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Abstract

Recent advances in Artificial Intelligence (AI) have
started disrupting the healthcare industry, especially medi-
cal imaging, and AI devices are increasingly being deployed
into clinical practice. Such classifiers have previously
demonstrated the ability to discern a range of protected de-
mographic attributes (like race, age, sex) from medical im-
ages with unexpectedly high performance, a sensitive task
which is difficult even for trained physicians. Focusing on
the task of predicting sex from dermoscopic images of skin
lesions, we are successfully able to train high-performing
classifiers achieving a ROC-AUC score of ∼0.78. We high-
light how incorrect use of these demographic shortcuts can
have a detrimental effect on the performance of a clinically
relevant downstream task like disease diagnosis under a do-
main shift. Further, we employ various explainable AI (XAI)
techniques to identify specific signals which can be lever-
aged to predict sex. Finally, we introduce a technique to
quantify how much a signal contributes to the classification
performance. Using this technique and the signals identi-
fied, we are able to explain ∼44% of the total performance.
This analysis not only underscores the importance of cau-
tious AI application in healthcare but also opens avenues
for improving the transparency and reliability of AI-driven
diagnostic tools.

1. Introduction
Machine learning (ML) technologies have been widely ap-
plied to image classification problems in medicine, and this
has led to the approval of hundreds of ML-based devices
by the United States Food and Drug Administration (FDA)
[1, 4, 34]. To generate their predictions, these classifiers

rely on several image attributes, including medically im-
portant details also relied on by physicians, and image-
acquisition artifacts or other features that are medically ir-
relevant and likely undesirable [12, 13]. Considered in com-
bination with prior studies that identified disparate perfor-
mance across protected demographic groups (for instance,
based on race and/or sex) [6], including in the medical con-
text [11], this raises the spectre that ML-based medical im-
age classifiers may inappropriately leverage protected de-
mographic information present in the data to generate pre-
dictions. In principle, inappropriate use of such attributes
could lead to undesirable behavior, such as fragile perfor-
mance or discrimination due to domain shift in a down-
stream, clinically relevant task. If these demographic vari-
ables correlate with a diagnosis or prediction target in the
classifier’s training data—either due to societal inequities
or random chance—an ML system that uses all available
information is likely to incorporate these variables in its pre-
diction.

In further support of this possibility, ML classifiers have
unexpectedly displayed an ability to predict a range of de-
mographic variables directly from medical images [17, 28],
that is, even when the demographic information is not sup-
plied as metadata. Given that physicians in the relevant
imaging field are unable to explain how ML classifiers pre-
dict certain demographic features from medical images, this
raises another question: what image attributes do ML clas-
sifiers use to detect protected demographic attributes? The
unexplained performance has led to the speculation of the
existence of unique image attributes that are detectable only
by machines, a hypothetical category of image attributes we
refer to as ‘AI-specific signals.’

Investigation of these AI-specific signals thus lies at the
intersection of two fundamental questions in medical ML:
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(i) What is the ‘reasoning process’ of medical-image clas-
sifiers? That is, on what attributes do they rely to generate
predictions and to what extent? (ii) How might medical-
image classifiers produce disparate outcomes among pro-
tected classes, particular in the presence of domain shifts?
By interrogating the existence and nature of AI-specific sig-
nals that may be used to predict a protected demographic
variable, we address a potential gap in our understanding of
how medical-image classifiers generate predictions, which
currently includes only image attributes readily recognized
by humans [12]. Simultaneously, we detail a mechanism
by which classifiers may display undesirable characteristics
across protected classes.

In this study, we answer both the questions above by
examining medical-image classifiers trained to predict pa-
tients’ sex from dermoscopic images, which offer a mag-
nified view of a patient’s skin lesions. To do so, we apply
a range of methodologies from the field of explainable AI,
namely clustering analysis and counterfactual image gen-
eration. We further introduce a technique which we term
‘removal via balancing’ to quantify how much of the classi-
fier’s performance is explained by the signals identified.

