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Abstract
Epigenome-wide association studies for cardiometabolic risk factors have discovered multiple loci associated
with incident cardiovascular disease (CVD). However, few studies have sought to directly optimize a predictor
of CVD risk. Furthermore, it is challenging to train multivariate models across multiple studies in the
presence of study- or batch effects. Here, we analyzed existing DNA methylation data collected using the
Illumina HumanMethylation450 microarray to create a predictor of CVD risk across three cohorts: Women’s
Health Initiative, Framingham Heart Study Offspring Cohort, and Lothian Birth Cohorts. We trained Cox
proportional hazards-based elastic net regressions for incident CVD separately in each cohort, and used a
recently-introduced cross-study learning approach to integrate these individual predictions into an ensemble
predictor. The methylation-based risk score (MRS) predicted CVD time-to-event in a held-out fraction of
the Framingham dataset (HR per SD = 1.28, p = 2e-3) and predicted myocardial infarction status in the
independent REGICOR dataset (OR per SD = 2.14, p = 9e-7). These associations remained after adjustment
for traditional cardiovascular risk factors and were similar to those from elastic net models trained on a
directly merged dataset. Additionally, we investigated interactions between the MRS and both genetic and
biochemical CVD risk, showing preliminary evidence of an enhanced predictive power in those with less
traditional risk factor elevation. This investigation provides proof-of-concept for a genome-wide, CVD-specific
epigenomic risk score and suggests that the DNA methylation data may enable the discovery of high-risk
individuals that would be missed by alternative risk metrics.

Introduction
DNA methylation is an important epigenetic pathway through which genetic variants and environmental
exposures impact disease risk1,2. Methylation at specific cytosine-phosphate-guanine (CpG) sites has been
associated with disease in epigenome-wide association studies, even showing associations in blood as a
convenient but non-target tissue such as for type 2 diabetes3. Methylation-based risk scores allow genome-
wide aggregation of epigenetic information, similarly to the more established genetic risk scores, and allow
for the use of models with arbitrary complexity. These risk scores are often developed initially by using
methylation as a proxy for disease risk factors, such as body mass index (BMI)4 and general aging-related
morbidity5. Alternatively, given sufficient sample size, epigenetic associations with disease risk can be modeled
directly6.

Associations between DNA methylation and cardiovascular disease (CVD) have been explored in many different
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cohorts and using diverse approaches. Cross-sectional associations have been found across multiple relevant
tissues, namely blood, aorta, and other vascular tissues7. Some investigations aimed at cardiovascular risk
factors have discovered CpGs predictive of CVD development8,9, while Mendelian randomization approaches
have suggested causality of at least some of these CpG-risk factor associations10. A few studies directly
modeling incident CVD as a primary outcome have either been conducted using only global (not locus-specific)
methylation levels11, or have found limited additional predictive power in the presence of known risk factors12.
A recent large-scale meta-analysis found multiple CpG sites predictive of incident coronary heart disease,
but focused on univariate approaches13. We have previously investigated methylation regions and modules
associating with incident CVD, generating mechanistic insights but without aggregating these results into
a direct predictor of risk14. Additionally, it is unclear how the CVD risk tracked by DNA methylation is
redundant with or complementary to existing risk metrics, including genetic scores15 and those based on
traditional cardiovascular risk factors (e.g. the Framingham Risk Score for generalized CVD)16.

Combining signal across population-scale cohorts can increase sample size while attenuating the effect of
study-specific biases and confounding factors, but can be prone to emergent sources of confounding from
“batch” effects or other systematic biases in methylation data across cohorts. This is especially problematic
when there is notable class imbalance (i.e. different outcome frequencies) across cohorts17. The most common
method for dealing with this heterogeneity is meta-analysis, but standard meta-analysis approaches are
restricted to univariate (one CpG site at a time) models. Other approaches include batch effect correction on
the input dataset (e.g. ComBat18), direct adjustment for batch/study in linear models, or adjustment for
derived variables intended to capture technical biases (e.g. surrogate variable analysis19), but these approaches
can often lead to over- or under-estimates of true biological effects17. An alternative approach described
recently, cross-study learning, instead trains an ensemble predictor consisting of one or multiple models per
cohort20. This strategy allows the use of arbitrarily complex models while avoiding technical confounding
from direct combination of the datasets.

