
1 
 

FULL TITLE: Spatial epidemiology of Japanese encephalitis virus and other infections of the central 1 
nervous system in Lao PDR (2003 – 2011): a retrospective analysis 2 
 3 
SHORT TITLE: Spatial epidemiology of central nervous system infection in Lao PDR 4 
 5 
Sayaphet Rattanavong1, Audrey Dubot-Pérès1,2,3, Mayfong Mayxay1,2,4, Manivanh Vongsouvath1, Sue J 6 
Lee2,5, Julien Cappelle6,7,8,9, Paul N. Newton1,2,5, Daniel M. Parker10,11  7 
 8 
 9 
 10 
Sayaphet Rattanavong: Sayaphet@tropmedres.ac 11 
Audrey Dubot-Pérès: Audrey@tropmedres.ac 12 
Mayfong Mayxay: Mayfong@tropmedres.ac 13 
Manivanh Vongsouvath: Manivanh@tropmedres.ac 14 
Sue J Lee: Sue@tropmedres.ac 15 
Julien Cappelle: Julien.cappelle@cirad.fr 16 
Paul N. Newton: Paul.Newton@tropmedres.ac 17 
*Daniel M. Parker: Dparker1@uci.edu 18 
 19 
*corresponding author 20 
 21 
1. Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, 22 
Mahosot Hospital, Vientiane, Lao PDR 23 
2. Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University 24 
of Oxford, Churchill Hospital, Oxford, U.K. 25 
3. Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée 26 
Infection), Marseille, France 27 
4. Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR 28 
5. Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 29 
Thailand 30 
6. Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia. 31 
7. CIRAD, UMR ASTRE, F-34398, Montpellier, France 32 
8. UMR ASTRE, CIRAD, INRA, Montpellier University, F-34398, Montpellier, France. 33 
9. UMR EpiA, INRA, VetAgro Sup, F-69280, Marcy l’Etoile, France. 34 
10. Department of Population Health and Disease Prevention, University of California, Irvine, U.S.A.  35 
11. Department of Epidemiology, School of Medicine, University of California, Irvine, U.S.A. 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 25, 2019. ; https://doi.org/10.1101/19005884doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/19005884
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

ABSTRACT 48 

Background. Central nervous system (CNS) infections are important contributors to morbidity and 49 

mortality and the causative agents for ~50% patients are never identified. The causative agents of some 50 

CNS infections have distinct spatial and temporal patterns.  51 

Methodology/Principal Findings. Here we present the results of a spatial epidemiological and 52 

ecological analysis of CNS infections in Lao PDR (2003 – 2011). The data came from hospitalizations for 53 

suspected CNS infection at Mahosot Hospital in Vientiane. Out of 1,065 patients, 450 were assigned a 54 

confirmed diagnosis. While many communities in Lao PDR are in rural and remote locations, most 55 

patients in these data came from villages along major roads. Japanese encephalitis virus ((JEV); n=94) 56 

and Cryptococcus spp. (n=70) were the most common infections. JEV infections peaked in the rainy 57 

season and JEV patients came from villages with higher surface flooding during the same month as 58 

admission. JEV infections were spatially dispersed throughout rural areas and were most common in 59 

children. Cryptococcus spp. infections clustered near Vientiane (an urban area) and among adults.  60 

Conclusions/Significance. The spatial and temporal patterns identified in this analysis are related to 61 

complex environmental, social, and geographic factors. For example, JEV infected patients came from 62 

locations with environmental conditions (surface water) that are suitable to support larger mosquito 63 

vector populations. Most patients in these data came from villages that are near major roads; likely the 64 

result of geographic and financial access to healthcare and also indicating that CNS diseases are 65 

underestimated in the region (especially from more remote areas). As Lao PDR is undergoing major 66 

developmental and environmental changes, the space-time distributions of the causative agents of CNS 67 

infection will also likely change. There is a major need for increased diagnostic abilities; increased access 68 

to healthcare, especially for rural populations; and for increased surveillance throughout the nation.  69 

 70 
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AUTHOR SUMMARY 72 

Infections of the central nervous system (CNS) are important with regard to public health. However 73 

many CNS infections are never diagnosed. In this analysis we investigated spatial and temporal patterns 74 

in hospitalized patients with suspected CNS infections in Lao PDR. We found that patients were most 75 

likely to come from villages located along major roads and highways. Patients from remote areas may 76 

have more difficulty reaching healthcare facilities. The most commonly diagnosed infection in these 77 

patients was Japanese encephalitis virus (JEV). Patients with this disease came from locations that were 78 

optimal for the mosquito vectors that spread JEV, rural areas with surface water and during the rainy 79 

season. Our analyses suggest that CNS infections should be a priority for public health workers in the 80 

region. Diagnostic capabilities should be increased throughout the nation; surveillance efforts should be 81 

broadened; and efforts should be increased toward providing easy access to healthcare for rural and 82 

remote populations.  83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

 91 

 92 

 93 

 94 

 95 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 25, 2019. ; https://doi.org/10.1101/19005884doi: medRxiv preprint 

https://doi.org/10.1101/19005884
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