2. Related Work

There has been growing academic and clinical interest in the
prediction of protected attributes by training classifiers for
different clinical modalities. Examples include the predic-
tion of a patient’s sex from retinal fundus images [28] and
the prediction of a patient’s race from different forms of ra-
diological imaging [17]. A motivation for this type of work
is provided by [37], showcasing the extent to which medical
AI leverages demographic encodings in datasets for clini-
cally relevant disease classification by focusing on poten-
tial fairness discrepancies within both in-distribution train-
ing sets and external test sets. Another study also confirms
downstream performance disparities across race and sex in
deep learning models using publicly available chest X-ray
datasets [18]. However, none of these works probe into the
specific signals that these classifiers leverage to achieve un-
expectedly high performance in predicting these protected
attributes.

There have been previous works attempting to iden-
tify specific signals, but have only pointed toward factors
like statistical correlations between these protected demo-
graphic variables and diagnoses, or other variables that are
more visible in the images (e.g., age). [17, 36], but they
haven’t directly related it to the prediction task or quanti-
fied the contribution of these signals to the prediction per-
formance.

3. Methods

3.1. Data preparation

To study how AI predicts protected demographics from
medical images, we focused on the prediction of a patient’s
sex from a dermoscopic image of their skin, leveraging data
contained in the ISIC archive [8, 10, 31, 33]. The ISIC
archive comprises primarily dermoscopic images collected
by medical professionals across the world, along with as-
sociated metadata on diagnoses, demographic characteris-
tics, and details on image acquisition. For our study, we ex-
cluded non-dermoscopic images and images lacking meta-
data on the patient’s sex. We then partitioned that data based
on provenance, as encoded by the ‘attribution’ metadata la-
bel, which is intended for crediting images under Creative
Commons Attribution licenses but often also provides in-
formation on the image acquisition site (Table 1). This par-
titioning scheme minimizes chance of overlap in patients
between the training and test data and additionally provides
a more robust test scenario for domain shift analysis, since
spurious associations present in the training data are un-
likely to persist in the different hospitals and geographic re-
gions of the test data. After preprocessing and partitioning,
the train set had 45924 images and the test set had 23461
images.

Sites for Train Data Sites for Test Data

Anonymous Memorial Sloan Kettering
Cancer Center

Department of Dermatol-
ogy, Hospital Clinic de
Barcelona

Syndney Melanoma Di-
agnostic Center at Royal
Prince Alfred Hospital

Department of Dermatol-
ogy, Medical University of
Vienna

Syndney Melanoma Di-
agnostic Center at Royal
Prince Alfred Hospital,
Pascale Guitera

ViDIR Group, Department
of Dermatology, Medical
University of Vienna

The University of Queens-
land Diamantina Institute,
The University of Queens-
land, Dermatology Research
Center

Dermoscopedia
For educational purpose
only
Hospital Clinic de
Barcelona
Hospital Italiano de Beunos
Aires
Konstantinos Liopyris

Table 1. Hospital sites used in the train and test sets.
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3.2. Model training

We trained image transformers (ViT-Base architectures)
[15] to predict a patient’s sex based on a dermoscopic im-
age. To train these classifiers, we started with classifiers
pre-trained on ImageNet [25], then replaced the 1000-class
linear classification head with a new linear head suited for
binary prediction. For training, we held out 10% of the
training data (selected at random) as a validation set. We
optimized the network using an Adam optimizer with learn-
ing rate 10−5, β1 = 0.9, and β2 = 0.999, with a mini-batch
size of 16, and cross entropy loss as our optimization crite-
rion. We optimized the models for 30 epochs, reducing the
learning rate by a factor of 0.2 (that is, lrnew = 0.2× lrold)
if the model’s loss did not improve for 5 epochs. Finally,
we used the epoch with the highest ROC-AUC on the val-
idation data for all subsequent experiments. We repeated
this procedure for 5 replicates.

3.3. Clustering-based analysis

To identify the signals that the classifier relies on to pre-
dict sex, we started by grouping together images in the
test dataset based on their visual similarity by using the K-
means clustering algorithm [27] (K=20). To obtain the clus-
tering features, we used the first 50 principal components
derived by running Principal Component Analysis (PCA)
on the embeddings of the penultimate layer of the Resnet50
model [20] (pretrained on ImageNet [14]).