In order to develop an improved DNA methylation-based cardiovascular risk predictor using multiple training
cohorts, we used a cross-study learning method to develop an ensemble of penalized time-to-event regression
risk models. The resulting composite risk score performed well in a held-out data subset, predicting survival
even in the presence of traditional risk factors, and showing similar performance to models trained on naively
merged datasets. External validation was achieved in a case-control for prevalent myocardial infarction
(MI). Further, interactions were assessed between the composite methylation-based risk score and other risk
predictors, finding a potentially enhanced prediction in those with low Framingham Risk Scores.

Methods
Study participants and phenotype collection
Phenotypes (demographic, anthropometric, biochemical, and clinical), DNA methylation data, and imputed
genotypes were available either from publicly available controlled-access databases or upon request from the
cohorts. Cohort-specific details are provided in Supplementary methods. Blood-based biochemical markers
(total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, fasting glucose, high-sensitivity C-reactive
protein, and systolic blood pressure) were log10-transformed for all analyses. In the Lothian Birth Cohort
1936, LDL was estimated from total cholesterol and triglycerides using the Friedewald equation. Diabetes
was defined as either use of diabetes medication or a measured fasting blood glucose level of >125 mg/dL.
Median imputation was used to fill missing values for diabetes, medication use, and smoking status (thus
assuming no diabetes, no medication use, and no smoking where these values were missing). Analysis of these
datasets was approved by the Tufts University Health Sciences Institutional Review Board (protocol 12592),
and all subjects gave informed consent.

DNA methylation data processing
DNA methylation data for all initial cohorts (WHI, FHS, and LBC) were collected using the Illumina
HumanMethylation450 microarray platform21 and downloaded as raw intensity files. Standard preprocessing
steps were performed for each cohort, including sample-wise and probe-wise filters, background correction,
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and probe type normalization. After quality control and filtering steps, 390597 CpG sites were shared between
the 3 datasets, formatted as beta values (ratio of methylated signal to total microarray signal). Preprocessing
details are described in the Supplementary Methods.

CVD risk prediction modeling
Study-specific CVD risk prediction models were trained using penalized Cox proportional hazards regressions
with the elastic net penalty. CVD events were defined as above, and times were right-censored based on
the most recent exam available in each cohort. The elastic alpha parameter was set at 0.05, based on prior
observations of good performance on Illumina methylation microarray datasets22, and the penalty parameter
λ was optimized through 5-fold cross-validation. For each model, only the most variable 100,000 CpGs
according to median absolute deviation (~25% of all available sites shared across platforms) were included
in order to decrease the computational burden and ensure that the selected CpGs would have meaningful
interindividual variation.

The cross-study learner (CSL) was constructed as an ensemble of study-specific regression models. Predictions
from each single-study learner (SSL) were combined using the “stacking” approach20, implemented as follows.
First, predictions from each SSL to both itself and the other training datasets were combined into a design
matrix (with dimensions Ntotal x # SSLs). This formed the input to an additional penalized Cox regression
(ridge regression with λ optimized through 5-fold CV and coefficients restricted to be non-negative) of all
training studies at once. Coefficients from this regression, corresponding to input study-specific SSLs, were
normalized to sum to one to produce the CSL weights. For prediction in new datasets, SSL predictions were
each standardized to mean zero and unit variance before calculating their weighted sum (using the “stacking”
weights) as the final CSL score.

A series of approaches for combining information across cohorts were tested as alternatives to the CSL. The
naive “combined” approach consisted of simply aggregating observations from all training sets into a single
dataset and training an elastic net regression as described above while adjusting for study as a fixed effect.
The ComBat method trained across all studies as with the “combined” approach, but included an empirical
Bayes-based preprocessing step to directly adjust the dataset for study differences while preserving variation
along the “axis” of incident CVD events18.

