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Abstract: A growing body of literature has attempted to characterize how traffic-related air pollution 

(TRAP) affects molecular and subclinical biological processes in ways that could lead to 

cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple 

mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic 

review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and 

metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we 

identified the omic biomarkers significantly associated with short- or long-term TRAP and used these 

biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related 

associations with biological pathways involving lipid metabolism, cellular energy production, amino 

acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. 

Our analysis suggests that an integrated multi-omics approach may provide critical new insights into 

the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more 

unified approach for characterizing the dynamic and complex biological processes linking TRAP 

exposure and subclinical and clinical disease, and highlight contemporary challenges and 

opportunities associated with such efforts. 
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1. Introduction 

 

It is well-established that exposure to traffic-related air pollution (TRAP) is associated with 

adverse respiratory and cardiovascular outcomes [1–3]. Research suggests that the pathways 

underlying associations between TRAP exposure and cardiorespiratory outcomes likely involve 

oxidative stress, endothelial dysfunction, and inflammatory responses [4–10]. A growing number of 

epidemiological studies are investigating how (changes in) DNA methylation patterns (methylomics), 

proteomic profiles, and metabolomic profiles underlie the physiological pathways linking TRAP 

exposure to respiratory and cardiovascular health (e.g., [11–16]). Nevertheless, no large-scale 

longitudinal study to date has identified common biological pathways involving TRAP-related 

methylomic, proteomic, and metabolomic patterns - evidence that could help establish a unified multi-

omics framework to gain a better understanding of the adverse health consequences of air pollutants 

and designing relevant interventions.  

Previous work has outlined many of the challenges of establishing a unified multi-omics 

approach to air pollution epidemiology (e.g., need for repeated samples, identification of an 

appropriate exposure metric, availability of appropriate statistical techniques to handle the large 

number of omics analytes) [17–21]. Additionally, when comparing and synthesizing results from 

across studies, challenges related to heterogeneity in study designs, populations, air pollutants of 

interest, exposure windows, omics measurement methods, and analytic techniques arise [11,12,21–

24]. Despite these challenges, multi-omics integration (i.e., integrating across multiple levels of 

biology such as methylation patterns, proteomic profiles, and metabolomic profiles) aimed at 

understanding mechanisms linking environmental risk factors to chronic disease can advance clinical 

and public health knowledge and inform design and implementation of relevant interventions [25–27]. 

Therefore, as a step towards the larger goal of developing an integrated multi-omics approach, we 

conducted the first systematic review of studies relating TRAP to three types of omics signals. Using 

these signals from across omics types, we aimed to pinpoint common biological pathways known to 

be involved in respiratory and cardiovascular diseases, assess challenges and benefits of a multi-

omics approach, and identify research needs. The number of studies directly linking TRAP exposure 

to clinical outcomes through changes in omics signals is relatively small; however, we believe that 

identifying omics signals and pathways known to be associated with both TRAP exposure and 

cardiorespiratory disease is a prudent step towards advancing clinical and public health decision 

making.  

 

2. Materials and Methods 

 

Search Strategy and Study Selection  

  

We searched Embase and PubMed for English-language epidemiologic articles published 

between January 2010 and February 2023 that reported on the association between TRAP exposure 

and one or more of three omics types (DNA methylation [methylomics], proteomics, and 

metabolomics). Search terms included DNA methylation, proteomics, metabolomics, TRAP, and 

particulate matter (PM). The search strategy is described in detail in Supplementary S1. We screened 
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extracted articles by title and abstract. We excluded reviews and reports, as well as in-vitro, in-silico, 

ex-vivo, and animal studies. We excluded articles not containing one or more TRAP exposures, and 

those that examined “pollution” without specifying pollutants. Relevant pollutants included particulate 

matter < 2.5 microns (PM2.5), particulate matter < 10 microns (PM10), PM constituents, ultrafine 

particulate matter (UFP), black carbon (BC), elemental carbon (EC), organic carbon (OC), nitrogen 

dioxide (NO2), nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), sulfate (SO4
2-), 

ozone (O3), diesel exhaust (DE), and polycyclic aromatic hydrocarbons (PAHs). Studies focused on 

people who were pregnant or under 18 years of age were also excluded. In addition to 115 articles 

that remained after screening, we identified 24 papers through expert knowledge, for a total of 139 

unique studies. There were 54 methylomic, 57 proteomic, 37 metabolomic, and 9 overlapping 

studies—four of which included both proteomics and metabolomics, and five that included both 

proteomics and methylation (Figure 1). 

Figure 1: Flow diagram of the article selection process with exclusion criteria.  

 

Data Extraction and Organization  �  
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We extracted the following from each article: study design and sample size, air pollution 

exposure methods, exposure metrics, omics assay methods, participant demographics, statistical 

methods, and results (Table 1 and Supplementary S2 Tables 1-3). Statistically significant associations 

between different TRAP exposures and each omics article type (methylomic, proteomic, metabolomic) 

were identified (Supplementary S2, Tables 4-6). We used statistical significance thresholds 

determined by the original authors, which included both adjusted and non-adjusted p-values. Air 

pollution exposures were split by pollutant type and averaging period (short-term: ≤30 days; long-

term: >30 days). 

Using the significant associations shown in Supplementary S2 Tables 4-6, we identified 

common biological processes and type of biomarker represented across the omics types (abbreviated 

version of results shown in Table 2 and full results shown in Supplementary S2 Table 7). Gene 

Ontology (GO) molecular functions (molecular level activities performed by gene products, e.g., 

glucose transmembrane transport) were extracted for each gene and protein [28]. Where available, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (pathways of common molecular 

interaction, e.g., tumor necrosis factor signaling) were indicated for all genes, proteins, and 

metabolites [29–31]. For genes and proteins without KEGG data, GO biological processes (functions 

of gene products) were used instead. The nextprot knowledgebase [32] was used to extract GO 

molecular functions, GO biological processes, and KEGG pathways for all genes and proteins. The 

GenomeNet KEGG COMPOUND Database [33] was used to extract KEGG functions for all available 

metabolite markers.  Based on Supplementary S2 Tables 4-7, we created a simplified conceptual 

diagram of the putative relationships among TRAP, omics signals, subclinical processes, and clinical 

outcomes (Figure 2).  

 

Pathway and Network Analyses 

 

We conducted bioinformatics analyses synthesizing the results across the omics studies using 

the lists of relevant biomarkers shown in Supplementary S2 Table 8 (representing all significant 

associations shown in Supplementary S2 Tables 4-6). We used the open-source tools Reactome [34] 

and MetaboAnalyst 5.0 [35] to conduct pathway analyses. Specifically, we used Reactome to perform 

overrepresentation pathway analyses on the gene methylation sites and proteins that were 

significantly associated with TRAP exposure (separately for each omic type and for associations with 

short- and long-term TRAP exposures), and MetaboAnalyst to conduct a KEGG pathway analysis of 

all metabolites that were significantly associated with TRAP (separately for short- and long-term 

exposures). These programs generate lists of pathways indicated by the extracted analytes. Some 

pathways discussed in this review were not on the indicated lists of these pathway analyses, and 

therefore statistical significance values were not given. Given that we extracted the KEGG functions 

and/or GO data for each analyte, we were able to group together omics signals effectively, despite 

pathway analysis-related statistical thresholds that may be limiting in representing all biological 

pathways involved in TRAP-exposure. 