Once we had the clusters, we calculated the ratio
#(predicted males)
#(predicted females) for each cluster and retrieved the two with
the maximum and minimum ratios corresponding to the
male-dominant and female-dominant clusters respectively.
Then, we analyzed a subset of 100 images selected uni-
formly at random from each of the two clusters to identify
the signals which differed. Visual clustering of the images
before comparison allows us to hypothesize that the signals
identified would be significant to the model prediction and
are not just occurring by chance. In addition to visual in-
spection, we also used a Large Language Model (LLM)
identify these signals. LLMs like ChatGPT have shown
great success in modeling and generating natural language
[35]. Specifically, GPT-4 with vision allows the model to
take in images and answer questions about them. We lever-
aged the gpt-4-vision-preview model to automat-
ically identify visual signals differing between the image
clusters. To achieve this, we passed in both the image clus-
ters at the same time to the model along with the prompt:
“Tell me the differences between the two image clusters in
terms of visual artifacts”.

3.4. Generation of counterfactuals

Another XAI tool we used to understand the signals that can
potentially guide the prediction of AI classifiers is called

counterfactual image generation [7, 32, 38]. Counterfactual
images are synthetic images that reveal the basis of an AI
classifier’s decisions by altering attributes of a reference im-
age to create a similar image that prompts a different predic-
tion from the classifier. For instance, consider the case that
an AI classifier predicts a lesion as female, while a coun-
terfactual predicted by the AI classifier to be male differs in
some visual signals; assuming that we ensure all differences
in the counterfactual push the AI classifier’s predictions in
the desired direction (more male), we may infer that the
classifier uses those signals as part of its reasoning process.

To generate counterfactual images, we followed prior
work [3, 9, 22] in which an image is optimized to elicit a de-
sired output from a classifier. At a high level, we optimize
an image using gradient descent, and in order to ensure the
image remains realistic, we optimize the latent representa-
tion of that image in the latent space of a generative adver-
sarial network rather than optimizing the image directly in
pixel-space (Figure 1). This ensures that the counterfactual
images remain within the data manifold of plausible images
[9]. Since we are interested in broadly understanding the
predictions of classifier rather than explaining the predic-
tions for a specific output, we utilized randomly generated
images as our references, eliminating the need for an en-
coder network as was used in prior efforts [22].

We generated a pair of counterfactual ‘female’ and
‘male’ images by first choosing a random latent vector
z ∼ N (1, I) where 1 is a d-dimensional vector of 1s
and I is the d × d identity matrix. Given a generator
G : Rd → R224×224 and classifier C : R224×224 →
[0, 1] that quantifies the probability of the image represent-
ing a female patient, we performed gradient descent on z
to optimize C(G(z)). Based on any given z, we gener-
ated a female counterfactual by minimizing −C(G(z)) un-
til C(G(z′)) > 0.95 (where z′ represents the updated latent
vector) and a male counterfactual by minimizing C(G(z))
until C(G(z′)) < 0.05. Since the optimization is determin-
istic and the optimization problem is not convex, a portion
(∼60%) of initial vectors z failed to produce either a female
or male counterfactual by the above criteria; we stopped op-
timization after a maximum of 10 steps and excluded these
from further analysis. During optimization, we used a learn-
ing rate of 0.02.

As the generator G, we chose a styleGAN2 (a genera-
tive adversarial network, GAN) with adaptive discriminator
augmentation [23]. We trained the GAN using all images
from the ISIC 2019 dataset, which were resized such that
the short edge measured 256 pixels and then center-cropped
to 256×256 pixels. We fine-tuned the model starting from
a checkpoint pre-trained on Flickr Faces High Quality 256
(FFHQ256). During training, we augmented the training
data by randomly, horizontally flipping images. We opti-
mized the networks using the Adam optimizer with a learn-
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Figure 1. Latent space optimization for generating counterfactuals
using a StyleGAN.

ing rate of 0.0025, β1 = 0, β2 = 0.99, and batch size of 64.
For adaptative discriminator augmentation, we set the target
to 0.6 [24]. We performed optimization for a total of 25000
kilo-images, requiring approximately four days of training
on four NVIDIA RTX 2080TI GPUs.