MRS evaluation in FHS was performed using Cox proportional hazards models, with a series of models
adjusting for covariates including demographics, anthropometrics, biochemical values, and cell subtype
estimates. Robust standard errors were used to account for family structure as has been suggested for
clustered data23 and used for epigenetic risk models in FHS24. The proportional hazards assumption was
confirmed (p > 0.05) using the cox.zph R function. To compare risk scores generated using different models
(combined and ComBat-preprocessed) to the CSL, Cox regressions adjusting for the “basic” covariate set
were used to evaluate the CSL MRS alone, the CSL MRS plus the combined MRS, and the CSL MRS plus
the ComBat-preprocessed MRS in the held-out FHS-UM dataset. Likelihood ratio tests were then used to
compare each of the two-MRS models to that CSL-only model, with the resulting p-values indicating whether
either of these alternative scores provided additional predictive benefit. MRS evaluation in the REGICOR
case-control used logistic regression models, adjusting for the same sets of covariates where possible, though
traditional biochemical risk factors were only available in discrete low vs. high categories.

The biology underlying the CSL model was evaluated through a series of enrichment tests using the
component CpG loci and annotated genes. Gene ontology-based enrichment analysis of each cohort-specific
model was performed using the gometh function from the missMethyl package for R25. This procedure
uses gene annotations for CpGs from the HumanMethylation450 microarray annotation from Illumina (v1.0
B2). Enrichment analysis is then performed for each gene ontology category using Wallenius’ noncentral
hypergeometric distribution to account for inconsistent representation of CpG sites across genes. The overall
merged set of CpGs included in the final CSL model was then tested for enrichment in transcription factor
binding sites using HOMER tool26. CpG loci (with respect to genome build hg19) were provided as inputs,
with 200 base-pair windows and repeat-masked sequences.
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Genomic risk score calculation
Imputed genotype data for WHI were retrieved from dbGaP (accession: phs000746.v2.p3. Variants were
filtered for imputation R-squared > 0.3, and annotated with rsIDs, loci, and allelic information using the
1000 Genomes Phase 3 download from dbSNP (download date: April 13, 2018). Weights for the genetic
risk score calculation (6,630,151 variants) were based on the genome-wide CVD score developed by Khera
et al15. We note that these scores were developed only for populations of European descent, and thus are
not optimized for the mixed-ancestry WHI population. GRS were then calculated as the weighted sum of
allelic dosages, normalized by the number of relevant SNPs available. Genotype data processing and GRS
calculation were performed using PLINK 2.0.

Risk score interaction analysis
Interaction analysis was performed using similar Cox regression models to those above, adjusting for the
“basic” set of covariates and using robust standard error estimates. To facilitate visual comparisons, main-
effect regressions for the MRS were fitted within risk strata defined by the FRS or GRS separately in each
dataset. To obtain overall interaction effect estimates, an interaction between MRS and either FRS or GRS
was introduced into a combined regression including all datasets, while allowing stratified baseline hazards
(strata() argument to the coxph function). We note that main effects in the interaction analysis are biased
upwards since the regression datasets were used for training the MRS. Regressions assessing the GRS excluded
non-white participants to match the ancestry used to develop the CVD score15.

For quasi-replication of these associations in the REGICOR dataset, stratified logistic regressions were used
to discriminate MI cases from controls using the MRS, while adjusting for estimated cell count fractions as
well as two SVA components (as in the main REGICOR models). In the absence of continuous values for
blood pressure and lipids, an empirical risk function was generated by first performing a logistic regression on
the following cardiovascular risk factors: age, sex, estimated cell count fractions, BMI, diabetes, smoking
status, hyperlipidemia (binary), and hypertension (binary), along with two SVA components. Predicted risks
based on this model were then used to stratify subjects into four risk groups by evenly splitting the range of
predicted risks into four segments (thus resulting in strata based on raw risk, rather than percentiles).

Results
Cross-study learner model development
Epigenomic model development was performed in three cohorts, including the Women’s Health Initiative
(WHI), Framingham Heart Study Offspring Cohort (FHS), and Lothian Birth Cohort 1936 (LBC). The FHS
dataset was divided into two functionally separate groups (FHS-JHU and FHS-UM) based on differences
in subject selection and geographic location of laboratory methylation analysis (see Methods). Further
population details can be found in Table 1.

Fig. 1 outlines the computational workflow. Briefly, a cross-study learning (CSL) model was developed
by training time-to-event elastic net regressions on three of the datasets, while holding out the FHS-UM
subset for evaluation. Next, a model trained on all four datasets was subject to external replication in the
REGICOR study. CSL model CpGs were characterized as to their potential biological function, and model
performance was assessed across strata of alternative cardiovascular risk metrics.