INTRODUCTION 96 

Numerous illnesses go undiagnosed and the causative agents of many infections are never 97 

identified. In regions where access to healthcare facilities is limited and where diagnostic capabilities are 98 

few, a smaller proportion of diseases are objectively diagnosed. Diseases with mild symptoms may more 99 

frequently go untreated, but in some areas even severe illnesses commonly go undiagnosed and 100 

untreated. Infections of the central nervous system (CNS) can be particularly severe, affecting the brain 101 

and/or spinal cord and/or the surrounding meninges, frequently resulting in death.  102 

Pathogens that invade and infect the CNS include viruses, bacteria, fungi, parasites, and prions. 103 

As with other infections, the causative agent(s) of many CNS infections are never determined 104 

(frequently <50%) [1–3]. Symptoms of CNS infection can range widely, even for single causative agents, 105 

leading to further difficulties with diagnosis. Diagnoses are frequently presumptive and non-specific (i.e. 106 

meningitis is often presumed to be caused by bacteria whereas encephalitis is presumed to be caused 107 

viruses [2,4–6]). Some causative agents are specific to regions (e.g. Japanese Encephalitis, Saint Louis 108 

Encephalitis, Rift Valley Fever Viruses) and exhibit seasonal fluctuations (e.g. vector borne infections), 109 

therefore geography and seasonality can facilitate presumptive diagnosis of CNS diseases [4,7].  110 

In Southeast (SE) Asia, CNS infections are increasingly recognized as important contributors to 111 

morbidity and mortality [1,8,9]. However, detailed medical and epidemiological data are frequently 112 

lacking, especially for low income nations and from remote areas within middle-to-high income nations. 113 

Known important viral CNS infections in SE Asia include Japanese encephalitis, dengue, and rabies 114 

viruses [1]. Important bacterial CNS infections include Streptococcus pneumoniae, Haemophilus 115 

influenzae, S. suis, Mycobacterium tuberculosis and Neisseria meningitidis. Orientia tsutsugamushi, 116 

Rickettsia typhi and Leptospira spp. are increasingly recognized as important causes [9]. Detailed 117 

analyses that confirm the cause of CNS related infections or assess their spatial and temporal 118 

distribution in the region are rare [8–11,14].  119 
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 120 

We recently published the results of a study of the etiology and impact of CNS infections 121 

diagnosed among 1,065 patients at Mahosot Hospital, Vientiane, Lao PDR [14]. The goal of this 122 

secondary analysis was to investigate the spatial distribution(s) of CNS-related infections; to look for 123 

differential spatial distributions for major causative agents; and to explore potential geographic, 124 

demographic, and environmental correlates of these infections.  125 

DATA AND METHODS 126 

Data sources, processing and merging 127 

Data used in this research were compiled from four main sources (Supporting Figure 1). The 128 

epidemiological data come from an 8-year research project on CNS infections in Lao PDR from all 129 

patients who received diagnostic lumbar puncture (LP) at Mahosot Hospital in Vientiane, Lao PDR 130 

between January 2003 and August 2011 and consenting to participate [14]. All patients were admitted 131 

to the hospital because of suspected CNS infection and Mahosot Hospital is the only medical facility in 132 

Lao PDR capable of performing diagnostic LP and cerebral spinal fluid (CSF) analysis. Tests for a large 133 

panel of pathogens were performed at the Microbiology Laboratory following international standards 134 

(details provided in Supporting Materials I and [14]). Demographic (age, gender, ethnicity) and 135 

geographic (home village) characteristics of patients were recorded in the database. 136 

The epidemiological data were used to create two separate datasets: One aggregated at the 137 

village level (one row per location) and another was maintained at the individual level, with one row per 138 

individual. The official Lao PDR censuses from 2005 and 2015 were used to geocode villages (based on 139 

village name and administrative units listed in patient records) and to assign village population 140 

estimates to each village (taking a mean population size between 2005 and 2015). Village location and 141 

population sizes were then merged to both the individual- and village-level datasets. 142 
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A subset of villages within the geographic region of the home villages of included patients was 143 

selected by overlaying a standard deviational ellipse with 3 standard deviations (calculations described 144 

in Supporting Materials II) around the patient home villages and then selecting all villages within that 145 

ellipse (Supporting Figure 2). These villages were then retained for village level comparisons between 146 

villages populated, and not populated, with patients admitted with CNS disease needing an LP. This 147 

subset of villages is hereafter referred to as the “study area”.  148 

Major road network data was taken from OpenStreetMaps (http://www.openstreetmap.la), 149 

selecting “primary”, “secondary”, and all major connecting roads (downloaded in February 2017,  150 

Supporting Figure 3). Primary and secondary roads are the two largest road classifications for the 151 

nation. Primary roads link major towns and cities and secondary roads link mid-sized towns. Primary and 152 

secondary link roads are ramps or slip roads that connect other roads to primary or secondary roads. 153 

Together, these types of roads are hereafter referred to as “major roads”. Smaller roads were not 154 

included in this analysis as they are less likely to be accurately included in the OpenStreetMaps data. The 155 