3.5. Quantification of explained performance with
‘Removal via balancing’

Once we identified the signals that can potentially exist, we
quantified the amount of the ML classifier’s performance
that is explained by a putatively important signal (or sig-
nals), which we term the ‘query signal’, as the drop in pre-
dictive performance when the signal(s) is ‘removed’ from
the test data, in the sense that the query signal is balanced
with respect to the prediction target. We term this tech-
nique ‘Removal via balancing.’ Specifically, to ‘remove’
a query signal A, we updated the test data to form a new
pseudopopulation in which A ⊥ Y , where Y is the pro-
tected attribute being predicted (that is, a patient’s sex).
Our scheme requires that each signal may be represented
by a scalar or vector in Rn (where n ∈ N), for instance as
a scalar quantification of that signal or a one-hot encoded
vector. Our goal is to weight each sample by the recipro-
cal of its propensity, 1/P (Y |A), which, in alignment with
prior work [2, 5, 29, 30] on inverse probability treatment
weighting (IPTW) in the field of treatment-effect estima-
tion, provides a pseudo population with the desired property
that A ⊥ Y . Since the true propensity is not known, we fol-
lowed prior work [2] and estimated via a logistic regression
p̂ : Rn → [0, 1]; we assigned to sample i with vector of
signals ai the weight 1/p̂(ai).

We caution that despite borrowing balancing scores from
the causal inference literature, our technique does not aim
to infer causal relationships between query attributes and
the model’s predictions. In our view, no direct analogy can
be drawn between our use of balancing scores and their use
in treatment effect estimation. Importantly, when our tech-
nique removes a query signal via balancing, correlated sig-
nals may also be (partially) removed. For instance, if two
signals correlate perfectly in the test data, our technique

cannot differentiate which signal is important for a classi-
fier. In this way, our technique defines signals on the ba-
sis of how they appear in the test data; for instance, in the
extreme case, two semantically different but perfectly cor-
related signals are effectively defined as a single signal for
the purposes of our analysis.

We quantified the proportion of performance explained
as the ratio of the drop in performance after balancing to the
maximum possible drop in performance (to random perfor-
mance of ROC-AUC=0.5):

Proportion explained :=
ROC-AUCoriginal−ROC-AUCbalanced

ROC-AUCoriginal−0.5

4. Results
4.1. ML classifiers successfully predict patient sex

from dermoscopic images

To investigate how ML classifiers predict protected at-
tributes from medical images, we trained image transform-
ers as described in section 3.2 for the specific task of identi-
fying a patient’s sex based on a dermoscopic image of a skin
lesion (Figure 2a). Dermoscopic images offer a magnified
view of the skin and typically lack anatomical landmarks
(eyes, nose, fingers, etc.), which could offer a route to the
identification of a patient’s sex. We trained our classifiers
on images from the International Skin Imaging Collabora-
tion (ISIC) archive. All images were resized to 224×224
pixels. To mitigate the possibility that the networks rely on
source-specific confounding rather than signals that gener-
alize across data sources, we partitioned the ISIC archive
based on the image collection site, using a disjoint group
of collection sites for training and testing. In this external
test scenario, our classifiers could predict patient sex with
substantial performance (area under the receiver operating
characteristic curve, ROC-AUC, of 0.782± 0.012, mean ±
standard deviation; Figure 2b).

4.2. Prediction of protected features enables unde-
sirable outcomes

While we anticipate that medical-image classifiers would
not be typically used for the prediction of protected at-
tributes, we hypothesized that their ability to predict these
attributes may lead to undesirable behavior in medically re-
lated prediction tasks. If true, this hypothesis motivates the
need for a better understanding of the mechanisms that un-
derlie the classifier’s prediction of protected attributes. We
conjectured that one mechanism by which ML prediction of
protected attributes may degrade performance at medically
relevant tasks is if the classifier learns to use the protected
attribute as a ‘shortcut’ [16] for identification of a disease,
due to an association between the attribute and disease in
the training data. While some associations may reflect gen-
uine medical differences (for instance, rates of breast cancer
among females and males) [26], they may also reflect soci-
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Figure 2. AI prediction of patient sex from dermoscopic images. a, A randomly selected set of dermoscopic images from female and
male patients from the ISIC archive. b, Performance of trained ML classifiers at prediction of sex from dermoscopic images. Receiver
operating characteristic curves are generated based on external data (image acquisition sites held out from the training data) and represent
each of five training replicates, trained on the same data but with different random seeds. In this figure and throughout our study, the
positive label indicates ‘female’.

etal disparities or other spurious variations. If the associa-
tion changes—or, in the worst case, reverses—at test-time
(e.g., deployment), then a model that learned to leverage the
association from the training data should exhibit a drop in
performance.

