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Abstract 

Increasing data-sharing initiatives have provided unprecedented opportunities to study brain 

disorders. Standardized approaches for capturing reproducible and comparable biomarkers are 

greatly needed in big-data analysis. Here, we propose a framework (called NeuroMark) that 

leverages a priori-driven independent component analysis (ICA) to extract functional brain network 

features from fMRI data. NeuroMark estimates features adaptable to each individual and comparable 

across subjects by taking advantage of the replicated brain network templates extracted from 1828 

healthy controls. Four studies including 2454 subjects were conducted, spanning six brain disorders 

(schizophrenia, autism spectrum disorder, depression, bipolar disorder, mild cognitive impairment 

and Alzheimer’s disease) to evaluate the proposed framework from different perspectives 

(replication, cross-study comparison, subtle difference identification, and multi-disorder 

classification). Our results demonstrate the great potential of NeuroMark to identify reproducible and 

comparable brain network markers, its feasibility to link results across different 

datasets/studies/disorders, and its sensitivity in identifying biomarkers for patients with challenging 

mental illnesses.
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Main 

In the neuroscience field, increasing data-sharing initiatives have accelerated the use of 

neuroimaging to study brain disorders in the clinic 1-3. Access to multi-site datasets affords 

unprecedented opportunities to perform large-scale analysis across disorders. However, systematic 

methods to estimate neuroimaging measures in the context of enhancing neuroscientific validity are 

still very limited. There is a need for techniques that can accelerate the identification of interpretable 

brain markers in preexisting data and evaluation for the generalizability, reproducibility and their 

relationship to other data. 

Abundant approaches have been utilized to capture neuroimaging features informative of brain 

functional connectivity, including region of interest (ROI) or seed derived connectivity analysis 4, 5, 

self-activation detection method (such as amplitude of low frequency fluctuation and regional 

homogeneity 6), decomposition-based independent component analysis (ICA) 7-9, as well as 

clustering techniques to group brain voxels10. Particularly, ROI analysis and ICA are the most 

common approaches to explore functional organization of brain. While ROI-based methods typically 

require fixed brain regions according to prior experience or knowledge, ICA, a data-driven method, 

is capable of capturing functional networks while retaining more single-subject variability 11. ICA 

leverages the hidden spatio-temporal information to extract maximally spatially independent 

components (ICs), each of which includes brain voxels sharing co-varying patterns. Other 

advantages of ICA are that it can achieve intrinsic connectivity network (ICN) extraction and noise 

component removal simultaneously 12, and enable separation of overlapping but distinct functional 

activity 13. However, blind ICA is challenging for multi-subject analyses, since components extracted 

from different subjects may not have spatial correspondence. To overcome the ICA correspondence 

limitation, we and others have developed group ICA methods 9, 14-16. The majority of these 

approaches involve an ICA performed on the group data to estimate the group-level components, and 

then utilize a back-reconstruction method to extract individual-level functional networks and 

corresponding time-courses. 

Group ICA still has limitations since comparing results from different group ICA is not 

straightforward, affecting the abilities to replicate findings from different studies. For example, a 

study 17 identified 50 ICNs arranged into seven functional domains, and another study 18 
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characterized 52 ICNs sorted to three domains, despite using the same model order. Such differences 

in the identified ICNs and their arrangements hinder the direct comparisons across the results. The 

non-correspondence between group ICA runs also leads to a problem in studies focusing on 

classification where group ICA was usually performed on all subjects to make the resulting features 

work for the trained classifier 19, 20. This operation can be biased as the feature extraction should be 

independent from the testing data. 

From a clinical perspective, although some brain disorders can be assigned to distinct categories, 

many share clinically-overlapping symptoms. It is beneficial to investigate the shared/unique brain 

alterations among them and develop biologically-based subtypes across psychotic illnesses 21. For 

example, both schizoaffective and bipolar disorders experience hallucinations and delusions that are 

typical features of schizophrenia (SZ) 22, which can make their clinical differentiation difficult. SZ 

and autism spectrum disorder (ASD) currently conceptualized as distinct illnesses have also been 

revisited in recent years due to their shared phenotypic and genotypic expression 23. There is a 

paucity of studies that perform a direct comparison of symptom-related disorders and the validation 

of brain changes, probably due to the limited ability of analytic methods to characterize individual 

variability 24 and reliability 25. Since more neuroimaging data are now available than ever before, we 

have an opportunity to probe this aim. A framework that can optimize the data-specific variability 

while retaining the comparability across different datasets, studies and disorders is needed. 

In this paper, we propose NeuroMark, a framework that can leverage group information guided 

ICA (GIG-ICA) 16 or spatially constrained ICA 26 based on spatial priors derived from independent 

large samples to adaptively estimate individual network features (called Adaptive-ICA). We 

conducted four studies to validate the reliable performance of NeuroMark in different ways 

(replication, cross-study comparison, subtle difference extraction, and multi-disorder classification). 

Our results highlighted that Neuromark enables the replication of identified biomarkers across 

different datasets, the link from evaluating results on different studies, the identification of subtle 

brain functional impairments, and the effective differentiation between multiple disorders with 

confounding symptoms. NeuroMark can contribute to our understanding of the commonality, 

specificity, and inter-relationship among different brain disorders. While we focus on resting fMRI 
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initially, NeuroMark can be expanded to incorporate multimodal imaging data as well. The code and 

templates are available online (www.yuhuidu.com and http://trendscenter.org/software). 