MetaboAnalyst was also used to conduct four KEGG network analyses representing the 

functional relationships among biomarkers.  We created two networks incorporating methylation 
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markers and metabolites that were significantly associated with short- and long-term TRAP exposure 

and two networks incorporating proteins and metabolites that were significantly associated with short- 

and long-term TRAP exposure (in each case, using separate networks for short- and long-term 

exposures). In network analyses, networks are parameterized by degree (i.e., number of 

incoming/outgoing edges on each node) and betweenness (i.e., number of shortest paths between 

each pair of nodes). Higher values for degree and betweenness restrict the network to only the most 

highly connected and relevant nodes [36,37]. For our two short-term network analyses, degree and 

betweenness filters were constrained to degree of at least three. In the long-term exposure analyses, 

networks did not contain enough nodes to apply these filters. This is due to the relative sparsity of 

literature examining associations between long-term exposures and omics signals. 

 

3. Results and Discussion 

 

3.1 Overview of the Literature  

 

Table 1 provides an overview of the study designs, exposure assessment approaches, study 

populations, sample sizes, sex distributions, and omics approaches used in the studies included in 

this review.  

 

Omics Type Study Design Exposure Assessment Exposure 
Window 

Study 
Populationsa 

Country Sample Size Sex Distribution Omics Approach 

Methylomics 
n = 54 studies 

Cross-sectional: 29 
Panel: 9 
Cohort: 5 
Cross-over: 9 
Quasi-experimental: 2 
 
 

Fixed site 
measurement: 16 
Spatiotemporal model: 
21 
Personal 
measurement: 12 
Controlled exposure: 5 

Short-term: 29 
Long-term: 25 

NAS: 10 [38–
47] 
KORA: 3 
[42,46,48] 
WHI: 3 [49–
51] 
ARIC: 3 [49–
51] 
EPIC-Italy: 2 
[52,53] 
MESA: 2 
[54,55] 
Sister Study: 
2 [56,57] 
BAPE: 2 
[58,59] 
Taiwan 
Biobank: 2 
[60,61] 
REGICOR: 1 
[52] 
EPIC-
Netherlands: 
1 [53] 
Lifelines: 1 
[48] 
EXPOsOMIC
S: 1 [62] 
SAPALDIA: 1 
[63] 
Lothian Birth 
Cohort: 1 [64] 
SPHERE: 1 
[65] 
 

USA: 17 
China: 15 
Italy: 8 
Canada: 4 
Netherlands: 3 
Taiwan: 3 
Germany: 2 
Switzerland: 2 
UK: 2 
Belgium: 2 
Spain: 1 
South Korea: 1 
Czech 
Republic: 1 

<50: 20 
50-99: 3 
100-1000: 20 
>1000: 11 
 
 
 
 
 
 

100% female: 4 
100% male: 11 
Other: 39 

Candidate gene: 
26 
Epigenome-wide 
association study: 
24 
Global methylation:  
4 

Proteomics 
n = 57 studies 

Cross-sectional: 28 
Panel: 8 
Cohort: 3 
Cross-over: 10 
Quasi-experimental: 
Case-control: 3 
 

Fixed site 
measurement: 24 
Spatiotemporal mode: 
19 
Personal 
measurement: 9 
Biomarker: 2 
Controlled exposure: 4 
 
 

Short-term: 36 
Long-term: 21 
 

NAS: 3 [66–
68] 
SWAN: 3 [69–
71] 
KORA: 3 [72–
74] 
Heinz-Nixdorf 
Recall: 3 
[72,75,76] 
Framingham 
Offspring: 2 
[77,78] 
AIRCHD: 2 
[79,80] 
EPIC-Italy: 1 

USA: 17 
China: 17 
Canada: 6 
Germany: 4 
India: 3 
Taiwan: 3 
Italy: 2 
Sweden: 1 
UK: 1 
France: 1 
Brazil: 1 
Sweden: 1 
Finland: 1 
Switzerland: 1 

<50: 15 
50-99: 10 
100-1000: 13 
>1000: 19 
 
 

100% female: 3 
100% male: 6 
Other: 48 

Targeted: 54 
Untargeted: 3 
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Table 1: Overview of the literature.  
aNumbers represent the number of papers reviewed containing the given characteristic. Where the 
original study included multiple study populations, all study populations and countries were counted.  
Abbreviations: ACE – Atlanta Commuters Exposure; AHAB-II – Adult Health and Behavior; AIRCHD – 
Air Pollution and Cardiovascular Dysfunctions in Healthy Adults Living in Beijing: ARIC – 
Atherosclerosis Risk in Communities; BPRHS – Boston Puerto Rican Health Study; CAFEH – 
Community Assessment of Freeway Exposure and Health; DRIVE – Dorm Room Inhalation to Vehicle 
Emissions; EARTH – Environmental and Reproductive Health; ELISABET -  Enquête Littoral Souffle 
Air Biologie Environnement; EPIC – European Prospective Investigation into Cancer and Nutrition; 
ESCAPE – European Study of Cohorts for Air Pollution Effects; KORA – Cooperative Health 
Research in the Region of Augsburg; MESA – Multiethnic Study of Atherosclerosis; NAS – Normative 
Aging Study: REGICOR - REgistre GIroní del COR; SAGE – Study on Global Aging and Adult Health; 
SAPALDIA - Swiss Study on Air Pollution and Lung Disease in Adults; SCOPE - A Prospective Study 
COmparing the Cardiometabolic and Respiratory Effects of Air Pollution Exposure on Healthy and 
Prediabetic Individuals; SPHERE - Susceptibility to Particle Health Effects, miRNA and Exosomes; 
SWAN – Study of Women’s Health Across the Nation; TAPAS – Transportation, Air Pollution and 
Physical Activities; WHI – Women’s Health Initiative 

 

3.1.1 TRAP Exposure Assessment 

 

Exposure assessment approaches differed by omics type: spatiotemporal modeling was most 

common for methylomic papers, fixed site monitoring was most common for proteomics papers, and 

personal monitoring was most common for metabolomics papers (Table 1). Short-term exposures 

[81] 
BPRHS: 1 
[82] 
Malmo Diet 
and Cancer: 1 
[83] 
AHAB-II: 1 
[84] 
SAGE: 1 [85] 
Nurse’s 
Health Study: 
1 [86] 
ELISABET: 1 
[87] 
ESCAPE: 1 
[88] 
SAPALDIA: 1 
[72] 
FINRISK: 1 
[72] 
TwinGene: 1 
[72] 
MESA: 1 [89] 
CAFEH: 1 [90] 
CoLaus: 1 
[91] 

Metabolomics 
N = 37 studies 

Cross-sectional: 15 
Panel: 7 
Cohort: 2 
Cross-over: 7 
Natural Experiment: 1 
 

Fixed site 
measurement: 8 
Spatiotemporal model: 
10 
Personal 
measurement: 14 
Biomarker: 1 
Controlled exposure: 4 
 