Euclidian distance was then calculated from all villages in the census to the nearest point along a major 156 

road. These distances were merged to both the village- and the individual-level datasets.  157 

Environmental predictor variables for vegetation and surface water were derived from 158 

Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD13Q1/MYD13Q1 250 meter 159 

AQUA/TERRA 16 day composites). Since many infectious diseases, especially vector borne diseases, are 160 

strongly influenced by environmental factors we hypothesized that indicators of vegetation and surface 161 

flooding would correlate with some specific diagnoses. Three environmental indices were downloaded 162 

and considered in these analyses: a normalized flooding index (NFI) [15]; the normalized difference 163 

vegetative index (NDVI); and the enhanced vegetation index (EVI). NFI is indicative of surface water, 164 

NDVI is indicative of green surface vegetation, and EVI is an improved measure of green vegetation that 165 

is intended to account for dense forest canopies and atmospheric conditions that can lead to error in 166 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 25, 2019. ; https://doi.org/10.1101/19005884doi: medRxiv preprint 

https://doi.org/10.1101/19005884
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

NDVI measurements. Data were downloaded for each of these environmental indices (EI) within each 167 

16-day time period from February 2002 through December of 2011. The final analyses conducted in this 168 

research retained only the EVI and NFI for environmental predictors (summary statistics for NDVI are 169 

included) because NDVI and EVI were strongly correlated. The EIs are described in more detail in 170 

Supporting Materials III. 171 

The environmental raster data were then summarized and extracted based on varying buffer 172 

sizes (2km, 5km, and 10km) for each village in the individual- and village-level datasets. Permanent 173 

water bodies (such as the Mekong River and Nam Ngum Dam) were masked from the NFI calculations. 174 

For the village-level datasets, mean values of each environmental variable was calculated for the study 175 

period duration and used as an indicator of “average” vegetation or surface water characteristics of 176 

each village. For the individual-level dataset the values were extracted based on the admission date, 177 

using increasing durations of time prior to admission (within the same month, within the previous 2 178 

months, within the previous year).  179 

The final datasets include the village-level data, that is a subsample of 98% of all villages with 180 

patients included in the study and the other census designated villages within the same region (the 181 

study area), and the individual level dataset that includes all patients included in the study. Variables 182 

used in this analysis and their descriptions are listed in Table 1. 183 

Exploratory spatial data analysis 184 

Summary statistics (median; Q1:Q3; mean) were calculated for the distances between villages 185 

and the nearest major road, and aggregated by whether or not the village was home to included 186 

patients and by specific diagnoses. Summary statistics (mean and 95% confidence intervals) were also 187 

calculated for all environmental variables, at each buffer size and temporal resolution, and for each of 188 

the major diagnoses. Tukey’s post hoc range test was used to assess statistically significant differences in 189 

environmental indices across diagnoses.   190 
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Standard distance deviations (SDDs) and standard deviation ellipses (SDEs) were calculated 191 

(details in Supporting Materials II) and mapped to measure and visually analyze the central tendency 192 

and spatial distributions for all patient home villages and by each of the major single (mono-infection) 193 

diagnoses.  194 

Formal analyses 195 

Multivariable regressions were used to calculate model-adjusted odds ratios and confidence 196 

intervals. The regressions at the village level focused on study patient villages and the home villages of 197 

JEV diagnosed patients. A multivariable regression was also done at the individual level focusing on JEV 198 

infected patients. Other diagnoses were not included in these analyses because of small numbers of 199 

cases per village. 200 

Logistic generalized additive models (GAMs) were used for variable selection and specification 201 

(detailed in Supporting Materials IV and in Table 1) for the final models. The GAMs were used to 202 

examine different specifications of the continuous environmental, geographic, and demographic 203 

variables and for changes in model fit and strength of association across buffer sizes (i.e. 2km, 5km, or 204 

10km buffers) and for different time durations for EI measurements (i.e. same month, 2 months prior, 205 

12 months prior to hospital admission). The final model covariates were chosen based on a combination 206 

of a priori hypotheses, model fit (using the Akaike information criterion), and strength of association 207 

between the covariate and the model outcome variable.  208 

The final model for the individual-level analysis was a generalized logistic mixed model with a 209 

random effect for home village. The final model for the village-level analysis was a logistic regression.   210 

Software 211 

All maps were created using QGIS version 3.4.9. R cran version 3.5.2 was used for downloading, 212 

processing, and wrangling MODIS data (using the “MODIStsp”; “raster”; “rgdal”; and “maptools” 213 

packages) and for all regressions. The “mgcv” package was used for GAMs and the lme4 package was 214 
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used for the generalized mixed models.  Euclidian distances between villages and major roads were 215 

calculated using QGIS. ArcMap version 10.5.1 was used to calculate SDDs and SDEs.  216 

Ethics approval 217 

Ethical clearance for the CNS study was granted by the Oxford University Tropical Ethics 218 

Research Committee and by the Ethical Review Committee of the Faculty of Medical Sciences, National 219 

University of Laos. Between 2003 and 2006, both Oxford Tropical Ethics Committee and the Ethical 220 