Results 

The flowchart of the NeuroMark is displayed in Fig. 1. First, replicated ICN templates are 

constructed from different groups of large-sample healthy controls (HCs). Next, using the ICN 

templates as the spatial network priors, GIG-ICA 12, 16 is applied for Adaptive-ICA to estimate 

subject-specific functional networks and associated time-courses (TCs), due to high reliability 27 and 

accurate individual property 28 of the networks estimated by the method. Finally, different functional 

network features such as functional network connectivity (FNC) are computed and evaluated. 

We obtained 53 replicated network templates (Fig. 2) that are common between 823 HCs in the 

human connectome project (HCP) and 1005 HCs in the genomics superstruct project (GSP) datasets. 

They were arranged into seven functional domains according to their functional and anatomical roles 

17, including the sub-cortical (SC: 5 ICNs), auditory (AU: 2 ICNs), sensorimotor (SM: 9 ICNs), 

visual (VI: 9 ICNs), cognitive control (CC: 17 ICNs), default mode (DM: 7 ICNs) and cerebellar 

(CB: 4 ICNs) domains. The detailed component labels and peak coordinates are provided in Table 1. 

We evaluate the framework using four studies, showing that NeuroMark provides an effective 

approach to identify and compare brain biomarkers.
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Fig. 1. Schematic flowchart of the proposed framework. Step 1: Calculate group-level independent components 

(ICs) from two independent datasets with large sample of healthy controls including the human connectome project 

(HCP) and genomics superstruct project (GSP) datasets; Step 2: Match ICs using spatial correlations between their 

spatial maps and identify highly replicated intrinsic connectivity networks (ICNs) as the network templates; Step 3: 

Calculate the individual-level ICNs and their related time courses (TCs) by taking the network templates as prior 

information in Adaptive-ICA. Other extended features such as functional network connectivity (FNC) can be 

obtained and then compared across datasets, studies, and disorders. 
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Fig. 2. Visualization of the identified network templates, which were divided into seven functional domains based 

on their anatomical and functional properties. In each subfigure, one color in the composite maps corresponds to an 

ICN. 

 

Table 1. Information of the extracted network templates. For each template, its functional domain, primary brain 

region and peak coordinate are included. Here, each network template is represented by one independent 

component (IC). IC ID is shown along with the brain region name. 

Primary regions in ICNs (IC ID) X Y Z Primary regions in ICNs (IC ID) X Y Z 

Sub-cortical domain (SC) Cognitive-control domain (CC) 

Caudate (IC 69) 6.5 10.5 5.5 Inferior parietal lobule ([IPL], IC 68) 45.5 -61.5 43.5

Subthalamus/hypothalamus (IC 53) -2.5 -13.5 -1.5 Insula (IC 33) -30.5 22.5 -3.5
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Putamen (IC 98) -26.5 1.5 -0.5 Superior medial frontal gyrus ([SMFG], IC 43) -0.5 50.5 29.5

Caudate (IC 99) 21.5 10.5 -3.5 Inferior frontal gyrus ([IFG], IC 70) -48.5 34.5 -0.5

Thalamus (IC 45) -12.5 -18.5 11.5 Right inferior frontal gyrus ([R IFG], IC 61) 53.5 22.5 13.5

Auditory domain (AU) Middle frontal gyrus ([MiFG], IC 55) -41.5 19.5 26.5

Superior temporal gyrus ([STG], IC 21) 62.5 -22.5 7.5 Inferior parietal lobule ([IPL], IC 63) -53.5 -49.5 43.5

Middle temporal gyrus ([MTG], IC 56) -42.5 -6.5 10.5 Left inferior parietal lobue ([R IPL], IC 79) 44.5 -34.5 46.5

Sensorimotor domain (SM) Supplementary motor area ([SMA], IC 84) -6.5 13.5 64.5

Postcentral gyrus ([PoCG], IC 3) 56.5 -4.5 28.5 Superior frontal gyrus ([SFG], IC 96) -24.5 26.5 49.5

Left postcentral gyrus ([L PoCG], IC 9) -38.5 -22.5 56.5 Middle frontal gyrus ([MiFG], IC 88) 30.5 41.5 28.5

Paracentral lobule ([ParaCL], IC 2) 0.5 -22.5 65.5 Hippocampus ([HiPP], IC 48) 23.5 -9.5 -16.5

Right postcentral gyrus ([R PoCG], IC 11) 38.5 -19.5 55.5 Left inferior parietal lobue ([L IPL], IC 81) 45.5 -61.5 43.5

Superior parietal lobule ([SPL], IC 27) -18.5 -43.5 65.5 Middle cingulate cortex ([MCC], IC 37) -15.5 20.5 37.5

Paracentral lobule ([ParaCL], IC 54) -18.5 -9.5 56.5 Inferior frontal gyrus ([IFG], IC 67) 39.5 44.5 -0.5

Precentral gyrus ([PreCG], IC 66) -42.5 -7.5 46.5 Middle frontal gyrus ([MiFG], IC 38) -26.5 47.5 5.5 

Superior parietal lobule ([SPL], IC 80) 20.5 -63.5 58.5 Hippocampus ([HiPP], IC 83) -24.5 -36.5 1.5 

Postcentral gyrus ([PoCG], IC 72) -47.5 -27.5 43.5 Default-mode domain (DM) 

Visual domain (VI) Precuneus (IC 32) -8.5 -66.5 35.5

Calcarine gyrus ([CalcarineG], IC 16) -12.5 -66.5 8.5 Precuneus (IC 40) -12.5 -54.5 14.5

Middle occipital gyrus ([MOG], IC 5) -23.5 -93.5 -0.5 Anterior cingulate cortex ([ACC], IC 23) -2.5 35.5 2.5 

Middle temporal gyrus ([MTG], IC 62) 48.5 -60.5 10.5 Posterior cingulate cortex ([PCC], IC 71) -5.5 -28.5 26.5

