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ABSTRACT
Classifying subjects with psychiatric diseases

based on structural magnetic resonance
imaging (MRI) data is a highly challenging
task. Nevertheless, a number of studies report
decoding accuracies of up to 90% using
relatively small sample sizes. Here, we will
present contradicting results on a large scale
(N = 2240) dataset of subjects with and
without depression as part of our participation
in the Predictive Analytics Competition (PAC)
2018, in which we achieved the 3rd place.
Contrary to our expectations, classification
accuracies varied only little between a variety
of simple and highly-complex classifiers and
did not exceed 67% based on an internal
validation set. We discuss our results in light of
these opposing results and conclude that well
designed challenges and large sample sizes
provide a good way to get unbiased estimates
of prediction performance.
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1 INTRODUCTION

In the last two decades, neuroimaging data
including structural and functional magnetic
resonance imaging (MRI) data has become one of
the cornerstones for studying not only neurological
but also psychiatric diseases [1; 2]. Whereas
traditional statistical analyses focused on general
group comparisons, machine learning methods

are intended to draw conclusions about individual
subjects, e.g. in terms of diagnosis, prognosis
or treatment. Although psychiatric diseases are
considered to be complex and heterogeneous, a
number of studies reported decoding accuracies of
up to 90 % for various tasks [2; 3; 4; 5; 6; 7]. Most
of these studies employed relatively small sample
sizes and it has been questioned whether results
reflect true effects or might be an artifact of large
variation in decoding accuracies typically depicted
in small sample sizes [4; 8].

Machine learning challenges provide a good
opportunity to address this issue by using a two-
step procedure. First, a public dataset is published,
on which the different teams can develop their
models. Second, only the examples (but not the
labels) from a holdout dataset is published, on
which teams can make their predictions. Finally,
the organizers can evaluate the predictions using the
labels of the holdout dataset. Here, we will describe
our experiences with the PAC 2018 challenge1

organized by the Translational Psychiatry Group
at University Muenster, Germany2, in which we
got the 3rd place out of 49 teams. In this challenge,
structural MRI data sets and additional covariates
from N = 2240 subjects with and without
depression were provided. The task was to train
a classifier to detect depression. In this work we
show that no algorithm from a variety of simple and
highly-complex classifiers was able to outperform
a modest balanced accuracy of around 67% on the
internal validation set. Our final submission on the
holdout data set (N = 448) resulted in a balanced

1 https://www.photon-ai.com/pac
2 https://www.medizin.uni-muenster.de/translap/
forschung/
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accuracy of 64 %, whereas the winning team has
achieved 65%.

2 METHODS

2.1 Data

The data set included spatially normalized voxel-
based morphometry (VBM) images (i.e. gray matter
probability maps) of N = 1792 subjects with
and without depression (759 vs. 1033). Raw data
were preprocessed by the challenge organizers
using the SPM toolbox CAT-12 (Matlab 9.0 /
SMP12 rev. 6685 / CAT12 v.1184) and quality
checked in-house. Additionally, for each subject
the following covariates were provided: Age (mean
35.55± 12.70), gender (59% females), imaging site
(3 different sites) and total intracranial volume (TIV,
mean 1571± 167). At the end of the challenge, the
same data were released for the holdout samples
(N = 448) excluding the disease labels.

2.2 Classification methods

Based on the public data set, we performed a
number of different classification analyses using
(1) only covariates (2) only VBM images and
(3) both, covariates and VBM images. For
classification we employed four machine learning
algorithms, namely support vector machines
(SVM), random forests (RF), gradient boosting
(GB) and convolutional neural networks (CNNs).
SVM, RF and GB were applied to (i) covariates
only, (ii) mean values of VBM images for all
cortical regions (N = 48) contained in the Harvard
Oxford atlas3 and (iii) whole-brain based principal
component analysis (PCA) projections. For CNNs,
we computed the following variants: a) vanilla
CNN b) inclusion of additional data in the training
base (N = 372, 181 with depression)4, c) transfer
learning from Alzheimer’s Disease Neuroimaging
Initiative5 (ADNI, N = 747) data with fine-tuning
on the PAC2018 data and d) multi-task learning
using covariates as additional outputs which the
network needs to predict. In total we present the
results of 13 different configurations as shown in
Table 1.

We split the public data set into a pure (balanced)
training data set (90 % of subjects with depression,
same number of subjects without depression, total

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/data/
atlas-descriptions.html
4 166 from the Human Connectome Project (http://www.
humanconnectomeproject.org/) and 206 from our local data
base
5 http://adni.loni.usc.edu/

Table 1. Performance (in %) for different
classification methods on the internal validation set.

Data Extr. Classifier Bal. acc. Sens. Spec.

Cov. - SVM 64.52 % 69.33 % 59.71 %
Cov. - RF 63.62 % 62.67 % 64.57 %
Cov. - GB 62.10 % 61.33 % 62.86 %

VBM Atlas SVM 66.58 % 63.17 % 70.00 %
VBM Atlas RF 63.62 % 62.67 % 64.57 %
VBM Atlas GB 60.75 % 65.79 % 55.71 %

VBM PCA SVM 65.04 % 65.79 % 64.29 %
VBM PCA RF 57.54 % 47.37 % 67.71 %
VBM PCA GB 62.29 % 56.58 % 68.00 %

VBM - CNN 64.52 % 53.33 % 75.71 %
VBM - CNN + ext. data 66.52 % 64.47 % 68.57%
VBM - CNN + transfer 64.33 % 70.66 % 58.00 %
VBM - CNN + multitask 62.29 % 64.00% 60.57%