Review Committee of the Faculty of Medical Sciences, National University of Laos, approved the use of 221 

oral witnessed consent. Oral consent was confirmed by a signed witness statement. Verbal consent 222 

(from 2003 – 2006) and written consent (from 2006 – 2011) were obtained from all recruited patients or 223 

immediate relatives. All ages were included provided that they or their guardian gave witnesses oral 224 

informed consent (2003 – 2006) and written informed consent since 2006.  225 

RESULTS 226 

Summary statistics 227 

A total of 1,065 patients were recruited with no LP contraindications and consented to have a 228 

diagnostic LP; 450 (42%) were assigned a final laboratory diagnosis. The most common of these were 229 

Japanese encephalitis virus ((JEV) 94 individuals); followed by Cryptococcus spp. with 70 individuals (9 230 

were C. gattii)); scrub typhus (Orientia tsutsugamushi) 31; Dengue virus 27; Leptospira spp. 25; murine 231 

typhus (Rickettsia typhi) 24; Streptococcus pneumoniae in 22 and 20 with Mycobacterium tuberculosis. 232 

124 patients died prior to discharge (out of 893 with recorded discharge type recorded).  233 

The majority (666, 63%) of patients were male, with the lowest sex bias in cryptococcal 234 

infections (40/70, 57% male) and the highest among dengue infections (22/27, 82% male) (Table 2). Age 235 

patterns were evident in JEV and cryptococcal infections, with median ages of 13 and 33 years, 236 

respectively (Table 2). Patients were linked to 582 different villages (multiple patients could come from 237 

the same village): 90 villages with JEV patients, 66 with cryptococcal patients, 31 with scrub typhus 238 
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patients, 27 with dengue patients, 24 with leptospiral patients, and 24 with murine typhus patients. The 239 

majority (870, 82%) of patients came from within Vientiane Prefecture (678, 64%) or Vientiane Province 240 

(192, 18%). 241 

A total of 6,416 villages (of 10,520 recorded in 2005 [16]) were selected as the study area for 242 

further village level analyses (Table 3). Villages that were home to study patients were 11 times (0.7km 243 

versus 6.3km, from Table 3) closer to a major road when compared to other villages within the study 244 

area. Scrub typhus and JEV infected patient homes were further from major roads than other patients, 245 

but the difference was not statistically significant in univariate analyses.  246 

The home villages of JEV patients were more broadly dispersed (Figure 1B) than for patients 247 

with other etiologies (Figure 1C), evident from the circular, larger SDE and SDD. The distribution of these 248 

JEV patient home villages was also relatively isotropic, with the SDE and SDD being nearly identical. 249 

Conversely, patients with cryptococcal infections were clustered near Vientiane City and along the road 250 

leading North/Northwest from the urban center (Figure 1C). Scrub typhus and murine typhus infections 251 

were also both clustered around Vientiane City but showed perpendicular spatial distributions 252 

(Supporting Figures 4D and 4G) a pattern previously described from IgG seropositivity data from 253 

Vientiane City [17]).  254 

Characteristics of patient home villages 255 

Mean NFI values for the 2km radius tended to be higher than for either the 5km or 10km radius 256 

as surface flooding is heterogeneous and taking a mean across larger radii dilutes the measurement. The 257 

opposite pattern was observed for both vegetation indices. The 2km radius for both mean NDVI and 258 

mean EVI was usually smaller than at 5km or 10km radii (Figures 2 and 3). 259 

Study patient villages had higher mean NFI values than non-study patient villages (Figure 2A) 260 

(non-study patient villages are those in the same study area as study patient villages but were not home 261 

to a study patient). The home villages of study patients diagnosed with dengue virus and cryptococcal 262 
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infections had high mean NFI values over the duration of the study period when compared to other 263 

major diagnoses (Figure 2A). 264 

Conversely, the home villages of study patients tended to have lower mean EVI values than non-265 

study patient villages (Figure 2C). Villages from which patients who were diagnosed with JEV were an 266 

exception to this general pattern. JEV patient home villages had higher mean EVI when compared to 267 

home villages of patients with dengue and cryptococcal infections (Figure 2C).  268 

Home villages of patients with JEV diagnoses had lower mean NFI over the duration of the study 269 

period, but had higher NFI than other major diagnoses when looking specifically at the month of 270 

admission (especially when compared to cryptococcal infections and murine typhus (Figure 3A)). JEV 271 

patient home villages also had higher EVI during the month of admission than most other mono-272 

infections, especially when compared to either cryptococcal infections or murine typhus (Figure 3C). 273 

Scrub typhus infections had higher EVI than cryptococcal infections when the measurement was taken 274 

at the 10km radius buffer (not detectable at smaller radii (Figure 3C)).  275 

Home villages of patients with dengue infections had higher NFI than murine typhus or 276 

Cryptococcus spp. patient home villages when considering the 2 months prior to admission (Figure 3D). 277 

Cryptococcus spp. patient home villages had particularly low EVI in the two months leading up to 278 

admission, especially when compared to JEV and Leptospira spp. patient home villages (Figure 3F).  279 