Cuneus (IC 15) 15.5 -91.5 22.5 Anterior cingulate cortex ([ACC], IC 17) -9.5 46.5 -10.5

Right middle occipital gyrus ([R MOG], IC 12) 38.5 -73.5 6.5 Precuneus (IC 51) -0.5 -48.5 49.5

Fusiform gyrus (IC 93) 29.5 -42.5 -12.5 Posterior cingulate cortex ([PCC], IC 94) -2.5 54.5 31.5

Inferior occipital gyrus ([IOG], IC 20) -36.5 -76.5 -4.5 Cerebellar domain (CB) 

Lingual gyrus ([LingualG], IC 8) -8.5 -81.5 -4.5 Cerebellum ([CB], IC 13) -30.5 -54.5 -42.5

Middle temporal gyrus ([MTG], IC 77) -44.5 -57.5 -7.5 Cerebellum ([CB], IC 18) -32.5 -79.5 -37.5

 
Cerebellum ([CB], IC 4) 20.5 -48.5 -40.5

Cerebellum ([CB], IC 7) 30.5 -63.5 -40.5

 

Study 1: SZ patients show significant and replicable static FNC alterations using different 

datasets 

In the study, we assess the ability of our framework to identify reproducible biomarkers using 

the Function Biomedical Informatics Research Network (FBIRN) dataset including 137 SZ patients 

and 144 HCs and another dataset collected at the University of Maryland, Maryland Psychiatric 

Research Center (MPRC) including 150 SZ patients and 238 HCs. Static FNC (sFNC), computed 

using the whole time series of all ICNs, was obtained to reflect the interaction between networks for 

each subject. The sFNC pattern showed consistency between FBIRN and MPRC, as shown in Fig. 

3(A) and (D), indicating their comparability. For FBIRN, we compared the differences between HC 
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and SZ by performing two-sample t-tests on sFNC. Fig. 3(B) and (C) display the original HC vs. SZ 

T-value map for all sFNC and the significant differences after the multiple comparisons correction, 

respectively. Similar results were found from the MPRC as shown in Fig. 3(E) and (F), supporting 

that the results are reproducible although the FBIRN dataset showed more significant differences. 

The primary brain functional impairments in SZ from both datasets were consistently located in 

the connectivity between the SC and CB domains, between the SC and AU domains, as well as 

between the SC and SM domains. We identified the common sFNC alterations of SZ for both the 

FBIRN and MPRC data by evaluating the results in Fig. 3(C) and (F). Our results (Fig. 3(G)) 

indicate that the sFNC mean value of SZ was close between FBRIN and MPRC, although FBIRN 

data slightly showed enhanced connection strengths than MPRC data. Compared to HC, SZ showed 

1) decreased positive connectivity between the SC and CB domains, 2) diminished negative 

connectivity between the SC and AU domains, between the SC and SM domains, and 3) positive 

connection between the superior temporal gyrus and thalamus (in contrast to HC with negative 

connection). Taken together, our results suggest that the NeuroMark framework was able to identify 

reproducible network markers.
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Fig. 3. Result of study 1, which shows that there are reproducible sFNC alterations of SZ between FBIRN and 

MPRC data. (A) and (D): Mean sFNC pattern across all subjects for FBIRN and MPRC, respectively. (B) and (E): 

The T-values of all sFNCs from two-sample t-tests for FBIRN and MPRC, respectively. (C) and (F): The T-values 

for the remaining FNCs after the multiple comparisons correction (p <0.05 with Bonferroni correction) for FBIRN 

and MPRC, respectively. “BFN” denotes Bonferroni correction. (G): The mean sFNC in the common impairments 

of SZ between FBIRN and MPRC data. For each commonly impaired sFNC, the averaged value in SZ patients of 

FBIRN, SZ patients of MPRC, and HCs of the two datasets is shown, respectively.
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Study 2: ASD and SZ show common sFNC impairments 

In this study, we highlight the potential for using NeuroMark to link results across different 

studies. We evaluated sFNC changes in ASD using 398 ASD patients and 471 HCs from Autism 

Brain Imaging Data Exchange I (ABIDEI), and then compared the abnormalities between SZ and 

ASD by linking study 1 and 2. The mean sFNC of ABIDEI data (Fig. 4(A)) shows a similar 

connectivity pattern with that from study 1. By performing statistical analysis, significant changes in 

ASD relative to HC were found, primarily involving the SC, CB, AU and SM domains, as shown in 

Fig. 4(B) and (C). 

While study 2 could stand on its own as a result, we were interested in learning additional 

information by linking study 1 and 2. By comparing the common HC vs. SZ connection differences 

in both FBIRN and MPRC with the HC vs. ASD connection differences from ABIDEI, we identified 

nine common sFNC alterations between SZ and ASD relative to HC. As illustrated in Fig. 4(D), for 

both SZ and ASD patients, the sub-cortical, sensorimotor, auditory and cerebellar regions related 

sFNC were commonly affected. The sub-cortical regions showed the largest number of common 

impairments across the two disorders.
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Fig. 4. Results of study 2, which supports that SZ and ASD show common alterations in sFNC. (A): Mean sFNC 

pattern across all subjects for ABIDEI. (B) and (C): The T-values of all sFNCs and that of the remaining sFNCs 

after the multiple comparisons correction (p <0.05 with Bonferroni correction) from two-sample t-tests of HC vs. 

ASD for ABIDEI. “BFN” denotes Bonferroni correction. (D) Mean sFNC of each group (ASD, SZ and HC) in the 

overlapping impairments between SZ and ASD. For each commonly impaired sFNC, the averaged value in ASD 

patients of ABIDEI, SZ patients of FBIRN and MPRC, and HCs of the three datasets is shown, respectively.

