Predicting Under-five mortality across 21 Low and Middle-Income Countries using Deep Learning Methods
View ORCID ProfileAdeyinka E Adegbosin, Bela Stantic, Jing Sun
doi: https://doi.org/10.1101/19007583
Adeyinka E Adegbosin
1School of Medicine, Griffith University, Gold Coast, Queensland
Bela Stantic
2School of Information Communication Technology, Griffith University
Jing Sun
1School of Medicine, Griffith University, Gold Coast, Queensland

Data Availability
Data may be accessible through permission from the DHS program
Posted September 25, 2019.
Predicting Under-five mortality across 21 Low and Middle-Income Countries using Deep Learning Methods
Adeyinka E Adegbosin, Bela Stantic, Jing Sun
medRxiv 19007583; doi: https://doi.org/10.1101/19007583
Subject Area
Subject Areas
- Addiction Medicine (70)
- Allergy and Immunology (168)
- Anesthesia (49)
- Cardiovascular Medicine (448)
- Dermatology (55)
- Emergency Medicine (157)
- Epidemiology (5216)
- Gastroenterology (194)
- Geriatric Medicine (77)
- Health Economics (212)
- Health Informatics (694)
- Health Policy (352)
- Hematology (98)
- HIV/AIDS (162)
- Medical Education (102)
- Medical Ethics (25)
- Nephrology (80)
- Neurology (758)
- Nursing (43)
- Nutrition (129)
- Oncology (475)
- Ophthalmology (149)
- Orthopedics (38)
- Otolaryngology (93)
- Pain Medicine (39)
- Palliative Medicine (19)
- Pathology (139)
- Pediatrics (223)
- Public and Global Health (1993)
- Radiology and Imaging (344)
- Respiratory Medicine (283)
- Rheumatology (93)
- Sports Medicine (75)
- Surgery (108)
- Toxicology (25)
- Transplantation (29)
- Urology (39)