Short-term: 26 
Long-term: 11 
 

DRIVE: 3 [92–
94] 
NAS: 2 
[95,96] 
Children’s 
Health Study: 
2 [97,98] 
KORA: 2 
[99,100] 
SAPALDIA: 1 
[101] 
EPIC-Italy: 1 
[101] 
ACE: 1 [102] 
ACE-2: 1 
[103] 
Oxford St. 2: 1 
[104] 
TAPAS II: 1 
[104] 
CAFEH: 1 
[105] 
EARTH: 1 
[106] 
AIRCHD: 1 
[80] 
SCOPE: 1 
[107] 
TwinsUK: 1 
[108] 

USA: 17 
China: 12 
Germany: 2 
UK: 2 
Sweden: 1 
Switzerland: 1 
Italy: 1 
India: 1 
Spain: 1 
Netherlands: 1 
Brazil:1 

<50: 15 
50-99: 6 
100-1000: 7 
>1000: 4 
 
 
 
 

100% female: 1 
100% male: 5 
Other: 31 

Targeted: 8 
Untargeted: 29 
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were more commonly assessed than long-term exposures for each omic type. For long-term 

exposures, the most common exposure window was an annual average. As in air pollution 

epidemiology generally, each exposure assessment approach and exposure window has strengths 

and weaknesses in the context of different study designs; a potential benefit of a multi-omics 

approach is the enhanced reliability of knowledge obtained from triangulating findings from studies 

that employ the diverse combinations of exposure assessment techniques and windows.  

The most common pollutant studied across all three omics (regardless of exposure window) was 

PM2.5. Forty-six methylation papers, 41 proteomics papers, and 32 metabolomics papers measured 

PM2.5 exposure. PM10, UFP, BC, NO2, NOx, and O3 were all considered in each omic type; however, 

they were less commonly studied in papers focused on long-term exposures. Papers that did not 

investigate PM2.5 generally focused on O3 or diesel exhaust. Given the study designs and exposure 

assessment methods, time-varying exposures and TRAP mixtures were generally not accounted for 

in the analyses; future studies should consider time-varying exposures and mixtures. 

 

3.1.2 Study Populations 

 

Research in this field predominantly draws from populations in North America, China, and 

Western Europe (Table 1); future studies should include more geographic diversity – requiring an 

investment in TRAP exposure and omics assessment in other geographic regions. Additionally, 

although most study populations included people regardless of sex, single-sex cohorts were common 

(especially for methylomic papers where 28% were single-sex). Three methylomic, two proteomic, 

and four metabolomic papers considered effect modification by sex [42,54,64,83,98,109–112] 

(Supplementary S2 Tables 1-3).  Fourteen methylomic, 16 proteomic, and 21 metabolomic studies 

contained populations with a mean age or entire age range of 35 years old or younger. Twenty-three 

methylomic, nine proteomic, and four metabolomic studies contained populations with a mean age, or 

entire age range of 60 years or older. In general, the methylomic literature had slightly older 

participants and metabolomics literature had slightly younger participants. However, there was 

adequate representation of all ages throughout all three omics types. Most studies included healthy 

participants or did not specify health conditions as criteria for eligibility.   

 

3.1.3 Biological Matrices 

 

Methylomic, proteomic, and metabolomic markers were assessed using a variety of biological 

matrices, (Supplementary S2 Tables 1-3). Leukocytes and whole blood were the most common 

biological matrices for methylomic papers (27 and 17 papers, respectively). All studies adjusted for 

cell composition except those exclusively using CD4+ helper cells or buccal cells as the matrix of 

interest, or those using paired samples with a short lag time [113–118]. For proteomic papers, serum 

and plasma were the most common biological matrices (34 and 21 papers, respectively). Nine 

proteomics papers used both serum and plasma, with the inclusion of plasma serving primarily to 

measure fibrinogen levels [69,72,78,89,119–123]. Three proteomics papers used bronchoalveolar 

lavage fluid to understand the associations between TRAP and the bronchoalveolar proteome, 

serving as a more direct measure of TRAP’s influence [124–126]. Similar to proteomics, serum and 
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plasma were the most common biological matrices for metabolomics papers (17 and 14 papers, 

respectively). Serum is currently considered the gold standard in metabolomics research, providing 

more sensitive results in biomarker detection; however, plasma also provides accurate results and 

has high reproducibility [127,128]. Five metabolomics papers utilized urine [98,129–132] and two 

used bronchoalveolar lavage fluid [133,134].  

In general, decisions about the biological matrix were largely determined based on availability of 

data within a cohort rather than on the biological relevance of a given matrix for TRAP-

cardiorespiratory relationships. Although other matrices (e.g., myocytes, bronchiolar cells, endothelial 

cells, etc.) may serve as a more direct source of omics signals, they are often inaccessible and/or 

invasive to procure [135,136]. Additionally, none of the studies explicitly considered biomarker 

interactions (e.g., protein-protein or protein-metabolite) or the possibility of biomarker degradation or 

metabolism (e.g., considering how TRAP exposure may only affect biomarker levels over a specific 

temporal window) [135,137–139]. Finally, without the ability to obtain repeated measures of multiple 

omics types within individuals over relevant time periods, it is not possible to directly assess putative 

relationships between TRAP exposure and cascading biological processes. That is, although we can 

view the associations among multiple omics layers and pollutants across similar short- and long-term 

exposure windows, we do not have a direct means to measure the exact temporal changes in 

methylomic, proteomic, and metabolomic makers occurring at consistent points post-exposure. 

 

3.1.4 Omics Assessment 

 

In the methylomics literature, multiple high-throughput approaches and bioinformatics 

technologies were used (Supplementary S2 Table 1). The most common forms of methylation 

quantification were methylation arrays (37 papers) and bisulfite polymerase chain reaction (PCR) 

sequencing (13 papers). The PCR sequencing papers focused on candidate gene approaches 

(primarily for inflammatory and immune-related proteins, as well as genes related to circadian rhythm 

and epigenetic age) [38,47,116,117,120,140–147]. Analyses using arrays took advantage of the 

evolving technology to capture the most comprehensive set of biomarkers possible: one paper utilized 

a 385K array [43], 24 utilized a 450K array [39–42,44–46,48,50–55,57,62–64,148–153], and 12 

utilized an 850K array [58–61,114,115,154–159]. Although we recommend the use of the most 

comprehensive technology available, the contribution of groundbreaking studies using older arrays to 

the current body of knowledge should not be understated [160,161]. Similarly, for the bioinformatics 

analyses of the methylomics results, researchers took advantage of the rapidly evolving tools such as 

KEGG for pathway analysis [39,43,114,133,157,158], the National Institutes of Health Databases for 

Annotation, Visualization and Integrated Discovery (NIH-DAVID) [39,53,62,152,153], Ingenuity 

Pathway Analysis (IPA) [40,63,126,148,154,162], Mummichog [15,92–94,101–103,105,106,163,164], 

and MetaboAnalyst [95–97,112,130,165–168].  