Study 3: Mild cognitive impairment (MCI) demonstrates intermediate dynamic FNC changes 

between HC and Alzheimer's disease (AD) 

In this study, we aim to show that our framework can effectively capture subtle differences in 

dynamic functional network connectivity (dFNC) among multiple groups. The analysis focused on 

Alzheimer's disease (AD) and mild cognitive impairment (MCI) using the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset. 

Using 104 AD patients, 470 MCI patients, and 264 HCs, the dFNC patterns were computed 

using a sliding-window method based on the time-series of individual-subject networks extracted by 
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NeuroMark. Next, the reliable connectivity states were extracted from dFNC using a clustering 

technique. In the group-discriminating states (Fig. 5), specifically the state 2 that accounts for >50% 

of all windows resembled the sFNC patterns; the state 1 revealed negative connectivity between SM 

and VI; and the state 3 in contrast showed a strong connection between SM and VI. Compared to 

HCs, AD patients had a significantly different fraction rate of occurrences in dFNC states. In general, 

AD patients spent less time in strongly-connected states (i.e. state 1 and state 3 showing strong 

correlated and anticorrelated connectivity patterns) but more time in weakly-connected states (state 2 

and state 5). Although there was no significant group difference in the occurrences between MCI and 

HC/AD, MCI showed a similar but weaker trend with AD. Looking into it further, when separating 

MCI groups into early MCI (EMCI) and late MCI (LMCI), the gradually changing patterns from HC 

to EMCI to LMCI to AD were also clearly observed (Fig. 5).
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Fig. 5. The results of study 3. The results revealed gradually changing patterns from healthy controls (HCs) to early 

MCI (EMCI) to late MCI (LMCI) to Alzheimer’s disease (AD), measured by dFNC measures. Upper: Group 

differences in the fraction rate of occurrences of dFNC states among HC, MCI, and AD. Middle: The 

discriminating dFNC states, along with the count of subjects that have at least one window clustered into the state. 

Bottom: Group differences in the fraction rate of occurrences of dFNC states among HC, EMCI, LMCI, and AD. 

Regarding the fraction rate of occurrences in each state, bar and error bar represent the mean and the standard error 

of mean, respectively. Significant group difference (false discovery rate corrected, p = 0.05) is indicated by 

asterisks.

Study 4: Bipolar disorder (BD) and major depressive disorder (MDD) can be successfully 

distinguished using brain spatial networks 

In this study, we demonstrate that functional network measures derived using NeuroMark can 

be reliable features for differentiating patients with challenging disorders. We focused on classifying 

bipolar disorder (BD) and major depressive disorder (MDD), both of which can exhibit strong 

depressive symptoms and are difficult to distinguish in clinical diagnosis. The used features were 

ICNs computed using NeuroMark . Fig. 6 shows the pipeline and classification evaluation. 

Based on an unbiased 10-fold cross-validation procedure on 32 BD and 34 MDD patients, the 

optimal ICN combination from different functional domains was selected and used to train support 

vector machine (SVM) classifiers within each training set, and then each subject in the testing set 

was classified. This resulted in a high mean of classification accuracy across 100 runs (overall 

accuracy: 91%, BD individual-class accuracy: 89%, MDD individual-class accuracy: 94%). If 

determining the final label of the testing data using a majority voting, the overall accuracy reached 

up 93.94% (BD individual-class accuracy 90.63%, MDD individual-class accuracy 97.06%). The 

discriminative ICNs with highest frequency (IC 56, IC 33, IC 40, IC 98, IC 80, and IC 20) involved 

the middle temporal gyrus, insula, precuneus, putamen, superior parietal, and inferior occipital gyrus. 
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Fig. 6. The classification pipeline and accuracy in study 4. (A) The pipeline of classifying between BD and MDD 

patients using functional network maps as features, in which an unbiased 10-fold cross-validation procedure was 

applied. (B) The evaluated measures included individual-class accuracy (BD_acc and MDD_acc), individual-class 

precision (BD_Prec and MDD_prec), overall accuracy (Overall_acc), balanced accuracy (Bala_acc), and balanced 

precision (Bala_Prec). For each measure, we show the values from 100 runs using both boxplot and violinplot. 

Discussion and Conclusion 

Clinical diagnosis of the neuropsychiatric disorders overwhelmingly relies on the pattern of 

symptoms. Neuroimaging measures may hold more objective, biology-based quantification of brain 

abnormalities and consequently provide additional biomarkers to guide diagnosis and treatment. The 

complexity of the brain requires the neuroscience community to analyze big-data samples assembled 

from multi-site studies to achieve statistically powerful findings. Exploring clinically related brain 

disorders via large-scale analysis to understand their underlying mechanisms and relationship also 
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can help to redefine the disorder categories or develop new subtypes. Therefore, a standardized 

analysis framework is urgently needed to handle big data in the neuroscience field. 

Characterizing inter-relationship of spatially distributed brain regions using fMRI has been 

important for providing biomarkers in the neuroscience filed. Numerous methods for delineating and 

estimating functional network/connectivity have been proposed to promote the progress of precision 

medicine on brain disorders. ICA holds the promising ability to extract network features that retain 

more individual-level variability. However, due to its data-driven nature, synthesis across 

ICA-derived results presents a challenge which can hinder replication and cross-study comparison. 

In this paper, we proposed to use an Adaptive-ICA informed by reliable network priors to 

achieve linked analyses among different datasets, studies and disorders. We extended group network 

information 16 to independent replicated network templates for achieving individual variances while 

maintaining subject correspondence. In this paper, the network templates were obtained from two 

large-sample HC populations (1828 subjects) so as to minimize bias to a specific dataset to be 

analyzed. The use of such prior information can greatly reduce the search space and improve the 

likelihood of detecting useful markers 29. 