To test our hypothesis, we focused on the task of differ-
entiating melanoma from look-alike lesions (benign nevi,
seborrheic keratoses, solar lentigo, lentigo NOS, pigmented
benign keratosis, dermatofibroma, lentigo simplex, cafe-au-
lait macule) and engineered datasets to exhibit an associa-
tion between a patient’s sex and melanoma (Figure 3a). We
carried out our tests for a variety of odds ratios, in each case
setting the odds ratio in the external test data to the inverse
of the odds ratio in the training data.

We observed that while performance on internal vali-
dation data remained high across scenarios (indeed, even
improving with stronger associations between sex and
melanoma), external test set performance dropped as the
odds ratios varied from unity (Figure 3b). Performance
dropped precipitously for extreme changes in odds ratios
(in particular when the protected attribute correlated per-
fectly with the prediction target). Performance changed
more modestly for moderate differences in odds ratio (e.g.,
a drop of 6% in external test set ROC-AUC from an odds
ratio of 1 to an odds ratio of 0.5/2 in the train/test data, re-
spectively). We observed that among the data sources that
comprise the ISIC archive, the odds ratio for ‘female’ as a
predictor for ‘melanoma’ varied from 0.475 to 1.185, con-
firming that reversals in the association between protected
attributes and a prediction target indeed occur naturally in
medical data.

4.3. Statistical associations with patient sex

As a first step toward understanding how the classifiers may
identify sex from dermoscopic images, we examined sta-
tistical associations, using the odds ratio, with the avail-
able metadata characteristics, like diagnosis, dermoscopy
method, and age, finding a few characteristics that could
potentially associate with sex (Appendix A).

Multiple diagnoses weakly associated with sex, and a
few of these associations persisted from the training data,
where an association must be present for the classifier to
learn it, and the testing data, where the association must
persist to benefit performance (Supplementary Table 3).
These included an association between female sex and so-
lar lentigo, dermatofibromas or nevi, and an association
between male sex and seborrheic keratoses. Since prior
studies have successfully identified diagnoses from dermo-
scopic images [19], a classifier could, in principle, then
leverage this knowledge to help identify a patient’s sex.
Considering the dermoscopy method used for image acqui-
sition, there was a weak association between non-contact
polarized images and the male sex (Supplementary Table 4).
Overall, however, associations between diagnoses or der-
moscopy type and sex appeared unlikely to account for the
classifier’s performance on external test data, considering
that many associations were weak and that some associa-
tions reversed between training and external test data.

In contrast, we observed a more consistent association of
sex with patient age: In the training data, patients aged 20-
60 were enriched for females, while patients aged 5-15 and
65-85 were enriched for males (Figure 4). In the external
test set, patients aged 60-85 were also enriched for males,
suggesting that a correlation between older ages and patient
sex may persist across data sources.
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We engineer datasets (by subsampling the original data) such that the prediction target (melanoma) correlates with a protected attribute
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Figure 4. Association of patients’ sex with their age. a, His-
togram of patients’ ages in the training and test data. b, Odds ratio
(OR) for prediction of female sex on the basis of a patient’s age.

4.4. Clustering-based analysis helps identify global
artifacts

Using the clustering analysis described in section 3.3, we
examined visually similar clusters of images in the train-
ing data which differed the most in terms of ratio of males
to females predicted by the trained classifier. Hair differed
strikingly between the two clusters, being highly prevalent
in the cluster with more predicted males. This was also con-
firmed by querying GPT4-Vision (Figure 5a).

Since hair was a strong signal, to identify other signals,

we equalized the training set by sub-sampling images so
that there was no statistical correlation between hair and
sex. To label the images (which lack detailed annotation)
for presence of hair, we manually annotated 500 female and
500 male images for the presence of hair and applied these
hand-labeled images to train a classifier (ViT-Base architec-
ture) for this task, achieving ROC-AUC of 0.96 on a held-
out test set (90-10 train-set split). We then used that classi-
fier to label the rest of the dataset. After sub-sampling, the
new training set had 11190 images without hair and 9230
images with hair for each of the female and male sexes, re-
sulting in an odds ratio of 1.