Compared to the methylomics literature, there was homogeneity in approaches used across the 

proteomics literature (Supplementary S2 Table 2). Only three of the 57 proteomics papers used 

untargeted omics approaches  (and therefore, the use of bioinformatics approaches for analysis were 

limited to relatively few studies) [126,132,162]. Instead, many studies assessed the concentration of 

approximately 20 targeted proteins (e.g., cytokines, chemokines, and other immune/inflammatory-
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related markers). This led to abundant data on the associations among TRAP and the concentration 

of key proteins related to inflammation and immunity, and therefore cardiorespiratory disease. The 

represented proteins often overlapped well with the proteins encoded by candidate genes targeted in 

methylation studies. While this is useful for multi-omics interpretation, the relative lack of untargeted 

analyses may limit our understanding of the complete proteomic response to TRAP, and potentially 

bias our analyses by over-representing certain processes already considered important in 

cardiorespiratory disease. Furthermore, it can make it difficult to integrate methylomic, proteomic, and 

metabolomic results together.  

In contrast to the proteomics literature, most (28/37) of the metabolomics papers used 

untargeted approaches and 22 incorporated bioinformatics approaches for the interpretation of results 

(e.g., 11 used Mummichog [15,92–94,101–103,105,106,163,164] and nine used MetaboAnalyst [95–

97,112,130,165–168]; Supplementary S2 Table 3). Specific to metabolomics is the challenge of 

metabolite identification. Fourteen of 37 metabolomics papers had level one confidence (highest level 

of confidence confirmed by reference standard) [80,94,97,100–102,106–108,110,134,163,168,169], 

whereas an additional six studies contained some level one matches mixed with lower confidence 

findings [93,103–105,164,170]. Thirteen studies had level two confidence, primarily confirmed by 

library spectrum match [15,96,112,118,129,130,133,165–167,171–173]. Only two studies did not 

contain metabolites with level two or greater confidence [96,98]. The variation in metabolite 

identification confidence reflects a level of uncertainty in the metabolomics signals observed across 

different studies [174,175].  

 

3.2 Omics Markers and Associated Biological Pathways 

 

Omics markers representing biological pathways related to lipid metabolism, cellular energy 

production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and 

oxidative stress were present across the literature. In this section, we outline trends in common 

biological pathways and molecular functions associated with methylomic, proteomic, and metabolomic 

markers of TRAP exposure, along with the hypothesized connections to cardiorespiratory disease. 

Not all omics markers may be related to clinical outcomes, and further research is needed to identify 

the most critical pathways underlying the relationship between TRAP exposure and disease. Figure 2 

shows a simplified diagram of the relationships. The supporting literature is summarized in Table 2 

and Supplementary S2 Tables 4-7.  
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Figure 2: Overview of the relationships among traffic-related air pollution, omics markers, and 
subclinical and clinical cardiovascular and respiratory disease outcomes. Solid arrows indicate a well-
established, known relationship as evidenced by the biomedical literature. Dashed arrows indicate a 
probable association or an association with possible mediators that needs to be further investigated. 
Color coding of text within methylomic, proteomic, and metabolomic text boxes corresponds to a 
category of biological pathway. Green - lipid metabolism; orange - cellular energy production; blue - 
amino acid metabolism; red – inflammation and immunity; yellow - coagulation, purple - endothelial 
function; white - oxidative stress; black - analytes that do not clearly fit into the above categories 
(vitamins, purines, xanthines, etc.)  
Abbreviations: ARG2 – Arginase 2; C1q – Complement component 1q; C3 – Complement component 
3; C4A -  Complement component 4A; CCL2 – CC motif chemokine ligand 2/monocyte 
chemoattractant protein 1; CCL3 – CC motif chemokine ligand 3/macrophage inflammatory protein 1 
alpha; CD14 – Cluster of differentiation 14; CD40LG – Cluster of differentiation 40 ligand; CX3CL1 – 
Fractalkine; CXCL10; CXC motif chemokine ligand 10/interferon gamma inducible protein 10; F2 – 
Coagulation factor 2; F2R- Coagulation factor 2 receptor; F3 – Coagulation factor 3; FGF2 – 
Fibroblast growth factor 2; GM-CSF – Granulocyte macrophage colony stimulating factor; ICAM1- 
Intercellular adhesion molecule 1; IL1b – Interleukin 1 beta; IL4 – Interleukin 4; IL6 – Interleukin 6; 
IL10 – Interleukin 10; MAPK – Mitogen activated protein kinase; NOS2 – Nitric oxide synthase 2; Nf-
KB – Nuclear factor kappa light chain enhancer of activated B cells; P13K-AKT – Phosphatidylinositol 
3 kinase and AKT/protein kinase B; SERPINE1 – Serpin family E member 1/Plasminogen activator 
inhibitor 1; TLR2 – Toll like receptor 2; TLR4 – Toll like receptor 4; TNF- Tumor necrosis factor alpha; 
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TNFa – Tumor necrosis factor alpha; VCAM1 – Vascular cell adhesion molecule 1; VEGFa – Vascular 
endothelial growth factor alpha; vWF – Von Willebrand factor. 

 

Table 2 synthesizes the methylomic, proteomic, and metabolomic literature together. The table is 

organized by KEGG pathway, and only includes those pathways most represented in the literature: 

lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, 

coagulation, endothelial function, and oxidative stress. Within each KEGG pathway, all methylomic, 

proteomic, and metabolic markers significantly associated with short- and/or long-term TRAP are 

noted. Each omics type was separated into associations for short- and long-term exposure. Details 

are given in the following sections. 

 

Table 2: Combined synthesis of significant associations. Abbreviations: Al – Aluminum, BC – Black 
Carbon, CO – Carbon Monoxide, CO2 – Carbon Dioxide, Cu – Copper, DE – Diesel Exhaust, Fe – 
Iron, K – Potassium, Ni – Nickel, NO – Nitrogen monoxide, NO2 – Nitrogen dioxide, NOx – Nitric 
oxides, O3 - Ozone, Pb – Lead, PM – Particulate matter, Se – Selenium, Si – Silicon, SO4 - Sulfate, 
TRAP – Traffic-related air pollution, UFP – Ultrafine particulate matter, V – Vanadium, Zn – Zinc.    

 

3.2.1 Lipid Metabolism 

 

Phospholipids, sphingolipids, and acylcarnitines were represented throughout the metabolomics 

literature. However, no studies explored the associations between TRAP and methylomic or 

proteomic markers related to lipid metabolism (Table 2; Supplementary 2 Tables 6-7). In the 

metabolomics literature, both short- and long-term PM2.5 exposures were negatively associated with 

phospholipid levels [26-30]. In contrast, short-term UFP, NO2, and O3 were consistently and positively 

associated with levels of phospholipids [95,100,176]. Phospholipid metabolism is essential for normal 

cellular function as it is involved in generating biological membranes and plays an important role in 

cellular signaling processing in nearly all tissues [177]. Phospholipid imbalances are implicated in 

neurological disorders and neurodegenerative diseases, while damaged and oxidized phospholipids 

are associated with atherosclerosis and cardiovascular disease (CVD; Figure 2) [178,179]. It is not 

understood exactly how TRAP associations with phospholipid metabolites contribute to the 

aforementioned diseases.  