To assess the efficacy of the proposed framework, we performed four studies employing a large 

sample of data (2454 subjects) relating to six brain disorders to evaluate the framework from 

different angles. Our results clearly support that the framework works well in finding reproducible 

network markers from different datasets, investigating relationship between disorders by linking 

multiple studies, exploring subtle differences between groups, as well as distinguishing disorders 

based on network features. 

In study 1, the similar alterations in SZ were found between independent datasets by using 

network measures extracted from our framework. The primary common changes included the 

decreased positive connectivity between the sub-cortical regions and cerebellum as well as the 

diminished negative connectivity between the sub-cortical and auditory/sensorimotor regions. Our 

finding supports that sub-cortical regions such as thalamus and caudate are greatly affected in SZ. 

While sub-cortical regions have an important role in cognitive, affective, and social functions in 

humans 30, previous work also found functional abnormalities of these regions in SZ 31, 32. The 

overall results indicate this framework to be a powerful tool for capturing reproducible biomarkers. 
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Study 2 shows that NeuroMark provides a way to link independent studies for pushing forward 

the understanding of brain disorders. By comparing the results from study 2 and 1, we found that SZ 

and ASD share common functional abnormalities in the sub-cortical, sensorimotor, auditory and 

cerebellar regions, among which the sub-cortical regions showed great overlapping impairments. 

Although SZ and ASD are currently conceptualized as distinct disorders, there are so much overlap 

such as social withdrawal and communication impairment 33. Historically, schizophrenia and autism 

were once considered to be the same disorder expressed at different developmental periods. Our 

study provides evidence of their commonality from the view of brain function. 

Study 3 validated that our framework can identify subtle difference between related disorders 

(taking MCI and AD for instance here). Compared to HCs, AD patients exhibited more occurrence in 

weakly connected states, consistent with the results found in other brain disorders, including bipolar 

disorder 34, schizophrenia 35, 36, and autism 37. MCI showed similar trends as AD but with much 

weaker changes. These patterns position MCI as an intermediate stage between HC and AD. More 

interestingly, when we divided the MCI group into EMCI and LMCI, gradual changes were found in 

the dynamic features from HC to EMCI to LMCI to AD. The study showed that our framework can 

capture subtle dFNC differences that help to characterize the progression in cognitive impairment in 

dementia. 

In Study 4, we used the spatial functional network features extracted via the Neuromark 

framework to distinguish complex brain disorders with similar symptoms. Using unbiased 10-fold 

cross-validation, we achieved a high classification accuracy (>90%) between BD and MDD patients 

that had overlapping depressive symptoms. The important discriminating brain regions involved the 

middle temporal gyrus, insula, precuneus, putamen, superior parietal and inferior occipital gyrus. 

Furthermore, the performance was better than a previous study 38, even though in the previous work 

the group-level ICs were computed based on the MDD and BD data themselves. 

In general we found great promise of the NeuroMark framework, though there are still some 

limitations. One limitation of the framework is that the present network templates were obtained only 

based on two independent datasets. The templates can be progressively improved and refined as 

more data are included, hopefully to generate functional network templates with greater 

reproducibility. In addition, the current network templates were estimated under a high model-order 

(the number of ICs =100). In future we will explore network estimation under different parcellation 
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levels. Considering the ability to link different datasets, disorders and studies in our framework, we 

also plan to provide a cloud computation platform which implements this approach. Our hope is that 

by using this robust framework, functional network features can be widely studied and compared 

among numerous brain disorders. 

A robust and generalized ICA framework was introduced in this paper for the analysis of fMRI 

datasets. In fact, the framework can be expanded to other modalities. Taking structural MRI for 

example, the source-based morphometry (SBM) 39, 40, a multivariate version of voxel-based 

morphometry (VBM), applies ICA to gray matter (GM) maps to detect common covariation among 

subjects and subject-associated weights. It is apparent that results of SBM vary across different 

datasets and runs. Using our method taking robust priors as guidance, the covariation patterns can be 

linked, thus resulting in comparable weights as features across different data (see regression based 

example here 41). Group ICA is also useful for analyzing electroencephalography (EEG) data. 

Previous studies 42, 43 extracted EEG sources by concatenating the data across the spatial dimension 

(see also the EEGIFT software: http://trendscenter.org/software). Generating robust a priori sources 

to guide the individual source computation will be an ongoing effort. 

In summary, we present a framework to generalize and standardize the calculation of possible 

brain imaging biomarkers which leverages the benefits of a data-driven approach to adapt to the 

individual data, while also providing comparability across multiple analyses. Results highlight the 

promise of the approach that we hope will be a useful stepping stone towards eventual application of 

such approaches in the clinic. 

 

Methods 

In the section, we first describe the proposed framework, and then introduce the methodology 

for the four example studies to assess the capacity of the proposed framework. 

Approach for selecting data and computing brain mask 

A rigorous criterion was implemented for subject selection to ensure high-quality data. For fMRI, 

we selected data with the properties: 1) data with head motions less than 3º rotations and 3 mm 

transitions along the whole scanning period; 2) data with more than 120 time points in fMRI 

acquisition; 3) data providing a successful normalization in the full brain. In terms of the third point, 
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whether fMRI data have good normalization to the template is important in group ICA. We evaluated 

the normalization quality of data by comparing the individual-subject mask and the group mask. This 

method was applied to each study’s fMRI data separately. First, using the volume in the first time 

point, we calculated the individual mask for each subject by setting voxels showing greater values 

than 90% of the whole brain mean to 1. Next, we yielded a group mask by setting voxels included in 

more than 90% of the individual masks to 1. Then, for each subject, we calculated the correlations 

between the group mask and the individual mask. The correlations were calculated using voxels 

within the top 10 slices of the mask, within the bottom 10 slices of the mask, and within the whole 

mask, resulting in three correlation values for each subject. If a subject had correlations larger than 

the specified thresholds, we included this subject for further fMRI analysis. Finally, the group mask 

of each study was computed again based on the selected subjects’ individual masks.  