After retraining the sex classifier using the equalized
training set, we performed the clustering analysis again and
stickers were identified as being more prevalent in the clus-
ter with the most number of predicted males, indicating that
stickers could be a potential signal associated with males by
the sex classifier (Figure 5b). This signal was also recov-
ered by GPT4-Vision as before. Stickers are small adhesive
markers that may be placed on the skin to indicate the lo-
cation of lesions or areas of interest. This helps in guiding
biopsies, surgical excisions, or other treatments. The exact
type and color of the stickers used can vary across hospital
sites, making it an easy ‘shortcut’[16] to learn for predicting
protected attributes (like sex) that may vary between sites.

4.5. Generative image AI reveals local prediction
mechanism

Our generative technique (section 3.4) was able to produce
realistic counterfactual images of dermoscopic lesions; the
distribution of images produced by the final network dif-
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a  female male b  female male

Figure 5. Clustering analysis. A sample of images from the visually similar clusters with the lowest and highest predicted male to female
ratios along with the signals identified by GPT4-vision for a, The unequalized sex classifier, in which hair is identified as a potential signal.
b, The sex classifier equalized for hair, in which sticker is identified as a potential signal.
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Signal Identified Quantification
hair 36.983± 1.64
age 3.405± 0.57
redness 2.133± 0.82
ruler 1.663± 0.39
All 42.093± 1.87

Figure 6. Quantification of the proportion of performance ex-
plained by signals identified in our prior experiments. Top: Vi-
sualization of the proportion of ROC-AUC explained across five
replicates. Bottom: Quantification with 95% confidence intervals.

fered from the distribution of training images by a Fréchet
Inception Distance (FID score) [21] of 6.29. Some samples
of the generated counterfactuals are shown in Appendix B.
We generated 1000 pairs of counterfactuals which elicited a
desired sex prediction from the classifier, that is, a pair clas-
sified as ‘female’ and ‘male’. The image pairs were then

manually analysed to identify signals in addition to hair and
sticker that were prevalent in either of the sexes and could
potentially be used by the classifier for predictions.

Table 2 lists the signals identified along with the preva-
lence in either the male or female sex. These signals were
identified in multiple pairs of images in the same direction
(always in male or always in female), indicating a possible
correlation with sex. We also identified differences based
on other signals but they were only observable in one or
two image pairs, so we discarded them as being insignifi-
cant for the sex prediction task. The signals identified were
also confirmed by a board-certified dermatologist. A qual-
itative visualization of the different signals is provided in
Figure 7.

4.6. ‘Removal-via balancing’ quantifies classifier
performance

After applying a range of techniques like statistical associ-
ation, clustering analyses, and generative modeling to iden-
tify putatively important signals, we confirmed and quanti-
fied their importance using ‘removal via balancing’ (section
3.5). This technique quantifies the importance of a puta-
tively important ‘query signal’ for a classifier’s predictions
in a particular test set. To do so, we compared the model’s
performance in the original test data to its performance in
an alternate version of that test data in which the query sig-
nal was statistically independent of the prediction target. In
other words, under the hypothesis that a classifier depends
on a particular query signal, we expect that classifier’s per-
formance to drop when there is no difference in the query
signal between target classes (female and male), and the de-
gree by which the performance drops quantifies the impor-
tance of that signal. The ‘removal via balancing’ technique
required a numerical representation for each signal in each
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dermoscopic gel pigmentation ruler redness

Figure 7. Visualizing the signals obtained from generating counterfactual pairs using the generative model. For each pair, the left lesion is
the female counterfactural and the right one is the male counterfactual.

Signal Identified Description Association

redness The skin lesion or the
background shows signs
of reddish, inflamed
skin, or erythema

Male

ruler The dermoscopic image
has visible ruler mark-
ings which serve as a
scale reference

Female

pigmentation Presence of color or pig-
ment within the lesion,
ranging from amelanotic
to black in color. Darker
pigmentation was found
to be associated with
males.

