenarios. To more closely approximate real-life clinical73

trial performance, we use radiomic and outcome data from74

two observational studies to generate hypothetical study data,75

where the first focuses on continuous outcomes of cognitive76

decline in prodromal Alzheimer’s disease (AD) and the sec-77

ond on survival after diagnosis with glioblastoma multiforme78

(GBM). In these studies, we randomly split the data into a79

historical cohort and a trial cohort and then simulate effects80

in a randomly selected subset (corresponding to one arm) of81

the trial cohort. We then compare the statistical power of our82

proposed approach with the classical modeling approach that83

does not include radiomic prediction-based modeling.84

Data. In our first study, we consider the case of therapeutic85

trials for AD in which the outcome is longitudinal cognitive86

change. We utilize data derived from the Azheimer’s Disease87

Neuroimaging Initiative (ADNI, adni.loni.usc.edu) on 400 sub-88

jects with mild cognitive impairment (MCI) who underwent89

serial MRI at 1.5T ∗.90

Data used from this study consisted of cross-validated pre-91

dictions of time to AD diagnosis using the SPARE-AD score92

(9). SPARE-AD is derived from patterns of regional brain93

atrophy (volume loss) captured by atlas warping methods and94

high-dimensional pattern classification using support vector95

machines (SVM) aiming to differentiate cognitively normal96

∗The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-
info.org.

and Alzheimer’s disease subjects (3, 10). The outcome of 97

interest here is cognitive decline as measured by 3-year change 98

from baseline values of the ADNI composite memory score 99

(11) (ADNI-MEM). Of the 400 MCI subjects in our study, 100

283 have 3-year ADNI-MEM scores available. Average 3-year 101

change from baseline for ADNI-MEM in the current study was 102

-0.17 (standard deviation 0.49). 103

As a second case study, we focus on therapeutic trials for 104

GBM therapies, which aim to prolong survival after diagnosis. 105

We conduct our simulated treatment study using 134 patients 106

who were treated for newly diagnosed GBM at the Hospital of 107

the University of Pennsylvania between 2006 and 2013. The 108

actual median survival in this sample was 12 months, and 109

survival data were assessed for all subjects with no loss to 110

follow-up. Detailed demographics and a clinical description of 111

these subjects have been previously published (4). For studies 112

involving these data, we investigate the use of cross-validated 113

predictions of survival time based on radiomic analyses of 114

pre- and post-contrast T1-weighted, FLAIR, diffusion, and 115

perfusion imaging acquired pre-operatively at diagnosis. This 116

GBM predictive model utilizes an SVM to differentiate short, 117

medium, and long survival (4). 118

Statistical Methods. All hypothesis testing is conducted assum- 119

ing a 5% type I error rate and using two-sided alternatives. For 120

our continuous outcome analyses, we apply linear regression 121

modeling of the outcome and employ Wald tests to assess 122

whether treatment groups differed in their outcomes either i) 123

adjusting for the radiomic predictor by inclusion as covariate, 124

or the classical approach with corresponds to ii) not adjusting 125

for the radiomic predictor. For time-to-event outcomes, we 126

assess differences between treatment groups with and with- 127

out adjustment for the radiomic prediction by assuming an 128

accelerated failure time model. 129

We conduct two sets of real data simulations: one set 130

focusing on cognitive decline in AD, and one set focusing 131

on GBM survival outcomes. For both, we sample without 132

replacement twice from the observed data: for the first group 133

indexed by i = 1, . . . , n/2, we set our treatment indicator 134

Ai = 0 and record the observed outcome Yi0, as well as the 135
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Fig. 2. Results from simulated studies under two scenarios. With the addition
of historical controls, the required sample size for 80% power is markedly lower
than using classical two-sample clinical trial analysis. These figures show minimum
sample size (vertical axes) required to achieve 80% power for a range of effect sizes
(horizontal axes) based on observed outcome and radiomic predictions. Figure A
shows the results from simulations for continuous outcome measures of cognition
in AD, and Figure B shows the results from simulations for survival in GBM (right).
Note that the proposed method that leverages historical controls to build radiomic
predictions (red) requires lower samples sizes than the classical approach (blue).

value of the radiomic predictor Xi at baseline. For the second136

group, indexed by i = n/2+1, . . . , n, we introduce a treatment137

effect γ, set our treatment indicator Ai = 1, and again record138

outcome Yi0 and baseline radiomic predictor measurement139

Xi. We repeat this process 1000 times, recording the p-value140

corresponding to the test for treatment effect each time. We141

calculate type I error rate and power as the percentage of time142

the treatment effect is significant at the α = 0.05 level, where143

γ is set to 0 to assess type I error and a non-zero value to assess144

power. In order to quantify the sample size benefits from using145

this method, we repeat the above procedure for a range of146

sample sizes n, and the smallest n for which power reaches147

80% is recorded. We explore this for a range of hypothetical148

effect sizes, which is defined here as γ divided by the standard149

deviation of the outcome.150

Results151

For both continuous and time-to-event outcomes, we find that152

the proposed method reduces the minimum sample size n153

required for 80% power in clinical trial analyses (Figure 2).154

The inclusion of the imaging biomarker tends to be most155

helpful in terms of the absolute differences when the effect156

sizes are small. Type I error remains controlled throughout157

all experiments conducted. In the ADNI study, the classical158

analysis requires 16% to 18% more samples than our proposed159

method. In the GBM study, the classical analysis requires160

around 73% to 94% more samples than our proposed method.161

Discussion162

We have shown that individualized machine learning-based163

imaging biomarkers can be a useful tool in a clinical trial164

analysis, offering an increase in power and/or a reduction of165

the required sample size. The novelty of this method arises166

from the incorporation of individualized predictions, which167

derive their usefulness from the powerful predictive algorithms168

they are based upon. As neuroimaging biomarkers derived via169

machine learning become more common, the set of historical170

data for which we have biomarker values also becomes larger, 171

which promises to strengthen the radiomic prediction model 172

that we use to generate predicted values. 173

Here, we used two previously developed biomarkers, one 174

of which was trained to classify an outcome different from 175

the target of the clinical trial analysis, and another which 176

was trained to classify the same outcome as the clinical trial 177

analysis. While both predictors offered gains in sample size 178

reduction, predictors built specifically for the outcome of in- 179

terest in the clinical trial are likely to perform better and offer 180

more substantial gains. 181

The approach proposed in this paper does have some limi- 182

tations. First, the use of radiomic predictions can be hindered 183

by the cost of collecting imaging data (12). Furthermore, in- 184

sufficient performance of the radiomic prediction can result 185

in more modest improvements in (or, in extreme cases, even 186

loss of) statistical power. Cost-benefit analyses are thus war- 187

ranted. Finally, if a radiomic predictor is trained on data 188

from a different population compared with those studied in 189

the current trial, the improvements in statistical power may 190

be less pronounced. However, due to the randomization in 191

the study, the type I error rate is expected to be maintained 192

and internal validation or calibration of the predictive model 193

is possible using data from the control arm of a clinical trial. 194

Further studies of the misspecification of the predictive 195

model as well as the clinical trial outcome model are warranted 196

for assessing potential gains and loss of power in these settings. 197

However, misspecification of clinical outcome models can be 198

guarded against using statistical models satisfying symmetry 199

criteria (13). The biomarkers from the two cases presented 200

here were both built using SVMs, but this methodology can 201

accommodate predictions more generally. Incorporation of 202

these biomarkers into a one-arm trial designs in which all 203

participants in the trial are treated similarly also requires 204

further statistical research. 205
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