Identifying reliable functional network templates 

The spatial network priors (i.e., the ICN templates) were obtained based on two independent 

HC datasets from the human connectome project (HCP, 

http://www.humanconnectomeproject.org/data/) and genomics superstruct project (GSP, 

https://www.nitrc.org/projects/gspdata). We preprocessed the GSP dataset using statistical 

parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/). Rigid body motion correction was 

performed to correct subject head motion, followed by the slice-timing correction to account for 

timing difference in slice acquisition. The fMRI data were subsequently warped into the standard 

Montreal Neurological Institute (MNI) space using an echo planar imaging (EPI) template and were 

slightly resampled to 3 × 3 × 3 mm3 isotropic voxels. The resampled fMRI images were further 

smoothed using a Gaussian kernel with a full width at half maximum (FWHM) = 6 mm. For the HCP 

dataset, we downloaded the preprocessed data from online and resliced them to the same spatial 

resolution (3 × 3 × 3 mm3) with the preprocessed GSP data using SPM12. More details in terms of 

the preprocessing on HCP data can be found online (http://www.humanconnectomeproject.org/data/). 

After quality control, in total 1005 individuals the GSP dataset and 823 individuals from the HCP 

dataset were chosen (Table S1). 
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Table S1. The demographic information of the GSP and HCP data 

 Subject number 
Age: 

mean (std) 

Gender: 

male (female)

Transitions: 

mean (std) 

Rotations: 

mean (std) 

GSP 1005 21.5373 (2.9629) 411 (594) 0.1416 (0.0920) 0.1426 (0.0962)

HCP 823 28.9721 (3.4250) 356 (467) -- -- 

 

We conducted the following analysis for the GSP and HCP datasets, respectively, in order to 

obtain potential network templates. Regarding each individual, principle component analysis (PCA) 

was first performed to reduce fMRI data to 110 principal components (PCs), which preserved more 

than 95% variance of the original data. Then, the individual-level PCs of each subject were 

concatenated across different subjects (1005 subjects for GSP or 823 subjects for HCP) and reduced 

into 100 PCs via another PCA at the group level. Next, the Infomax algorithm 44 was used to 

decompose the 100 PCs into 100 ICs. This procedure was repeated 100 times using the ICASSO 

technique 45, in which the best ICA run was selected to generate 100 reliable group-level ICs for each 

dataset 46. 

We matched the two groups of ICs using a greedy spatial correlation analysis to find replicated 

networks. Here, a spatial similarity matrix C (size: 100 × 100) was obtained by computing the 

absolute value of Pearson correlation coefficients between spatial maps of ICs from GSP and 

components from HCP. Based on the matrix C, the pair of ICs with the maximum correlation value 

were selected and considered as the first-matched components pair. If their original correlation value 

was negative, one of the ICs was sign-flipped. After identifying a matched ICs pair, the correlation 

values related to them in the matrix C were set to zero, resulting in a new similarity matrix Cnew. As 

such, the matching procedure was repeated continually on updated correlation matrices, until the 

final matched IC pair was found. IC pairs are considered to be reproducible if they show a higher 

spatial correlation than a given threshold 0.4, a more strict threshold than previous work 47. Next, we 

characterized a subset of these reproducible ICs as ICNs if they exhibited activation peaks in gray 

matter, had low spatial overlap with known vascular, ventricular, motion and other artifacts, and 

exhibited dominant low-frequency fluctuations in their TCs. Five fMRI experts carefully inspected 

those matched ICs, labeled meaningful ICNs and assigned them to different functional domains. ICs 

with more than three votes were identified as highly replicated ICNs. This resulted in two groups of 

highly similar ICNs from HCP and GSP dataset, respectively. Next, we selected the ICNs captured 
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from the GSP dataset as the spatial network templates as they exhibited lower noise than the ICNs 

from the other group. Hereinafter, we use 𝑁 to denote the number of network templates. The high 

reproduction degrees between networks of the two datasets are shown in Fig. S1. 

 
Fig. S1. The sorted spatial correlation matrix between the matched two groups of functional 

networks. It is seen that the diagonal values are high, indicating the selected network templates are 

common between the GSP and HCP data. 

Estimating subject-specific functional brain networks 

For each individual-subject fMRI data, ICNs are computed by Adaptive-ICA, an approach that 

adaptively estimates individual-level components using a prior define component templates. Two 

ICA algorithms 16, 26 available in the group ICA toolbox (GIFT) (http://trendscenter.org/software/) 

can be used for Adaptive-ICA. In this work, we applied the GIG-ICA 16 which uses a 

multiple-objective function optimization algorithm as shown in equation (1), by taking the obtained 

network templates and subject-specific fMRI data as input. Basically, there are two objective 

functions, one of which is to optimize the independence of networks in each subject’s fMRI data, 

while the other is to optimize the comparability between one subject-specific network and its related 

network template. In the original GIG-ICA algorithm 12, 16, group-level components used as guidance 

are computed from its own group data. Here, we use the labeled and ordered network templates 

validated from two independent datasets as spatial priors to estimate individual networks. The 
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multiple-objective function represented in (1) was employed to compute one subject-specific 

network using a network template as guidance. 