Male

gel Visible dermoscopic gel,
also known as immer-
sion fluid, in the image
used to enhance visual-
ization of the skin lesion

Male

Table 2. AI-specific signals identified through analysis of the fe-
male and male counterfactual images obtained from the generative
model. The description specifies what the signal corresponds to vi-
sually and the association indicates the sex in which the signal was
more prevalent.

image, and since these annotations were absent from the
original data, we produced annotations using a hybrid ap-
proach, similar approach to the one used for equalizing hair
in the clustering analysis; we manually labeled 500 female
and 500 male images from the test set for each of the signals
identified. We then trained separate classifiers (ViT-Base ar-
chitecture, ROC-AUC: 0.95) for each signal to label the rest
of the test set.

Quantifying the importance the signals we previously
identified (age, hair, sticker, redness, ruler, pigmentation,
and gel), we found that they collectively explained about
44% of the classifier’s performance, with the largest single
contributor being hair, which alone explained about 37% of
the classifier’s performance. Other attributes such as age,

redness, and presence of rulers explained a smaller but non-
negligible proportion of the classifier’s performance (Fig-
ure 6). A few attributes like pigmentation, sticker, and gel,
explained minimal performance, suggesting that these at-
tributes are either not leveraged by the classifier (false pos-
itives) or they are not prevalent in the test set. For exam-
ple, there are only two images with stickers in the test set,
indicating that the classifier cannot rely on this signal for
prediction in the test set even though it might have learned
this signal during training. Some of the signals identified,
like hair, can be explained by the physiological differences
based on sex, since males typically grow more hair on their
bodies than females. However, the other signals identified,
like age, redness, and ruler, do not conform with known bi-
ological insights and can be specific to the training data.

5. Conclusion
This study illuminates the intricate dynamics of AI classi-
fiers in predicting protected attributes within medical imag-
ing, focusing on patient sex prediction from dermoscopic
images. Through a domain shift analysis, we motivated
the need for rigorous data curation to ensure that trained
medical AI classifiers do not encode demographic short-
cuts leading to degraded performance or discrimination in
downstream, clinically relevant tasks. By employing a suite
of explainable AI (XAI) techniques, we revealed specific
visual signals that the AI could potentially leverage for
prediction. We further introduced a technique to quantify
the signals in terms of their contribution to the AI classi-
fier’s performance. Remarkably, it was revealed that the
hair signal accounted for a substantial portion (∼ 37%) of
the prediction performance, challenging conventional un-
derstandings of AI’s diagnostic capabilities. We hope this
study highlights the critical importance of scrutinizing AI’s
decision-making processes in healthcare, paving the way
for future research aimed at enhancing the transparency and
accountability of AI systems in clinical settings.
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Discovering mechanisms underlying medical AI prediction of protected
attributes

Supplementary Material

A. Association between metadata and sex

Diagnosis OR, train OR, test N, train N, test
solar lentigo 1.74 2.07 255 162
lentigo simplex 0.60 1.57 90 155
atypical melanocytic proliferation 1.46 1.07 13 86
squamous cell carcinoma 0.70 1.10 699 32
dermatofibroma 1.40 2.35 264 17
basal cell carcinoma 0.81 1.59 3278 21
seborrheic keratosis 0.87 0.55 1316 214
actinic keratosis 1.13 0.85 850 60
nevus 1.10 1.46 26005 1979
melanoma 0.99 0.48 5122 649

Table 3. Odds ratios (OR) for prediction of female sex based on diagnosis. Diagnoses are sorted by the OR in the training data, with
diagnoses lacking at least 10 corresponding images in both the training and test data excluded. Images lacking a diagnosis are excluded
from the analysis (6575 of 45924 images in the training data, and 19926 of 23461 images in the test data). N, number of images.

Dermoscopy method OR, train OR, test N, train N, test
contact polarized 0.99 1.11 5277 459
contact non-polarized 1.03 0.92 2047 7963
non-contact polarized 0.77 0.82 102 46

Table 4. Odds ratios (OR) for prediction of female sex based on method of dermoscopy employed in image acquisition. Images lacking
information on acquisition method are excluded (38498 of 45924 images in the training data, and 14993 of 23461 images in the test data).
N, number of images.
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B. Counterfactuals generated by generative technique

Figure 8. Visualization of the counterfactuals generated by our latent space optimization techinique. In each pair of images, the left one is
the female counterfactual and the right one is the male counterfactual.
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