Abbreviations: Cov., covariates; VBM, voxel-based morphometry; Extr.,
extraction; PCA, principal component analysis; SVM; support vector

machine; RF, random forest; GB, gradient boosting; Bal. acc., balanced
accuracy; Sens., sensitivity; Spec., specificity

N = 1366) and a validation set (N = 426).
Hyperparameters were tuned on the training data
using grid search in a 5-fold cross-validation
(PCA: number of components = [10, 100, 1000];
SVM: linear and radial basis function [RBF],
C, γ = [0.01, 0.1, 1, 10, 100]; RF: number of
estimators = [10, 100, 1000], number of features
considered for split= [5, 10, 15], maximum depth
= [None, 0.1, 1, 10]); GB: number of estimators
= [10, 100, 1000], learning rate = [0.01, 0.1, 1] and
fraction of samples used for fitting = [0.01, 0.1, 1]).
Due to the large number of configurations the CNN
network architectures and hyperparameters have
been tuned manually. The respective classification
algorithm was then trained again with best
parameters on the full training data set and tested
on the validation set, for which we report the
balanced accuracy, sensitivity and specificity. For
our final model, we additionally report the accuracy
measures for the externally provided holdout data
from the PAC2018 challenge.

3 RESULTS

Classification results for our internal validation set
are depicted in Table 1. For only covariates, the
highest balanced accuracy was 64.52 % using a
SVM with a RBF kernel (C = 1, γ = 0.1). For the
VBM data in combination with classical machine
learning techniques, a combination of atlas-based
feature extraction and a SVM with RBF kernel
(C = 1, γ = 0.01) was best, resulting in a balanced
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accuracy of 66.58 %. For the CNNs, we obtained
the best result (66.52 %) using additional external
data in a model consisting of 6 convolutional blocks
(Conv-BatchNorm-ReLU) and 3 fully-connected
layers (drop out of 0.2 before the first two fully-
connected layers).

For evaluation on the external holdout data
provided in the PAC 2018 challenge, we had to
choose one algorithm. Although the atlas-based
SVM gave us slightly higher results, we decided
to use the WB-based CNN + external data, since
sensitivity and specificity were more balanced and
we anticipated that the inclusion of external data
might be advantageous on the holdout data. On the
holdout data, we got a balanced accuracy of 64 %
(sensitivity 58 %, specificity 69 %).

4 DISCUSSION

Based on the PAC 2018 depression challenge data
set, we explored a number of classical and more
advanced hierarchical techniques for the detection
of depression. Notably, the classification accuracy
did not exceed 67 % for any of the particular
analyses based on the validation set. Additionally,
the classification accuracies were in a similar range,
irrespective of the underlying data (covariates,
VBM data or both) and types of dimensionality
reduction or machine learning algorithm. Results
on the external data set provided in the challenge
were in the same range, not exceeding 65 %.

Given a number of studies that reported
classification accuracies of up to 90 % for the
classification of depression based on structural MRI
data (for an overview, see Wolfers et al. [2]), not
only our team were surprised in light of these results.
We would like to discuss the following potential
explanations. First, most studies that have found
high classification accuracies employed relatively
small sample sizes (below 100 subjects per group)
and therefore results might be explained by a
combination of large error bars characteristic for
small sample sizes and a positive publication bias
[4; 8].

Second, the data at hand might not be suitable
for this task. Within the PAC 2018 challenge, only
highly preprocessed VBM images and a small
set of covariates were released. While this leads
on the one hand to a clearer classification task,
it strongly limits the ways of data analysis, e.g.
with respect to different preprocessing pipelines
or further stratification of patients according to
some clinical variables such as symptom severity.
Additionally, other data domains, such as functional
MRI, might be more relevant for depression [3].

Third, the labels in the psychiatric field might
not be reliable enough for being employed
in a (supervised) machine learning framework.
Although psychiatric research is not imaginable
without clinical labels such as depression, those
diagnostic categories have been severely criticized
for not incorporating underlying neurobiological
correlates and their limited ability to account for
heterogeneity as well as comorbidities within and
across clinical categories [9; 10; 11; 12].

And finally, there might exist better methods for
analyzing this specific data set. However, since
we sampled our techniques from a wide range
of traditional and advanced machine learning, we
believe that our analyses reflect at least some
current state-of-the-art of data analysis in the
neuroimaging field. Additionally, the risk for
missing a suitable data pipeline is further alleviated
by the participation of 49 teams applying their best
algorithms to the same data set.

In conclusion, we believe that such machine
learning challenges provide a huge value for the
scientific community, especially in fields with very
high-dimensional data and complex categories as
given in clinical neuroimaging. They are a great
opportunity to make large data sets available to a
broader range of people, who can benchmark their
specific algorithms and pipelines. Since results will
be evaluated on an external data set, the chance for
p-hacking and publishing false positives is strongly
reduced [13] and realistic estimates of performance
measures can be obtained.
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Narcı́s Cardoner, José M Menchón, Ben J Harrison,
Joan Deus, Julio Vallejo, and Christian Gaser.
Identifying patients with obsessive-compulsive
disorder using whole-brain anatomy. NeuroImage,
35(3):1028–1037, 2007.

[6]Sandra Vieira, Walter H.L. Pinaya, and Andrea
Mechelli. Using deep learning to investigate
the neuroimaging correlates of psychiatric and
neurological disorders: Methods and applications.
Neuroscience & Biobehavioral Reviews, 74:58–75,
3 2017.

[7]Benson Mwangi, Klaus P. Ebmeier, Keith Matthews,
and J. Douglas Steele. Multi-centre diagnostic
classification of individual structural neuroimaging
scans from patients with major depressive disorder.
Brain, 135(5):1508–1521, 5 2012.
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