The initial predictor was developed by training individual penalized Cox proportional hazards regression
models (single-study learners, or SSLs) in each of the three training cohorts (WHI, FHS-JHU, and LBC).
Predictions from these models were aggregated through a “stacking” method, in which the outcomes and
model predictions from each of the individual datasets are combined, and a regression is used to assign
weights to each of the model predictions (see Methods). This procedure led to FHS-JHU dropping out of
the ensemble model, with weights for this initial predictor as follows: 0.57 (WHI), 0.0 (FHS-JHU), and 0.43
(LBC). This result means that FHS-JHU did not generalize (i.e. to WHI and LBC) as well as the other two
components models.
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Table 1: Baseline parameters of the populations used for model development
Study/Subset WHI FHS-JHU LBC FHS-UM
Sample size 2023 484 818 2103
Age 65 (59-70) 71 (64-77) 69 (68-70) 64 (59-71)
Sex (female) 2023 (100%) 145 (30%) 406 (50%) 1270 (60%)
Ancestry
% European 959 (47%) 484 (100%) 818 (100%) 2103 (100%)
% African American 651 (32%) 0 (0%) 0 (0%) 0 (0%)
% Hispanic 413 (20%) 0 (0%) 0 (0%) 0 (0%)

Body mass index 29.1 (25.5-33.3) 28.2 (25.5-31.3) 27.5 (24.9-30.3) 27.4 (24.3-31)
LDL cholesterol 150 (126-175) 88 (73-107) 118 (89.5-150.3) 107 (87-128)
HDL cholesterol 51 (43-60) 49 (40-60) 56.1 (47.2-68.3) 56 (45.8-69)
Triglycerides 127 (92-177) 101.5 (75-141.2) 128.4 (97.4-171.2) 102 (73-142)
Fasting glucose 96 (88.6-108) 106 (97-116) Unavailable 100 (94-109)
Systolic blood pressure 131 (120-143) 130 (117-143) 148.7 (137-161.3) 126 (116-138)
# CVD events
Prior only 0 127 70 112
Incident only 1009 67 133 146
Prior and incident 0 58 164 34

* Continuous values shown as: median (interquartile range)
WHI = Women’s Health Initiative, FHS-JHU = Framingham Heart Study Offspring Cohort
(Johns Hopkins University subset), LBC = Lothian Birth Cohorts 1936, FHS-UM = Framingham
Heart Study Offspring Cohort (University of Minnesota subset)

Assessment in held-out FHS subset
Stacking of the three initial predictors resulted in model weights of 0.57, 0, and 0.43 for WHI, FHS-JHU, and
LBC, respectively (i.e. the FHS-JHU sub-model did not ultimately contribute to the initial ensemble model).
The resulting ensemble predictor was evaluated using robust Cox proportional hazards models in FHS-UM,
showing strong associations with incident CVD in an unadjusted model (HR=1.58, 95% CI: 1.37-1.83),
which was attenuated partially through adjustment for standard covariates (age, sex, and estimated cell
type fractions; HR=1.28, 95% CI: 1.10-1.50) as well as CVD risk factors (HR=1.29, 95% CI: 1.09-1.51).
Results for the unadjusted model and three sensitivity models are shown in Table 2. These results were
robust to sensitivity analyses excluding all individuals who experienced prior CVD events (Supp. Table S1),
and produced similar results when incident event status was analyzed as a binary outcome using logistic
regression (p = 3.3e-4).

Results from comparison of CSL performance to models trained on combined datasets (either naive combination
or including preprocessing using ComBat) are shown in Supp. Fig. S1. The ComBat-preprocessed model had
modestly higher hazard ratios in FHS-UM, while relative differences with the combined model depended on
the covariates included. However, likelihood ratio tests using the Basic model covariates (age, sex, and cell
type fraction-adjusted) did not reveal a strong added predictive benefit of either the combined (p = 0.58) or
ComBat (p = 0.08) risk scores over that using only the CSL.