At one year prior to admission both Cryptococcus spp. patient home and dengue virus patient home 280 

villages had higher NFI than JEV patient home villages (Figure 3G).  281 

Logistic regressions for geographic, environmental and demographic predictors of CNS infections 282 

In agreement with univariate analyses, villages from which study patients came tended to be 283 

larger in population size (Supporting Figure 4), lower in elevation (Supporting Figure 5), and closer to a 284 

major road when compared to other villages within the study area (Table 4). They also had higher mean 285 

levels of surface flooding, with villages in the highest NFI quadrant having over two times the odds (AOR: 286 
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2.21; CI: 1.49 – 3.31) of being a home village for study patients when compared to neighboring villages 287 

in the study area (Table 4 and Figure 2). Villages from which JEV patients originated had few defining 288 

characteristics in the logistic regression, other than being larger in population size (AOR: 1.74; CI: 1.55 – 289 

1.96) and at lower elevations (AOR: 0.69; CI: 0.46 – 0.97) than non-study patient villages (Table 5).  290 

In the individual-level analysis (Table 6), age and season were the strongest predictors of JEV 291 

infections among all patients. Patients who were admitted between July and September had over seven 292 

times the odds (AOR: 7.40; CI: 1.45 – 37.67) of being diagnosed with JEV when compared to patients 293 

who were admitted between January and March (Table 6). JEV was most common in children aged 5 294 

through 14 (AOR: 2.74; CI: 1.31 – 5.69; ages 0 – 4 as the comparison group). NFI during the month of 295 

admission (10km buffer used in the regression) was also a strong predictor of JEV infection. Individuals 296 

who came from villages in the highest quadrant of NFI measurements had approximately 3 times the 297 

odds being diagnosed with JEV (AOR: 3.06; CI: 1.04 – 8.96). While study patients came from villages with 298 

lower mean elevations, patients who were diagnosed with JEV came from higher elevation villages in 299 

comparison to the other patients (AOR: 1.36; CI: 1.11 – 1.66). EVI was a significant predictor in models 300 

that did not include distance to road, village population, and elevation (Table 6 M1 and M2). 301 

DISCUSSION 302 

Patients from this study were recruited based on symptomology and a medical procedure that is 303 

only available at a single location in the nation (diagnostic LP at Mahosot Hospital, Vientiane). The home 304 

villages of all included study patients, regardless of diagnosis, were approximately centered on Vientiane 305 

City and were closer to major roads than would be expected by chance alone. For many of the infections 306 

studied in this analysis, this association is likely more related to geographic and financial access to 307 

healthcare systems rather than exposure to environmental risk factors – especially for infections that 308 

are more associated with rural areas (e.g. JEV). This finding also suggests that the results here may be a 309 

vast underestimate of the true burden of CNS infections, with much of the Lao population not being in 310 
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near proximity to a major road (Table 3). The causative agents of CNS infections differ in biology, 311 

ecology, and geography, and this is evident through the spatial distributions of the home villages of 312 

patients. The geographic, environmental, and demographic patterns exhibited by patients needing a 313 

diagnostic LP for suspected CNS infections, and for specific diagnoses, are the result of complex 314 

overlapping factors.  315 

A similar spatial pattern was described from an epidemiological analysis of CNS infections 316 

among children admitted to Ho Chi Minh City hospitals in Vietnam – with most patients coming from 317 

districts near the hospital [18]. While the majority of infections (55%) in the Vietnam study were 318 

presumed to be bacterial in origin, in this study from Lao PDR bacterial infections were identified in only 319 

38% (170 out of 450 patients with diagnoses). 320 

JEV was the single largest identified cause of CNS infections in these data; it primarily affected 321 

children (median 13 years of age, Table 2), occurred predominantly during the rainy season (likely 322 

corresponding to peaks in mosquito vector populations), and in villages with recent high levels of 323 

surface water [19]. JEV is a vaccine-preventable disease, but the vaccine has historically been expensive 324 

and vaccine programs are frequently limited by access to remote communities. In 2013 the WHO 325 

approved a less expensive vaccine (produced in China by the Chengdu Institute of Biological Products) 326 

which has since been used in mass vaccination campaigns in Lao PDR in 2013 and 2015 [20]. The vaccine 327 

is now routinely given to all children less than 9 months of age but coverage may be low in some areas.   328 

The second largest contributor to CNS diseases were cryptococcal infections, which are 329 

opportunistic fungal infections with high mortality [21]. Of the 70 patients with cryptococcal infections, 330 

12 died prior to discharge and another 8 likely died at home after leaving the hospital. Cryptococcal 331 

infections are generally acquired after inhalation of the yeast-like form of the fungus which has been 332 

associated with several ecological habitats (Cryptococcus gattii has been associated with over 50 species 333 

of trees; Cryptococcus neoformans has been associated with bird droppings but is also suspected to be 334 
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associated with plants [22,23]). This disease has a long incubation period [24,25] and while C. gattii 335 

infections commonly occur among immunocompetent individuals, C. neoformans infections are 336 

frequently associated with HIV infections [26,27]. In these data, 20 of the patients diagnosed with 337 

cryptococcal infections also had HIV infections. While several studies have shown that cryptococcal 338 

species exist in specific ecological habitats and have inferred environmental exposure, the long 339 

incubation period and complex natural history likely obfuscate ecological correlations.  340 