Sphingolipids, such as sphingosines and some sphingomyelins, were negatively associated with 

short- and long-term PM2.5 as well as with short-term UFP [95,98,168], but were positively associated 

with short-term O3 and Ni [95,98,176,180]. For example, sphingosine 1-phosphate (a known risk 

factor for coronary artery disease (CAD)) [181] was negatively associated with short-term UFP and 

positively associated with short-term Ni [95]. Additionally, ceramide (a reaction product of 

sphingomyelin and/or sphingosine that is elevated in patients with hypertension, angina pectoris, 

myocardial infarction, and stroke [182–184]) was  negatively associated with short-term PM2.5 and 

UFP exposure [95,168]. However, eight sphingomyelins were positively associated with long-term 
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PM2.5 and short-term O3  [95,176]. Given these findings, it is possible that TRAP (and particularly the 

PM components) may not predominately work through pathways involving sphingolipids to affect 

CVD. However, future studies should confirm this hypothesis and should also consider whether 

methylation patterns or proteins related to lipid metabolism are implicated.  

In contrast to the trends with sphingolipids, acylcarnitines were positively associated with short-

term TRAP and negatively associated with short-term NO2 [95,104,111,132,165,170,173]. It has been 

shown that higher levels of medium and long-chain acylcarnitines are positively associated with both 

CVD, and risk of cardiovascular death in patients with stable angina pectoris [185–187]. 

Although most markers of lipid metabolism were considered only in the metabolomics literature, 

arachidonic acid and linoleic acid metabolism KEGG pathways were considered in both the 

proteomics (one protein involved in each) and metabolomics (20 and 13 metabolites, respectively) 

literature (Table 2). Synthesizing the results from these studies, our MetaboAnalyst pathway analyses 

suggested that the arachidonic acid metabolism KEGG pathway was significantly enriched by 

metabolites associated with both short- and long-term TRAP exposure (p = 4.29 x 10-4 and p = 0.01, 

respectively). Specifically, exposure to short-term diesel exhaust was associated with higher 

concentrations of the protein arachidonate 15-lipoxygenase (ALOX15). This enzyme helps generate 

bioactive lipid molecules, such as eicosanoids, hepoxilins, and lipoxins [188]. Interestingly, short-term 

diesel exhaust was also associated with lower levels of multiple metabolites related to ALOX15 

[126,134]. The metabolomics literature also considered other components of the arachidonic acid and 

linoleic acid metabolism pathways. For example, short-term PM2.5 and diesel exhaust exposure were 

associated with higher and lower levels of eicosanoids, respectively [107,134]. These signaling lipids 

regulate homeostatic and inflammatory processes, making them important markers in the progression 

of CVD [188,189]. Additionally, short-term PM2.5 and other TRAP exposures were associated with 

higher levels of thromboxane, prostaglandin, and leukotriene metabolites [98,134,164,165,169]. 

These metabolites are associated with modification of the immune and inflammatory responses, and 

help mediate leukocyte accumulation [190]. Finally, short-term PM2.5, NO2, and other short-term TRAP 

exposures, as well as long-term PM2.5 and NO2 were associated with higher levels of metabolites 

involved in linoleic acid metabolism [99,100,134,164,165,167]. Dysregulated linoleic acid metabolism 

is traditionally considered pro-inflammatory and pathological, but the linoleic acid pathway is still not 

well understood [189]. 

The network analyses we conducted consistently identified metabolites related to arachidonic 

and linoleic metabolism, such as arachidonic acid, ALOX15, leukotrienes, prostaglandins, and 

thromboxanes (Figures 3-6; green symbols correspond to lipid metabolism). These metabolites 

associated with short-term air pollution exposures were connected with genes and proteins related to 

inflammation and the immune system (red symbols), endothelial function (pink symbols), and 

coagulation (yellow symbols; Figures 3 and 5). Lipid metabolism markers associated with long-term 

air pollution exposures had similar trends, though fewer nodes were identified for the gene-metabolite 

network overall (Figures 4 and 6). 
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Figure 3: Short-term air pollution and gene-metabolite network analysis. Circular nodes represent 

genes, whereas square nodes represent metabolites. The color of each node corresponds to the 

category of biological pathway to which that analyte belongs. Green - lipid metabolism; orange - 

cellular energy production; blue - amino acid metabolism; red – inflammation and immunity; yellow - 

coagulation, pink - endothelial function; white - oxidative stress; black - analytes that do not clearly fit 

into the above categories (vitamins, purines, xanthines, etc.). Abbreviations: ACE – Angiotensin 

converting enzyme; CCL2 – Monocyte chemoattractant protein 1; CRP – C-reactive protein; CSF2 – 

Colony stimulating factor 2; CXCL10 – Interferon gamma induced protein 10; EDN1 – Endothelin 1; 

EDNRB – Endothelin receptor type B; F2 – Coagulation factor 2; F2R- Coagulation factor 2 receptor; 

F3 – Coagulation factor 3; IL1B – Interleukin 1 beta; IL -2 Interleukin 2; IL6 – Interleukin 6; IL-8; 

Interleukin 8; ICAM1 – Intercellular adhesion molecule 1; MPO – Myeloperoxidase; NOS2 – Nitric 

oxide synthase 2.      
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Figure 4: Long-term air pollution and gene-metabolite network analysis. Circular nodes represent 

genes, whereas square nodes represent metabolites. The color of each node corresponds to the 

category of biological pathway to which that analyte belongs. Green - lipid metabolism; orange - 

cellular energy production; blue - amino acid metabolism; red – inflammation and immunity; yellow - 

coagulation, pink - endothelial function; white - oxidative stress; black - analytes that do not clearly fit 

into the above categories (vitamins, purines, xanthines, etc.). Abbreviations: CACNA2D1 – Calcium 

voltage gated channel auxiliary subunit alpha2delta 1; ENPP2 – Ectonucleotide pyrophosphatase 2; 

F2RL3 – Coagulation factor 2 receptor like thrombin or trypsin receptor 3; GNAS – GNAS complex 

locus; OXT – Oxytocin prepropeptide; SELP – P selectin. 

 

 

 

Figure 5: Short-term air pollution and protein-metabolite network analysis. Circular nodes represent 

proteins, whereas square nodes represent metabolites. The color of each node corresponds to the 

category of biological pathway to which that analyte belongs. Green - lipid metabolism; orange - 

cellular energy production; blue - amino acid metabolism; red – inflammation and immunity; yellow - 

coagulation, pink - endothelial function; white - oxidative stress; black - analytes that do not clearly fit 

into the above categories (vitamins, purines, xanthines, etc.). Abbreviations: 15(3)-HETE – 15 

Hydroxyeicosatetraenoic acid; ACE – Angiotensin converting enzyme; ALOX15 – Arachidonate 15 

lipoxygenase; APRT – Adenine phosphoribosyltransferase; APOB – Apolipoprotein B; CCL2 – 

monocyte chemoattractant protein 1; CCL20 – CC motif chemokine ligand 20; CKB – Creatine kinase 

B; CRP – C reactive protein; CSF2 – Colony stimulating factor 2; CXCL1 – CXC motif chemokine 

ligand 1; CXCL3 – CXC motif chemokine ligand 3; CXCL5 – CXC motif chemokine ligand 5; CXCL10 

- Interferon gamma induced protein 10; CXCL11 – CXC motif chemokine ligand 11; EGF- Epidermal 
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growth factor;  EDN1 – Endothelin 1; F3 -  Coagulation factor 3; IL1B – Interleukin 1 beta; IL2 – 

Interleukin 2; IL4 – Interleukin 4; IL6 – Interleukin 6; IL8 – Interleukin 8, ICAM1 – Intercellular 

adhesion molecule 1; MMP2 – Matrix metalloproteinase 2; MMP9 – Matrix metalloproteinase 9; MPO 

– Myeloperoxidase; PLAT – Plasminogen activator, tissue type; VEGFA – Vascular endothelial growth 

factor A. 