Final CSL model characterization
The stacking regression in the final CSL model gave the most weight to WHI (0.48) and LBC (0.38), while
retaining nonzero weights for FHS-JHU (0.06) and FHS-UM (0.08). This result indicates that the WHI and
LBC-trained models were better able to generalize to the other cohorts than vice versa. There was very little
overlap of specific CpG sites across cohort-specific models, with a maximum of 13 CpGs shared between two
models (WHI and FHS-UM) and no CpGs shared between three or more models (Fig. 3a). Despite this lack
of site-specific overlap, there was broad agreement for three of the four component SSL models at the level of
enriched biological processes, with all except FHS-JHU enriched most strongly for proximity to genes involved
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Table 2: MRS performance in held-out FHS subset
Model HR per s.d. MRSa P-value
Unadjusted1 1.58 5.4e-10
Basic2 1.28 2.0e-03
Plus risk factors3 1.29 2.7e-03
FRS only4 1.36 2.0e-05
a Estimated hazard ratio per standard deviation of
the methylation-based risk score

1 No covariates
2 Adjusted for age, sex, and estimated cell type
fractions

3 Additionally adjusted for BMI, LDL, HDL, SBP,
diabetes status, and current smoking

4 Adjusted for Framingham Risk Score only

Table 3: Results from replication in REGICOR MI case-control
Model ComBat Combined CSL
Unadjusted 1.79 [1.39-2.31] 1.86 [1.45-2.38] 1.83 [1.41-2.37]
Basic 2.16 [1.58-2.93] 2.12 [1.57-2.87] 2.14 [1.58-2.89]
Plus risk factors 1.76 [1.22-2.54] 1.66 [1.15-2.4] 1.61 [1.11-2.34]

* Results are presented as: OR per s.d. MRS [95% CI]
* Model covariates as in Table 2
* All models above are adjusted for two surrogate variable analysis
(SVA) components.

in homophilic cell adhesion (Fig. 3b). MRS component CpGs tended to be found in similar genomic loci to
the overall set of variable CpGs, and were enriched in gene bodies and depleted in CpG islands compared to
the full microarray CpG set. However, MRS CpGs did show a modest enrichment in and around CpG islands
compared to the set of variable CpGs (Fig. 3d). To seek more clarity as to potential biological mechanisms
represented by the MRS, the HOMER tool was used to calculate enrichment of transcription factor (TF)
binding motifs in the MRS component CpG sites. Using the union of all individual SSL CpG sites as input,
no strong enrichments were found (all q-values >0.5).

To better understand the stability of the risk score over time, intraclass correlation coefficients (ICCs)
were calculated for two sets of grouped samples: 26 technical replicates from FHS and approximately 1000
longitudinal samples (across 3 visits, or about 6 years total) from LBC (Supp. Table S2). The technical
replicates showed an ICC of 0.85, while the longitudinal samples showed an ICC of 0.68. As would be
expected, the ICC for samples closer in time (Waves 1 & 2; ICC = 0.69) were higher than that for samples
more distant in time (Waves 1 & 3; ICC = 0.61). Based on the observation of imperfect stability of the MRS
over time as well as the partial attenuation in predictive power after adjustment for age, its component CpGs
(the 1305-element union of all CpGs in any of the four individual SSL models) were examined for overlap with
established epigenetic age metrics. While no enrichment was seen for the original cross-tissue DNAm age from
Horvath27, strong enrichment was seen for the morbidity-directed PhenoAge5 (9 of 513 CpGs; p=2.3e-5) and
especially the blood-specific aging marker from Hannum et al.28 (13 of 71 CpGs; p=5.9e-21). We note that
these overlaps do not constitute a major fraction of either CpG set, but are nonetheless highly statistically
significant. The PhenoAge metric is based on some known cardiovascular risk factors (e.g. C-reactive protein)
and is known to associate with CVD, but is not trained in any of the cohorts included here.
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Discrimination in myocardial infarction case-control
As one form of replication, the MRS was investigated for its discriminative performance in a nested case-control
for prior myocardial infarction in the REGICOR cohort (Table 3; cohort description in Supp. Table S3).
Though this dataset contained prevalent (rather than incident) events, its matching of sex and age allowed
an evaluation free of potential confounding by these factors. The MRS was able to discriminate cases and
controls in both unadjusted (odds ratio = 1.79, p = 6.33e-6) and, to a lesser degree, risk factor-adjusted
models (odds ratio = 1.61, p = 0.019). Given the relatively large confidence intervals, there was no meaningful
difference in odds ratios across modeling strategies (Combined, ComBat, and CSL) for any of the adjustment
models.