There are several limitations to this research. Diagnostic LPs are only conducted in Mahosot 341 

Hospital in the national capital. Logistical and financial difficulties in accessing healthcare facilities, and 342 

especially for etiological diagnostic capabilities, likely leads to severe under-reporting of meningitis, 343 

encephalitis, or in the diagnosing the causative agent in these conditions when the patient does access 344 

care. All of these factors ultimately lead to small case counts for numerous different causative agents. 345 

The spatial patterns in points (villages) and ellipses exhibited in these data are likely influenced by the 346 

shape of the nation and it is possible that the point patterns and ellipses would differ if we had data 347 

from neighboring nations. Spatial and temporal patterns that differentiate different infections might be 348 

more obvious if the surveillance system instead focused on any symptomatic infections (rather than only 349 

suspected infections of the CNS). Some pathogens are neurotropic whereas others have tropism for 350 

other organs, while being capable of occasionally infecting the CNS. This may partially explain the higher 351 

case counts of JEV and why we were able to identify spatial, temporal, and environmental predictors for 352 

this causative agent.  353 

OpenStreetMaps data are volunteered data and may be prone to error. For this reason we 354 

focused on major roads, whose routes have changed very little over the last decades. For the 355 

regressions, the distances from all villages to the nearest major road was also rounded to the nearest 356 

5km. Examination of satellite imagery in comparison with the major roads from OpenStreetMaps 357 

suggests that where error does exist, it is on a scale of +100 meters, meaning that measurements of 358 
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distances, as used in this analysis, should not be strongly influenced. Some of these data now come from 359 

over a decade ago. Surveillance systems of this type (based on relatively vague symptomology), with a 360 

wide panel of possible contributing causative agents, and necessary intensive laboratory components 361 

are extremely labor and time intensive.  362 

Lao PDR is currently undergoing vast environmental, demographic, and economic changes. Road 363 

networks are increasing in range and density and several areas (i.e. Vientiane, Savannakhet) are 364 

undergoing expansive urbanization [28]. These environmental changes will most likely result in shifting 365 

patterns of infectious diseases. As the region undergoes urbanization (including both a decrease in 366 

urban landscape and movement of human populations to urban centers), pathogens that thrive in rural 367 

areas (e.g. JEV) may undergo reduced transmission, especially if vaccine campaigns are more capable of 368 

reaching rural populations. Conversely, infections that cluster in urban and peri-urban areas (such as 369 

dengue and murine typhus) may increase in frequency.  370 

Several environmental indices from remote sensing instruments have shown potential for 371 

predicting disease risk, differentiating disease types, or for other surveillance efforts in SE Asia [29,30] 372 

and globally [31–35]. This analysis, and others like it, illustrates the ability to differentiate some 373 

infections (namely JEV when compared to other diagnoses) through the use of freely available data (i.e. 374 

MODIS) and software (R and QGIS) and routinely collected healthcare data. Surveillance systems and 375 

potentially diagnostic algorithms [36] in developing settings could benefit from inclusion of such 376 

resources. A far-reaching surveillance system that is representative of the entire nation and includes 377 

likely CNS infections would be beneficial in order to assess the true burden of CNS infections – many of 378 

which would benefit from primary and secondary prevention through increased provision of vaccines, 379 

vector control, and early diagnosis and treatment. Given the inherent difficulties in accurately 380 

diagnosing and treating CNS infections, the predictors reported here and from other epidemiological 381 

studies for major contributors to CNS diseases (i.e. age, seasonality, location, and environmental 382 
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characteristics) could be considered alongside clinical symptomology when presumptive diagnoses are 383 

being made. However, it will be important to consider current and ongoing demographic, 384 

environmental, and economic changes in Lao PDR.  385 

Finally, increasing population access to vaccines, diagnosis, and treatment would have clear 386 

benefits to overall population health. As with other parts of the developing world, a large fraction of the 387 

Lao population must travel long distances in order to reach primary healthcare centers. In 2005 73% of 388 

the Lao population was reported to live in rural areas, 21% without roads. By 2015 67% of the 389 

population were reported to live in rural villages with 8% in villages without roads [37]. For many 390 

communities, travel during the wet season remains difficult. Travel costs can also be prohibitive. Most of 391 

the CNS infections in this analysis occurred or developed symptoms during the wet season.  Public 392 

health initiatives that help to decrease the distances between communities and the healthcare services 393 

that they need are warranted.  394 

 395 
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Table 1: List of variables, their spatial and temporal scales, and transformations  538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

Variable description spatial scale temporal scale transformation

Village population

Population estimate of LP patient home village. 

This is calculated as a mean population value 

from the Lao PDR official census from years 2005 

and 2015.

For multivariable 

regressions, this variable 

was centered on its mean 

and standardized by its 

standard deviation.

Distance to major road

This is the distance in meters from the LP 

patient home village and the nearest point on a 

major highway network, from the 

OpenStreetMaps map layer. This distance was 

transformed into kilometers and rounded to the 

nearest 5 kilometers in order to account for 

measurement error.