𝑚𝑎𝑥  
    𝐽 𝑆 𝐸 𝐺 𝑆 𝐸 𝐺 𝑣

𝐹 𝑆 𝐸 𝑆 𝑆
,  (1) 

𝑠. 𝑡.    𝑤 1. 

In (1),  𝑆  denotes the 𝑙𝑡ℎ  network template, and 𝑆 𝑤 ∙ 𝑋  represents the estimated 

corresponding network of the 𝑘𝑡ℎ subject, where 𝑋  is the whitened 𝑋  representing fMRI data 

matrix of the 𝑘𝑡ℎ subject. Here, 𝑤  is the unmixing column vector, which is to be solved in the 

optimization functions. The first function is for optimizing the independence measure of 𝑆 , which 

is reflected using 𝐽 𝑆 , i.e., the negentropy of 𝑆 . Here, 𝑣 is a Gaussian variable with zero mean 

and unit variance; 𝐺 ∙  is a nonquadratic function. The second function 𝐹 𝑆  is used to measure 

the comparability between 𝑆  and 𝑆 . 𝐸   denotes the expectation of variable. To solve the 

multiple-objective function optimization, a linear weighted sum method is applied to combine the 

two objective functions 16. After the optimization, one subject-specific network can be obtained. 

Finally, for each subject, all 𝑁  subject-specific networks corresponding to the 𝑁  network 

templates and their relevant TCs are estimated from the data. Therefore, using this framework, all 

individual networks and their related TCs will not only be comparable across different 

datasets/studies/disorders as well as between previously analyzed data and new coming impendent 

data, but also show subject-unique characteristics in brain functional networks and their fluctuations. 

Functional brain network features 

Using the proposed framework, multiple network features (in addition to the original ICNs and 

TCs) can be computed, including the interactions between ICNs, graph measures of functional 

organization, frequency information of networks’ fluctuations, as well as dynamic measures on both 

ICNs and their interactions. Taking network interaction as an example, static FNC (sFNC) can be 

obtained by computing the correlations between post-processed TCs of ICNs to yield sFNC matrix. 

Specifically, the steps to remove remaining noise sources of TCs include 1) detrending linear, 

quadratic, and cubic trends; 2) conducting multiple regressions of the 6 realignment parameters and 

their temporal derivatives; 3) de-spiking detected outliers; and 4) band-pass filtering with [0.01-0.15] 
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Hz. Thus, each element of sFNC matrix represents the connectivity between a pair of functional 

networks. While the ICN reflects intra-connectivity within network, the FNC matrix represents 

inter-connectivity strengths between different ICNs. The dynamic FNC (dFNC) also can be 

investigated through a sliding window approach. A tapered window, obtained by convolving a 

rectangle with a Gaussian, is often used to segment the entire TC of each ICN into several short TCs. 

For each window, the covariance matrix is then computed using the windowed TCs from different 

networks to measure the functional connectivity between ICNs within the window. To assess more 

accurate covariance matrix, a graphical LASSO method is usually applied to estimate the regularized 

inverse covariance matrix and then the covariance matrix from the inverse covariance matrix. For 

each subject, the covariance matrix of each window can be concatenated to form an array (size: 

𝑁 𝑁 𝑇, here 𝑁 is the number of ICNs and 𝑇 is the number of windows), representing the 

dynamic changes of FNC along different windows. 

Studies for evaluating the framework 

Study 1: Investigating static functional network connectivity (sFNC) changes in schizophrenia 

(SZ): a replication study 

In the first study, we assessed the ability of NeuroMark to identify reproducible biomarkers 

between different datasets. The proposed framework was implemented on two independent datasets, 

in order to detect brain changes of SZ patients relative to healthy controls. One dataset was from the 

Function Biomedical Informatics Research Network (FBIRN) including 210 SZ patients and 195 

HCs. The other dataset were collected at the University of Maryland, Maryland Psychiatric Research 

Center (MPRC), including 251 SZ patients and 327 HCs. Resting-state fMRI data of SZ patients and 

HCs was preprocessed using the same preprocessing pipeline as for the GSP dataset and same 

criteria were used for subject selection. We retained 137 SZ patients and 144 HCs in the FBIRN 

dataset, and 150 SZ patients and 238 HCs in the MPRC dataset for the further analysis. 

Using the 𝑁 ICN templates as priors, we performed Adaptive-ICA on each individual-subject 

fMRI dataset to extract spatial subject-level ICNs and their related TCs. Next, a sFNC matrix was 

obtained for each subject via computing Pearson correlation coefficients between the post-processed 

TCs. We averaged the individual sFNC matrices across subjects for the FBIRN and MPRC data, 

separately, to validate if the connectivity patterns were comparable. Next, for each connection 

between two ICNs in the sFNC matrix, we investigated difference between HCs and SZ patients by 
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performing a two-tailed two-sample t-test (p < 0.05 with Bonferroni correction) for the FBIRN and 

MPRC datasets, separately, after regressing out age, gender and site effects. Finally, we investigated 

if the identified changes in SZ are reproducible between the two datasets by comparing their 

two-sample t-test results. 

Study 2: Investigating the common static functional network connectivity (sFNC) alterations in 

autism spectrum disorder (ASD) and SZ: multi-study comparison 

Since we computed the brain functional network templates using data from large-sample 

healthy population independent from the data being analyzed, it is feasible to link multiple 

independent studies. In study 2, we explored sFNC changes in ASD compared to HCs and then 

evaluated the common impairments between SZ and ASD by summarizing the results from this 

analysis and study 1, each of that was performed independently of the other. We selected data from 

Autism Brain Imaging Data Exchange I (ABIDEI), provided by the National Institute of Mental 

Health. The ABIDEI dataset involves 17 sites and includes a total of 539 individuals with ASD and 

573 age-matched HCs. We conducted preprocessing and subject selection using the same pipeline 

and criterion. After quality control, 398 ASD individuals and 471 HCs in the ABIDEI dataset 

remained. 