Interactions with alternate risk metrics
To understand how the present risk score interacts with other established CVD risk metrics, the performance
of the MRS was re-evaluated after stratifying individuals by risk scores reflecting either demographic and
biochemical features (Framingham Risk Score), or genetic variants (based on Khera et al. 2018). First, the
marginal effects of these risk scores were confirmed in each population. The Framingham Risk Score (FRS)
was strongly predictive in WHI and FHS, while surprisingly showing no association with CVD incidence in
LBC (Supp. Table S4). The genetic score was evaluated in WHI, demonstrating a moderate association with
CVD (odds ratio per standard deviation = 1.28, p = 1.1e-6).

In Cox models using baseline hazards stratified by study and performed using the final four-study MRS, it
appeared that the MRS was more effective in those in lower “traditional” risk strata (according to the FRS;
Fig. 4). As a sensitivity analysis, the cohorts were fully stratified into separate models, in which this pattern
was visually clear in WHI and FHS-JHU (Supp. Fig. S2). The pattern did not appear in LBC, although we
note that the Framingham Risk Score also did not show a “main effect” for predicting incident CVD in this
cohort. A similar pattern appeared with respect to genetic risk in WHI (European ancestry participants only
based on the formulation of the relevant risk score), in which maximum MRS performance was achieved in the
lowest alternative risk stratum. Supplementing these visual comparisons, combined Cox regressions across all
cohorts (allowing for different baseline hazards across studies) showed a strong MRS-FRS interaction effect
(7% reduction in HR for the MRS per 10% increase in FRS; p = 8.27e-05), while that for the MRS-GRS
interaction did not reach nominal statistical significance (2% reduction in HR for the MRS per standard
deviation increase in GRS; p = 0.719).

To explore the clinical potential of these interactions further, we returned to the initial MRS (trained in 3
datasets with FHS-UM held out). The FHS-UM dataset was filtered to include only participants with lower
CVD risk based on the FRS (<10% estimated 10-year risk). Within this lower-risk subset, participants in the
upper MRS quintile had more than double the risk of the remainder of the participants: 7% (12/176) versus
3% (19/701).

FRS could not be calculated in the REGICOR dataset, as not all risk factors were available as continuous
values. However, stratified models replicated the observation of greater MRS discrimination in the lowest
alternative risk stratum. An empirical risk function was generated through logistic regression of MI status
on cardiovascular risk factors (age, sex, BMI, diabetes, smoking status, hyperlipidemia (binary), and
hypertension). Predicted MI risk using this model was used to stratify subjects into four risk groups, with
MRS odds ratios (per standard deviation) of 4.49 in the lowest-risk group versus 1.20 in the highest-risk
group. More detailed results from these analyses are shown in Supp. Table S5.

Discussion
Epigenetic signatures of cardiometabolic diseases and aging in general are being actively explored as biomarkers
of disease risk that are potentially modifiable and reveal underlying biological mechanisms. Here, in a novel
application of a cross-study ensembling method, we introduce a DNA methylation-based score specific to
cardiovascular disease risk. The model performs similarly to one trained on a direct combination of the
component datasets, and may be most strongly predictive in individuals predicted to be at lower risk based
on traditional risk factors.
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We opted to use cross-study learning to train our risk model based on the expectation that differences across
cohorts (e.g. demographic, behavioral) may contribute to heterogeneity in both the marginal distribution
of the CpG features and the conditional distribution of the CVD outcome. Under these conditions, the
generalizability of a single-study predictor is often obscured or overstated29,30. The performance of the CSL
model was similar to that of models trained on the merged cohorts with or without batch adjustment via
ComBat. This suggests that the assumptions made by these direct combination strategies (i.e. that the
heterogeneity structure can be captured by variation in the marginal effects of each CpG site) are met. In
practice, this underlying structure is unknown, and we highlight that the CSL was able to produce similar
gains in predictive accuracy without making specific assumptions.