This distance was 

transformed into kilometers 

and rounded to the nearest 5 

kilometers in order to 

account for measurement 

error.

For multivariable 

regressions, this variable 

was centered on its mean 

and standardized by its 

standard deviation.

Village elevation

This is the elevation of the LP patient home 

village, calculated from a digital elevation 

model. It is in meters above sea level. 

at village point

For multivariable 

regressions, this variable 

was centered on its mean 

and standardized by its 

standard deviation

NFI
This is the normalized flooding index, described 

in detail in the Supporting materials.

Mean values at 2km, 5km, 

and 10km buffers around 

each village.

For village level analysis: calculated as a mean 

value for the study duration.  For individual 

level analysis: Calculated for the same month 

(same 16 day time period); the previous 2 

months (mean of the previous 5 16 day 

intervals); and the previous year (mean of the 

previous 23 16 day intervals).

Aggregated into quartiles 

for multivariable 

regressions. 

NDVI
This is the normalized difference vegetation 

index, detailed in the Supporting materials.

Mean values at 2km, 5km, 

and 10km buffers around 

each village.

For village level analysis: calculated as a mean 

value for the study duration.  For individual 

level analysis: Calculated for the same month 

(same 16 day time period); the previous 2 

months (mean of the previous 5 16 day 

intervals); and the previous year (mean of the 

previous 23 16 day intervals).

EVI
This is the enhanced vegetation index, detailed 

in the Supporting materials.

Mean values at 2km, 5km, 

and 10km buffers around 

each village.

For village level analysis: calculated as a mean 

value for the study duration.  For individual 

level analysis: Calculated for the same month 

(same 16 day time period); the previous 2 

months (mean of the previous 5 16 day 

intervals); and the previous year (mean of the 

previous 23 16 day intervals).

Aggregated into quartiles 

for multivariable 

regressions. 

Gender
Binary for male or female, self reported in 

hospital records

Age Self reported age in years.
Aggregated into age groups 

for multivariable 

Year The year of admission to the hospital

For multivariable 

regressions, this variable 

was centered on its mean 

and standardized by its 

standard deviation.

Quarter
The calendar quarter of admission  (Jan - March; 

Apri - June; July - Sep; Oct - Dec)
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Table 2: Age and gender of study patients. (Q1 and Q3 indicate the first and third quartiles, 547 

respectively). 548 

 549 

 male/female M/F 

ratio 

median age in 

years (Q1 –Q3) 

Total 

number 

all patients 666/399 1.67 23 (8 - 38) 1065 

JEV 55/39 1.41 13 (8 - 20) 94 

Cryptococcus spp. 40/30 1.33 33 (27 - 41) 70 

scrub typhus 22/9 2.44 16 (9 - 29) 31 

Dengue virus 22/5 4.4 20 (9 - 30) 27 

Leptospirosis spp. 17/8 2.13 25 (12 - 39) 25 

murine typhus 17/7 2.43 32 (16 - 51) 24 

 550 

 551 

 552 

 553 

Table 3: Distribution of distances (in km) to the nearest major road, by diagnosis type. Counts of villages 554 

are from within 3 standard deviational ellipses (SDEs) of all LP villages (referred to as the “study area” in 555 

text). In some cases, multiple patients came from the same village meaning that counts of villages will 556 

be smaller than counts of total patients. (Q1 and Q3 indicate the first and third quartiles, respectively). 557 

 558 

  n median distance in km (Q1 - Q3) 

All 6416 5.4 (0.5 - 15.2) 

Villages without 

study patient 

5847 6.3 (0.8 - 16.1) 

Villages with study 

patient 

569 0.7 (0.1 - 4.1) 

JEV 88 0.6 (0.1 - 8.0) 

Cryptococcus spp. 66 0.3 (0.1 - 1.4) 

scrub typhus 31 0.6 (0.2 - 3.5) 

Dengue virus 27 0.3 (0.1 - 1.1) 

Leptospirosis spp. 22 0.4 (0.1 - 1.9) 

murine typhus 24 0.3 (0.1 - 2.2) 

 559 

 560 
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Table 4: Logistic regression and model adjusted odds ratios (AOR) for village level analysis of LP villages 561 

 562 

covariate total LP count AOR (CI) 

NDFI Q1 1604 68 reference group 

NDFI Q2 1604 75 1.07 (0.73 - 1.56) 

NDFI Q3 1604 130 1.48 (1.03 - 2.16) 

NDFI Q4 1604 296 2.21 (1.49 - 3.31) 

EVI Q1 1604 311 reference group 

EVI Q2 1604 134 1.16 (0.86 - 1.57) 

EVI Q3 1604 74 1.12 (0.76 - 1.66) 

EVI Q4 1604 50 1.19 (0.74 - 1.91) 

Village population   2.22 (2.03 - 2.42) 

Elevation   0.52 (0.42 - 0.63) 

Distance to major road     0.68 (0.57 - 0.80) 

 563 

Table 5: Logistic regression and model adjusted odds ratios (AOR) for village level analysis of JEV villages 564 

covariate total JEV count AOR (CI) 