 

Figure 6: Long-term air pollution and protein-metabolite network analysis. Circular nodes represent 

proteins, whereas square nodes represent metabolites. The color of each node corresponds to the 

category of biological pathway to which that analyte belongs. Green - lipid metabolism; orange - 

cellular energy production; blue - amino acid metabolism; red – inflammation and immunity; yellow - 

coagulation, pink - endothelial function; white - oxidative stress; black - analytes that do not clearly fit 

into the above categories (vitamins, purines, xanthines, etc.). Abbreviations: C3 – Complement 

component 3; CCL2 – Monocyte chemoattractant protein 1; CCL11 – CC motif chemokine ligand 11; 

CP – Ceruloplasmin; CRP- C reactive protein; CSF3 – Colony stimulating factor 3; HP – Haptoglobin; 

ICAM1 – Intercellular adhesion molecule 1; IL6 – Interleukin 6; IL8 -Interleukin 8; IL10 – Interleukin 

10; PLAT - Plasminogen activator, tissue type; PLAU – Plasminogen activator, urokinase; SERPINA1 

– Alpha 1 proteinase inhibitor; SERPINE1 – Plasminogen activator inhibitor 1. 

 

3.2.2 Cellular Energy Production 

 

Three cellular energy production KEGG pathways were associated with short- and long-term 

TRAP exposure: (1) the citric acid cycle, (2) glycolysis/gluconeogenesis, and (3) the pentose 
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phosphate pathway (Table 2, Figure 2). Although no methylomic or proteomic markers related to the 

citrate cycle were identified as significantly associated with TRAP, our MetaboAnalyst pathway 

analyses synthesizing results across studies identified the citric acid cycle KEGG pathway as being 

significantly enriched by the metabolites significantly associated with short- and long-term TRAP 

exposure (p = 8.86 x 10-3 and p = 1.65 x 10-3, respectively). Specifically, exposure to short-term TRAP 

was associated with higher levels of some citric acid cycle intermediates (e.g., succinyl-CoA, 

succinate, cis-aconitic acid, and alpha-ketoglutaric acid) [130–132,191] but short-term PM2.5 exposure 

was associated with lower levels of pyruvate, while short-term EC was associated with lower levels of 

citric acid and isocitric acid [94]. In contrast, long-term PM2.5 exposure was associated with higher 

levels of malic acid and succinic acid [95,163]. Notably, citric acid cycle dysregulation has been 

associated with CVD [192,193]. For example, one case-cohort study found an increased risk of CVD 

with higher concentrations of fasting plasma malic acid, 2-hydroxyglutarate, and fumarate [193], while 

a nested case-control study found higher levels of succinic acid, malic acid, citric acid, and 2-

hydroxyglutarate to be associated with a higher risk of atrial fibrillation [192]. Higher levels of malic 

acid and succinic acid associated with long-term PM2.5 exposure may underlie part of the known 

association between TRAP and the risk of CVD. Future studies could explore whether TRAP 

exposure is also associated with the methylation of genes encoding for key rate limiting and 

regulatory enzymes in the citric acid cycle, such as citrate synthase, isocitrate dehydrogenase, and 

alpha-ketoglutarate dehydrogenase, as well the concentrations of these enzymes. Additionally, future 

studies could explore functional relationships among citric acid and coagulation and endothelial 

function given the relationships we identified in the long-term air pollution and protein-metabolite 

network analysis (Figure 6).  

The central carbohydrate metabolism pathways represented by biomarkers associated with 

TRAP include the glycolysis/gluconeogenesis and pentose phosphate pathways (Figure 2). The 

glycolysis/gluconeogenesis KEGG pathway was represented by two proteomic and five metabolomic 

markers significantly associated with TRAP, but no methylomic markers (Table 2). Similarly, five 

metabolomic (but no methylomic or proteomic markers) identified as belonging to the pentose 

phosphate KEGG pathway were significantly associated with TRAP (Table 2). For the 

glycolysis/gluconeogenesis KEGG pathway, exposure to short-term diesel exhaust was associated 

with lower levels of the protein alcohol dehydrogenase class four mu/sigma chain, and higher levels of 

the protein aldehyde dehydrogenase dimeric nicotinamide adenine dinucleotide phosphate-preferring 

[126]. In metabolomics studies, exposure to short-term PM2.5 was associated with lower levels of the 

metabolites lactate, pyruvate, and glyceric acid 1,3-bisphosphate [94,129,194], and exposure to long-

term PM2.5 was associated with lower levels of 3-phosphoglycerate and lactate [95]. Short-term 

exposure to O3 was associated with higher levels of glucose and lactate [176], whereas exposure to 

short-term TRAP was associated with lower levels of glucose and 3-phosphoglycerate [95,132]. For 

the pentose phosphate KEGG pathway, short-term PM2.5, PM components, and certain other TRAP 

exposures were associated with lower levels of the metabolites glyceraldehyde, glycerate, 3-

phosphoglycerate, and pyruvate [94,95,194], and long-term PM2.5 was associated with lower levels of 

glycerate and 3-phosphoglycerate [94,95,108,132,163,176,194]. However, short-term exposure to O3 

was associated with higher levels of glucose and glycerate [176]. In pathological circumstances such 

as with CVD, glucose metabolism (glycolysis and the pentose phosphate pathway) typically increases 
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relative to fatty acid oxidation [195–197]. Further longitudinal research exploring multi-omic markers of 

carbohydrate metabolism in response to TRAP exposure would help clarify the salient relationships. 

 

3.2.3 Amino Acid Metabolism 

 

Although no methylomic or proteomic markers related to the alanine, aspartate, and glutamate 

metabolism KEGG pathway were identified as significantly associated with TRAP, our MetaboAnalyst 

pathway analysis synthesizing results from across studies identified the alanine, aspartate, and 

glutamate metabolism KEGG pathway as significantly enriched by metabolites associated with short 

and long-term TRAP exposure (p = 3.39 x 10-4 and p = 6.0 x 10-3, respectively). There were 14 

metabolites representing the KEGG pathway, but there were no consistent patterns of associations 

among short- and long-term TRAP exposure and concentrations of these metabolites 

[80,94,95,97,105,108,129–131,163,164,167,176,191] (Table 2, Supplementary 2 Tables 6-7).  