In assessing the stability of the MRS, we observed reasonable reproducibility between technical replicates
(ICC=0.85). ICCs for LBC subjects over time were somewhat lower (ICC=0.68), which is to be expected
due to not only changes in environment, but also the known epigenetic evolution with age that we observed
to be enriched in the components of our score. Furthermore, this value is at the upper end of the range of
single-CpG repeatability measurements over time calculated in the combined Lothian Birth Cohorts (1921
and 1936)31. These ICC values suggest an imperfect but usable reproducibility of the MRS, and an aggregate
marker that is fairly robust considering the low replicability that has been observed for individual sites in
technical replicates (general median ICC of 0.3 and mode of 0.75 in a “high reliability” cluster)32.

The enrichment of the MRS component CpGs for proximity to genes related to cell-cell adhesion (in all subsets
except FHS-JHU) is indicative of the underlying biological mechanisms. As we have previously observed
in the WHI and FHS cohorts, it appears that immune activation is central to the prognostic information
contained in leukocyte DNA methylation14. For example, epigenetic processes have been shown to be involved
in the activation and increased adhesion of monocytes in response to environmental insults and metabolic
stress, though these have been explored primarily in relation to histone modifications33. Our results provide
preliminary support for an attractive model in which a methylation-based score could act as a monitor of
cumulative stress in leukocytes and their corresponding activation towards a more atherogenic state.

Existing epigenetic scores have shown varying strength in predicting incident cardiovascular disease. An early
investigation examined blood-based methylation in LINE-1 elements, finding strong associations of global
hypomethylation with prevalent and incident ischemic heart disease global (LINE-1), though additional reports
showed opposite associations of methylation at repetitive elements with CVD34. Guarrera et al. developed
a biomarker for MI based on global LINE-1 and ZBTB12 gene methylation that provided a modest net
reclassification index improvement (0.23-0.47) compared to traditional risk factors only. Multiple epigenetic
aging metrics, though not developed specifically for CVD, have been shown to predict incident CHD, including
PhenoAge (odds ratios from 1.02 to 1.08) and GrimAge (hazard ratio = 1.07, adjusted for age and technical
factors)5,24. While these associations are statistically significant, they do not represent clinically meaningful
improvements in discrimination. Our observed hazard ratio of 1.28 (Basic model in the held-out FHS-UM
dataset) indicates that this MRS may be closer to clinical relevance. We note that our component CpG
sites overlap strongly with those of these established epigenetic metrics including PhenoAge, suggesting
that it captures some of the same biological patterns. However, the mechanistic significance of the specific
methylation signals captured by these aging-related metrics, whether as markers of epigenetic regulation
breakdown or the work of an “epigenetic maintenance system”, is still unclear27,35.

In examining the potential clinical utility of an novel risk score for CVD, it is important to understand to
what extent it is redundant with or complementary to existing risk metrics. This type of cross-metric analysis
can be clinically relevant, as demonstrated for example in a recent investigation exploring the interaction
between genetic and lifestyle-based risk prediction for dementia36. Here, we saw a pattern of improved
epigenetic risk prediction in individuals whose cardiovascular risk based on traditional metrics (here, the
Framingham Risk Score) was low. This pattern replicated in the REGICOR dataset (though FRS could
not be directly calculated), with improved MRS discrimination in lower-risk subjects based on an empirical
risk function. While these associations are preliminary, they suggest that an epigenetic risk score could help
identify higher-risk individuals who otherwise would not have been detected by other metrics. While we did
not identify any robust patterns of differential MRS performance in strata based on a genetic cardiovascular
risk score, there may have been lower power to detect any such patterns from the outset given the modest
discriminatory performance of the GRS in WHI.
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Multiple limitations should be acknowledged. While lymphocytes are known to be important in CVD
pathogenesis, there is likely additional biological signal in other CVD-relevant tissues not examined here.
Additionally, the present definition of CVD was chosen to balance specificity of CVD subtypes with sample
size, but this balance could be altered to focus on more specific disease subtypes (e.g. myocardial infarction)
or a broader definition of CVD (e.g. including heart failure). Finally, while the REGICOR dataset provided
an important age- and sex-matched case-control setting for replication of the MRS, this work would benefit
from future replication in an independent cohort enabling assessment of incident disease.