NDFI Q1 1604 18 reference group 

NDFI Q2 1604 15 0.83 (0.38 - 1.76) 

NDFI Q3 1604 20 1.11 (0.53 - 2.35) 

NDFI Q4 1604 35 1.26 (0.54 - 2.95) 

EVI Q1 1604 35 reference group 

EVI Q2 1604 23 1.81 (0.87 - 3.76) 

EVI Q3 1604 17 1.85 (0.77 - 4.46) 

EVI Q4 1604 13 1.76 (0.63 - 4.93) 

Village population   1.74 (1.55 - 1.96) 

Elevation   0.69 (0.46 - 0.97) 

Distance to major road     0.88 (0.62 - 1.20) 

 565 

 566 

 567 

 568 

 569 

 570 

 571 
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Table 6: Mixed effects logistic regression and model adjusted odds ratios (AOR) for individual level 572 

analysis 573 

   M1 M2 M3 

covariate total JEV count AOR (CI) AOR (CI) AOR (CI) 

NDFI Q1 262 7 reference group reference group reference group 

NDFI Q2 261 16 2.91 (1.06 - 7.97) 2.28 (0.86 - 6.01) 2.32 (0.87 - 6.19) 

NDFI Q3 261 31 2.73 (1.02 - 7.28) 2.75 (1.07 - 7.07) 2.98 (1.13 - 7.85) 

NDFI Q4 262 38 3.41 (1.17 - 9.94) 3.12 (1.09 - 8.90) 3.06 (1.04 - 8.96) 

EVI Q1 262 8 reference group reference group reference group 

EVI Q2 261 20 2.11 (0.84 - 5.28) 1.89 (0.76 - 4.74) 1.60 (0.63 - 4.04) 

EVI Q3 261 24 2.04 (0.81 - 5.12) 1.65 (0.67 - 4.07) 1.33 (0.53 - 3.32) 

EVI Q4 262 40 4.19 (1.62 - 10.87) 3.44 (1.35 - 8.73) 2.43 (0.91 - 6.46) 

Jan - March 210 2 reference group reference group reference group 

April - June 267 22 5.12 (1.10 - 23.89) 4.45 (0.95 - 20.76) 5.05 (1.07 - 23.73) 

July - Sep 333 62 8.72 (1.75 - 43.46) 6.35 (1.26 - 31.89) 7.40 (1.45 - 37.67) 

Oct - Dec 253 8 1.80 (0.35 - 9.25) 1.51 (0.29 - 7.81) 1.54 (0.29 - 8.17) 

Year   1.31 (1.03 - 1.68) 1.34 (1.05 - 1.72) 1.27 (0.98 - 1.64) 

0 through 4 208 13  reference group reference group 

5 through 14 150 37  3.00 (1.46 - 6.18) 2.74 (1.31 - 5.69) 

15 through 24 192 28  1.74 (0.84 - 3.62) 1.37 (0.64 - 2.94) 

25 through 34 186 10  0.66 (0.27 - 1.61) 0.61 (0.25 - 1.48) 

35 through 44 133 4  0.26 (0.07 - 0.96) 0.26 (0.07 - 0.97) 

45 plus 196 2  0.11 (0.02 - 0.52) 0.10 (0.02 - 0.47) 

female 399 39  reference group reference group 

male 666 55  0.97 (0.60 - 1.58) 1.08 (0.66 - 1.79) 

Village population     1.00 (0.77 - 1.29) 

Elevation     1.36 (1.11 - 1.66) 

Distance to major road         1.08 (0.88 - 1.32) 
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FIGURES 582 

 583 

Figure 1: Spatial distributions of the home villages of study patients, for A: all study patients, B: study 584 

patients with JEV infections, and C: with cryptococcal infections, D: scrub typhus infections, E: with 585 

dengue virus infections, F: with leptospiral infections, and G: with murine typhus infections. SDDs and 586 

SDEs are weighted by case numbers, with some patients coming from the same village. Maps were 587 

created using QGIS version 3.4.9. All layers were created by the authors of this manuscript.  588 

 589 

Figure 2: Environmental indices for villages with study patient homes for the duration of the study 590 

period (January 2003 through August 2011) for all study patient villages, non study patient villages in the 591 

study area, and for major diagnoses (JEV = Japanese Encephalitis virus; Crypto = cryptococcal infection; 592 

ST = scrub typhus; MT = murine typhus; dengue = Dengue virus; lepto = Leptospira spp. infection). Bar 593 

values are mean values and the error bars are 95% confidence intervals, using the t-distribution. NFI 594 

values here have a constant (0.25) added to them for visualization only. 595 

 596 

Figure 3: Environmental indices for study patients by major diagnosis and at different times leading up 597 

to the date of admission. JEV = Japanese Encephalitis virus; Crypto = cryptococcal infection; ST = scrub 598 

typhus; MT = murine typhus; dengue = Dengue virus; lepto = Leptospira spp. infection. Bar values are 599 

mean values and the error bars are 95% confidence intervals, using the t-distribution. NFI values here 600 

have a constant (0.25) added to them for visualization only. 601 
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