The arginine and proline metabolism KEGG pathway was represented by biomarkers of all three 

omics types (two genes, one protein, and 14 metabolites) (Table 2) and our MetaboAnalyst pathway 

analysis synthesizing the metabolomics literature suggested this pathway was significantly enriched 

by metabolites significantly associated with short-term TRAP exposure (p = 6.62 x 10-4), but not long-

term TRAP exposure. Taken together, there is moderately strong evidence that arginine and proline 

metabolism may affect the relationship between TRAP and CVD. For example, in the methylomics 

literature, exposure to short-term PM2.5 was associated with  hypomethylation of the genes that code 

for nitric oxide synthase 2 (NOS2) and arginase 2 (ARG2) [58,117,131]. These are key enzymes for 

macrophage pathways linking L-arginine metabolism to inflammation and immunity [198]. The protein 

NOS2 catalyzes the reaction of L-arginine to nitric oxide (NO), which inhibits cell proliferation and kills 

pathogens [199,200]. The protein ARG2 catalyzes the reaction of L-arginine to L-ornithine, which can 

metabolize further into polyamines and L-proline. Notably, L-ornithine production promotes cell 

proliferation and repairs tissue damage [201,202]. ARG2 activity is also associated with the killer-type 

macrophage response [198,203,204]. Many of the metabolites related to this arginine and proline  

metabolism pathway were implicated across the metabolomics literature – though some of the results 

were inconsistent in terms of direction of association (Supplementary 2 Table 6)  

[80,94,95,98,105,108,130,132,163,164,194]. For example, short-term PM2.5 was associated with lower 

levels of L-arginine, L-glutamate, phosphocreatine, and pyruvate, and with higher levels of L-ornithine 

and nitric oxide [80,94,98,110,146]. However, short-term O3 exposure was associated with higher 

levels of creatinine, L-arginine, L-glutamate, L-ornithine, and L-proline [110,176]. Furthermore, other 

short-term PM exposures were associated with lower levels of creatinine, and higher levels of L-

arginine, L-glutamate, L-ornithine, L-proline, D-proline, and sarcosine [132,191]. Finally, in the 

proteomics literature, short-term diesel exhaust was associated with lower levels of the protein 

creatine kinase B-type [126], and in our network analysis for short-term exposure to TRAP, the protein 

creatine kinase B-type was also associated with a metabolite related to lipid metabolism (Figure 5). 

Given the overlap in the biomarkers identified using the three omics types, further research is 

warranted into how TRAP exposure may plausibly result in clinically meaningful biological cascades 

involving arginine and proline metabolism. Such an undertaking would require repeated measures of 

exposures and omics markers to ensure that the relevant temporal relationships are captured for 
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different levels of biology along the pathway (e.g., how methylation changes related to NOS2 and 

ARG2 could affect protein expression and subsequent metabolic processes). Future work should also 

explore the potential connections among amino acid metabolism (blue symbols), coagulation (yellow 

symbols), inflammation (red symbols), and endothelial pathways (pink symbols) given the results of 

our network analyses for both short- and long-term TRAP exposures (Figures 3-6). 

  

3.2.4 Inflammation and Immunity  

 

Many methylomic and proteomic markers (but not metabolomic markers) identified in the 

literature review as associated with TRAP exposure were involved with pathways involved in 

inflammation and immunity (Figure 2). The most enriched pathways included cytokine and chemokine 

signaling, toll-like receptor (TLR) signaling, and mitogen-activated protein kinase (MAPK) signaling. 

Biomarkers of these pathways (especially of the cytokine and chemokine signaling pathway) were 

also well-represented in our network analyses (Figures 3-6; red symbols correspond to inflammation 

and immunity). 

Our Reactome pathway analysis identified cytokine signaling in the immune system as 

significantly enriched by genes related to the methylation sites and proteins associated with short-

term TRAP exposure (p = 1.11 x 10-16 and p = 1.11 x 10-16, respectively). This pathway was also 

significantly enriched by proteins associated with long-term TRAP exposure (p = 1.11 x 10-16), but not 

genes related to the methylation sites. In particular, there were 13 genes and 40 proteins (with 10 

overlapping gene-protein markers) that were part of the cytokine-cytokine receptor interaction KEGG 

pathway, as well as eight genes and 19 proteins (with four overlapping gene-protein markers) that 

were part of the chemokine signaling KEGG pathway (Table 2). Short-term PM2.5 exposure was 

associated with hypermethylation of the genes encoding for cytokines and chemokines, such as 

interleukin 6 (IL6), interleukin 10 (IL10) granulocyte-macrophage colony-stimulating factor 2 (CSF2), 

fractalkine (CX3CL1), interferon-gamma inducible protein 10 (CXCL10), and macrophage 

inflammatory protein 1 alpha (CCL3) [58,115]. In contrast, short-term PM2.5 was associated with 

hypomethylation of the genes that encode monocyte chemoattractant protein 1 (CCL2) and cluster of 

differentiation 40 ligand (CD40LG) [58,115,120,141,142]. Additionally, long-term PM2.5 exposure was 

associated with hypomethylation of tumor necrosis factor (TNF) and TNF receptor superfamily 

member 13C (TNFRSF13C) [45,141]. Consistent with some but not all of the methylation trends, 

proteomics studies found that both short- and long-term exposure to TRAP was associated with 

higher levels of most cytokine and chemokine proteins (exceptions included inverse associations with 

tumor necrosis factor receptor superfamily member 11B, interleukin 4, interleukin 8, and eotaxin-1)  

[73,79,81,86,88,90,90,91,113,115,120,124,132,141,162,205–209]. These observations were 

consistent across pollutants and exposure windows. Additional research on the associations among 

pollutants other than PM2.5 and the methylation of genes encoding for cytokines and chemokines 

would further strengthen the already compelling evidence that TRAP may impact cytokine and 

chemokine signaling in ways that could affect respiratory and cardiovascular outcomes. Cytokines 

and chemokines regulate the immune response by controlling immune cell trafficking and the cellular 

arrangement of immune organs [210,211]. High levels of both cytokines and chemokines represent 

immune activation and inflammation, and are predictive of CVD and adverse cardiovascular events, 
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such as heart failure and myocardial infarction [211–214]. In addition, many of the key cytokines 

identified here are involved in the pathogenesis of asthma, COPD, and pulmonary fibrosis [215]. 

Finally, as shown in our network analyses, many of the genes and proteins associated with short-term 

TRAP exposure (e.g., IL6/IL6, CXCL10/CXCL10, CCL2/CCL2) were inter-connected, and were also 

connected to metabolites of amino acid and lipid metabolism (Figures 5 and 6) – strengthening the 

argument for involvement of cytokine signaling in the physiological response to TRAP.  

Eight methylomic markers and 11 proteomic markers, with four overlapping gene-protein 

markers and no metabolomic markers, represented the TLR signaling KEGG pathway (Table 2). 

Short-term exposure to PM2.5 and BC were associated with hypomethylation and hypermethylation of 

TLR2, respectively [38,58]. Exposure to short-term PM10 and other short-term TRAP was associated 

with hypomethylation of TLR4 [144,145]. Exposure to short-term PM10 and SO4 were associated with 

hypomethylation of CD14 and MAP3K7, respectively [43,145]. The remaining methylomic and 

proteomic markers belonging to the TLR KEGG pathway overlapped with the cytokine-cytokine 

receptor interaction KEGG pathway described previously and in Table 2. These trends are important 

because the TLR signaling pathway detects pathogen-associated molecular patterns, stimulating both 

the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and MAPK pathways, as 

well as cytokine production, thereby affecting inflammatory and immune responses associated with 

CVD and adverse respiratory outcomes [216,217].  