In sum, we have developed an epigenetic risk score for cardiovascular disease that provides additional predictive
power beyond existing risk measures, and may show improved performance in populations otherwise designated
as low-risk. Furthermore, we have shown a novel application of a cross-cohort ensembling method that may
provide significant value to future investigations in genomic epidemiology.
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Final model/risk score development and characterization
• Stacking of predictors from all four datasets
• Enrichment analysis
• MRS stability

Initial cross-study learner MRS model development
• Stacking of WHI + FHS-JHU + LBC predictors
• Performance assessment in FHS-UM 

Elastic net-based Cox models

Women’s Health 
Initiative (WHI)

2023 participants
1009 cases

Framingham Heart Study 
Offspring Cohort (FHS-JHU) 

484 participants
125 cases

Framingham Heart Study 
Offspring Cohort (FHS-UM) 

2103 participants
180 cases

Lothian Birth 
Cohorts 1936 (LBC) 

818 participants
297 cases

Interactions with alternative risk metrics
• Framingham Risk Score 
• Genetic risk

Replication
REGICOR dataset (case-control for prevalent MI)

Figure 1: Computational workflow for MRS development and evaluation. The initial MRS was trained in
three cohorts with FHS-UM held out to evaluate performance. The final MRS was then trained using all
four datasets and examined for biological significance, before testing for prevalent MI discrimination in an
independent cohort and assessment of interactions with genetic and traditional risk scores.
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Figure 2: Kaplan-Meier survival curves in the held-out FHS-UM dataset. Individual curves correspond to
tertiles of the initial (3-dataset) MRS. Vertical ticks correspond to censored observations, and colored bands
represent 95% confidence intervals for tertile-specific survival curves. X-axis is limited to the time span in
which at least 50 uncensored observations remained for each tertile (3275 days).

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 23, 2019. ; https://doi.org/10.1101/19006965doi: medRxiv preprint 

https://doi.org/10.1101/19006965
http://creativecommons.org/licenses/by-nd/4.0/


a

FHS−UM

LBC

FHS−JHU

WHI

0.0 0.1 0.2 0.3 0.4 0.5

Ensemble weight

b
W

H
I

FH
S−

JH
U

LB
C

FH
S−

U
M

Cell communication

Multicellular organism
development

Nervous system
development

Cell−cell signaling

Biological adhesion

Cell adhesion

Cell−cell adhesion

Cell−cell adhesion via plasma−
membraneadhesion molecules

Homophilic cell adhesion via plasma−
membrane adhesion molecules

c

Gene−based CpG Island−based

1stE
xo

n
3'UTR

5'UTR
Body

TSS1500

TSS200
Isla

nd

N. S
helf

N. S
hore

OpenSea

S. S
helf

S. S
hore

0.0

0.1

0.2

0.3

0.4

C
pG

 fr
ac

tio
n 

w
ith

 a
nn

ot
at

io
n

MRS CpGs

100k variable CpGs

All CpGs

d

Figure 3: Characterization of the final CSL model. a) Overlap of CpG sites in the four individual predictors
constituting the final model. b) Study-specific weights for constructing the ensemble model (derived from the
“stacking” regression). c) Results from Gene Ontology-based enrichment analysis using genes annotated to
SSL component CpGs. All GO terms with false discovery rate < 0.001 in any cohort are shown, and colored
according to -log(p-value) for enrichment in each SSL. Values were cut at -log(p) = 20 for visualization
purposes. d) Proportion of CpGs in the full set of CSL CpGs (union of CpG sets in each component SSL)
compared to the 100,000 most variable CpGs (as used in SSL model development) and the full set of available
CpGs. Groupings according to both gene-based and CpG island-based CpG annotations are shown.
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Figure 4: Interactions of MRS with other biomarkers of CVD risk. a) Hazard ratios for the MRS within
subsets of 10-year generalized CVD risk according to the Framingham Risk Score. b) Hazard ratios for the
MRS within quartiles of a genetic cardiovascular risk score (in white WHI participants only). Hazard ratios
are estimated using the final MRS, which was trained using each of these datasets. Cox regressions included
stratum-specific baseline hazards and were adjusted for age, sex, and estimated cell subtype fractions. Error
bars represent standard errors for the hazard ratio estimates.
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