Limitations of machine learning in psychiatry: Participation in the PAC 2018 depression challenge
Fabian Eitel, Sebastian Stober, Lea Waller, Lena Dorfschmidt, Henrik Walter, Kerstin Ritter
doi: https://doi.org/10.1101/19000562
Fabian Eitel
1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy, Bernstein Center for Computational Neuroscience; 10117 Berlin, Germany
Sebastian Stober
2Institut für Intelligente Kooperierende Systeme (IKS), Artificial Intelligence Lab; Otto-von-Guericke-Universität Magdeburg, Germany
Lea Waller
1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy, Bernstein Center for Computational Neuroscience; 10117 Berlin, Germany
Lena Dorfschmidt
1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy, Bernstein Center for Computational Neuroscience; 10117 Berlin, Germany
3Collaborative Research Centre (SFB 940) “Volition and Cognitive Control”, Technische Universität, Dresden, Germany
Henrik Walter
1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy, Bernstein Center for Computational Neuroscience; 10117 Berlin, Germany
Kerstin Ritter
1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy, Bernstein Center for Computational Neuroscience; 10117 Berlin, Germany
Data Availability
Data used in this study were collected from different sites and were only released for the purpose of the PAC challenge.
Posted June 25, 2019.
Limitations of machine learning in psychiatry: Participation in the PAC 2018 depression challenge
Fabian Eitel, Sebastian Stober, Lea Waller, Lena Dorfschmidt, Henrik Walter, Kerstin Ritter
medRxiv 19000562; doi: https://doi.org/10.1101/19000562
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (716)
- Anesthesia (210)
- Cardiovascular Medicine (2990)
- Dermatology (254)
- Emergency Medicine (447)
- Epidemiology (12876)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4671)
- Geriatric Medicine (428)
- Health Economics (736)
- Health Informatics (2971)
- Health Policy (1079)
- Hematology (395)
- HIV/AIDS (942)
- Medical Education (434)
- Medical Ethics (116)
- Nephrology (479)
- Neurology (4452)
- Nursing (239)
- Nutrition (654)
- Oncology (2317)
- Ophthalmology (659)
- Orthopedics (261)
- Otolaryngology (330)
- Pain Medicine (288)
- Palliative Medicine (85)
- Pathology (505)
- Pediatrics (1208)
- Primary Care Research (506)
- Public and Global Health (7052)
- Radiology and Imaging (1565)
- Respiratory Medicine (927)
- Rheumatology (447)
- Sports Medicine (389)
- Surgery (495)
- Toxicology (60)
- Transplantation (214)
- Urology (186)