Based on the Neuromark framework, we obtained 𝑁 individual ICNs and then estimated their 

functional interaction (i.e. sFNC) for each subject. Furthermore, we investigated the HC vs. ASD 

differences on sFNC measures using two-tailed two-sample t-tests (p < 0.05 with Bonferroni 

correction). Since the features were extracted using a same way, it was possible to compare the 

symptom-related disorders (i.e. SZ and ASD) in terms of their overlapping alterations relative to HCs 

based on the results from study 1 and 2. We then evaluated the commonality between SZ and ASD in 

sFNC impairments relative to HCs. 

Study 3: Evaluating levels of cognitive performance/impairment linked to dynamic FNC 

In this study, we investigated dynamic brain changes among Alzheimer's disease (AD) patients, 

mild cognitive impairment (MCI) patients, and HCs. We used the publicly available Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) dataset, which collected resting-state fMRI data from 275 

HCs, 107 Alzheimer's Disease (AD) patients and 480 Mild Cognitive Impairment (MCI) patients. 

Using the same preprocessing and subject selection procedures, we had a total of 838 subjects (104 

patients with AD, 470 patients with MCI, and 264 HCs) for analysis. 
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For each subject, we estimated dFNC using a sliding window approach 17. Since the datasets 

have different temporal resolutions, we performed interpolation on the TCs with longer TR to 

construct new TCs with the same nominal temporal resolution as those data with smallest TR and the 

same length of data. This procedure helps to control the potential impacts on the dynamic analysis 

caused by the different temporal resolutions. The tapered window was obtained by convolving a 

rectangle (window size = 40 TRs = 24.3 s) with a Gaussian (σ = 3) function. This window was slid in 

steps of 1 TR, resulting in total 𝑇 = 468 windows for yielding dFNC matrices.  

A K-means clustering analysis 17 was implemented on dFNC estimates to capture occurred 

states in time and across subjects. L1 norm was used as the distance function with the upper 

triangular (𝑁 𝑁 1 /2) values in the matrices as features. The optimal number of clusters was 

determined as 5 by the elbow criterion, which was within a reasonable range (4~7) consistent with 

the previous dFNC studies on different brain disorders 34, 37, 48-50.  

Regarding each state, we computed its fraction rate of occurrence for each subject by computing 

the percentage of the number of time windows assigned to the state in the number of total windows. 

To investigate group differences in the fraction rate of each state, ANOVA was performed after 

regressing out age and gender. If the ANOVA resulted in a significant diagnosis effects, a 

generalized linear model (GLM) including age and gender was conducted to examine the group 

difference between any paired groups. 

Study 4: Classification of two disorders with overlapping symptoms using spatial networks 

In this study, we aimed to employ network features identified by the proposed framework for 

the classification of symptom-related disorders. Resting-state fMRI data from 32 patients with BD 

Type I and 34 patients with MDD were included. More details can be found in a previous study 38. 

We conducted the preprocessing and subject selection using the same pipeline and criterion as other 

studies. Based on spatial network (i.e. ICN) features, we assessed the ability to distinguish the MDD 

and BD patients. 

Using NeuroMark, the individual ICNs were estimated by taking the selected network templates 

as guidance after discarding cerebellum-related templates, due to cerebellum being partially missing 

in the scanned data. In order to evaluate if the ICNs can be powerful features to classify BD and 

MDD patients, we applied an unbiased 10-fold cross-validation framework, in which nine of ten 

folds were used as the training data and the remaining fold was used as the testing data successively. 
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Consistent to the previous work 38, we applied support vector machine with sigmoid kernel for 

classification. The feature selection and model training were performed only based on the training 

data. 

Feature selection plays a key role in classification, especially for the high-dimensional network 

measures. In this work, we extracted the most discriminative ICN from each functional domain, and 

then combined the discriminative ICNs from all functional domains as features. In order to find the 

most discriminative ICN for each domain, we used an inner 10 times of 10-fold cross-validation 

procedure within the training set based on a forward ICN-selection technique. Basically, the ICNs 

were added one by one based on the classification accuracy on the inner testing data, evaluated using 

the model built using the inner training data. Then, for each run in the inner 10-fold procedure, the 

optimal ICN combination corresponding to the highest classification accuracy can be found. The 

ICN with the highest occurring frequency in the optimal ICN combination sets (across different 

repeats) was validated as the most-discriminative ICN for that domain. After that, the combined 

discriminative ICNs from different domains were used as features to train the outer training data. 

While the previous study 38 that used group information from its own data, individual-level ICN 

features computed using our framework were more unbiased. 

To quantify the classification results, we evaluated multiple measures including the individual 

class accuracy, individual class precision, overall accuracy, balanced accuracy and balanced 

precision 51 based on the predicted and diagnosis labels. Different measures reflect the results from 

different angles. The individual class accuracy reported the ratio of correctly classified subjects of a 

particular class to the total number of subjects in the class. The individual class precision was 

defined as the number of correctly classified subjects of a particular class divided by the total number 

of subjects predicted as the class. The overall accuracy was computed as the ratio of correctly 

classified subjects of all classes to the total number of subjects of all classes. Additionally, we also 

computed the mean of individual class accuracies, called as the balanced accuracy. The individual 

class precision values were also averaged to represent the balanced precision. For each measure, we 

show the results from different repeats using both boxplot and violinplot. 
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Data availability 

The data that support the findings of this study are available from the corresponding author, 

upon reasonable request. 
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