In addition to the trends for cytokine and chemokine signaling and the TLR signaling pathways, 

we identified 12 methylomic markers and nine proteomic markers associated with TRAP as belonging 

to the MAPK signaling KEGG pathway, with two overlapping gene-protein markers and no 

metabolomic markers (Table 2). In the methylomics literature, short-term BC exposure was 

associated with hypermethylation of MAP3K2 and MAP3K6, as well as hypomethylation of MAP4K3 

and MKNK2 [43]. Short-term SO4 exposure as associated with hypermethylation of MAP3K11, and 

hypomethylation of RPS6KA3, MAP3K7, and TGFB1 [43]. Long-term exposure to PM10 and NO2 were 

associated with hypomethylation and hypermethylation of PDGFB and CACNA2D1, respectively 

[45,53]. Lastly for the methylomics literature, short-term PM2.5 exposure was associated with 

hypermethylation of FGF2 [115]. In the proteomics literature, short-term PM2.5, UFP, BC, NO2, and 

CO exposures were associated with higher levels of fibroblast growth factor 2 protein [115,132]. In 

addition, short-term diesel exhaust exposure was associated with higher levels of MAPK 1 and cell 

division control protein homolog 42, and lower levels of protein kinase C beta type [126,162]. Finally, 

short-term UFP, BC, NO2, and CO were associated with higher levels of tropomyosin receptor kinase 

B [132]. Synthesizing across the studies, our Reactome pathway analysis identified the MAPK 

signaling cascades pathway as significantly enriched by proteins associated with short-term TRAP 

exposure (p = 4.35 x 10-8). Although this pathway was not significantly enriched by methylation 

markers associated with TRAP exposure, the body of evidence taken together suggests that TRAP 

exposures may affect MAPK signaling cascades – which is critical since this pathway has implications 

for oxidative stress, vascular remodeling and dysfunction, cardiac hypertrophy, cardiac remodeling, 

and atherosclerosis [218–223].  

 

3.2.5 Coagulation 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2023. ; https://doi.org/10.1101/2023.09.30.23296386doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.30.23296386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

The complement and coagulation cascades KEGG pathway was represented by four 

methylomic markers and 14 proteomic markers significantly associated with TRAP, with two 

overlapping gene-protein markers. There were no metabolomic markers of this pathway identified as 

significantly associated with TRAP (Table 2). Short-term exposure to PM2.5 was associated with 

hypomethylation of the genes that encode plasminogen activator inhibitor type I (SERPINE1), 

coagulation factor III (F3), and coagulation factor II receptor (F2R), as well as hypermethylation of 

coagulation factor II (F2) [38,46,120,142,157]. Within the proteomics literature, short-term exposure to 

PM10 and PM2.5-10 were associated with lower levels of the protein plasminogen activator inhibitor type 

1, whereas long-term exposure to PM2.5, NO2, CO, and O3 were associated with higher levels of this 

protein [69,71,73]. Additionally, short-term exposure to PM2.5, UFP, BC, NO2, and CO were 

associated with higher levels of coagulation factor III protein (F3) [123,132]. The combination of 

associations with short-term exposures and methylation markers and long-term exposures and 

proteins (e.g., SERPINE1) may provide evidence for time-dependent biological cascades or effects; 

future research should explore this possibility using a study design that can take advantage of 

repeated measures for exposures and outcomes. Further research could explore the possibility of 

similar overlap across omics types by building on the TRAP and proteomics literature suggesting 

significant and generally positive associations with other key coagulation and complement proteins 

(e.g., complement component 3, complement component 4B, fibrinogen, Von Willebrand factor, 

coagulation factor VII, D-dimer, alpha-1 antitrypsin, protein C inhibitor, complement C1q 

subcomponent subunit A, and tissue-type plasminogen activator; Supplementary 2 Table 5) 

[70,73,75,83,89,119–122,126,132,209,224,225]. The importance of complement and coagulation 

cascades are also underscored by the connections of coagulation factors, coagulation factor 

responses, plasminogen activators, and plasminogen activator inhibitors in the network analyses 

(represented by yellow markers) to biomarkers of amino acid metabolism (blue markers), lipid 

metabolism (green markers), and inflammation and immunity (red markers; Figures 3-6). Taken 

together, there is strong evidence supporting the putative links between TRAP exposure, coagulation 

and complement cascades, and CVD (Figure 2). This is supported by other studies that show that 

higher levels of plasminogen activator inhibitor 1, fibrinogen, Von Willebrand factor, coagulation factor 

VII, and complement component 3 are each associated with risk of CVD and atherosclerosis 

[222,223,226–231]. Furthermore, higher levels of plasminogen activator inhibitor 1 and Von 

Willebrand factor have been associated with increased odds of myocardial infarction [222,231].  

 

3.2.6 Endothelial Function 

 

Methylomic, proteomic, and metabolomic markers associated with TRAP exposure were 

associated with five KEGG pathways related to endothelial function: cell adhesion molecules, 

vascular endothelial growth factor (VEGF) signaling, vascular smooth muscle contraction, lipid and 

atherosclerosis, and leukocyte transendothelial migration (Table 2).  

The first KEGG pathway, cell adhesion molecules, was represented by five methylomic markers, 

five proteomic markers (including three overlapping with the methylomic markers), and no 

metabolomic markers (Supplementary S2 Tables 4 and 5). The three overlapping markers were 

cluster of differentiation 40 ligand (CD40LG), p-selectin (SELP), and intercellular adhesion molecule 1 
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(ICAM1). For CD40LG, short-term PM2.5 was associated with hypomethylation of the corresponding 

gene [115,120,142], whereas short-term PM2.5, NO2, SO2, SO4, EC, and multiple PM components 

were associated with higher levels of the protein [73,113,113,115,120,141,142,206,209,225]. For 

SELP, long-term PM2.5 was associated with hypomethylation of the corresponding gene and long-term 

PAHs were associated with lower levels of the protein [45,120,209,232]. For ICAM1, short-term BC 

and O3 were associated with hypomethylation of the corresponding gene [38], short-term PM2.5 had 

inconsistent associations with the corresponding gene [38,58,120,141], and both short- and long-term 

TRAP exposures were generally associated with higher levels of the protein 

[89,121,141,206,207,233–236]. Biomarkers of the cell adhesion molecule pathway (e.g., SELP, 

ICAM1) were also identified in our network analysis for both short- and long-term TRAP exposures as 

being highly connected to markers of other biological processes (e.g., lipid metabolism; Figures 3-6). 

Cell adhesion molecules are essential in the normal development of the heart and blood vessels; 

however, they play a role in the development of respiratory and cardiovascular diseases such as 

pulmonary fibrosis and atherosclerosis [237].  

The second KEGG pathway, the VEGF signaling pathway, was represented by no methylomic, 

three proteomic, and two metabolomic markers associated with TRAP exposure (Supplementary S2 

Tables 5 and 6). For proteomics, short-term exposure to diesel exhaust was associated with higher 

levels of the cell division control protein 42 homolog, and lower levels of protein kinase C beta type 

[126]. In addition, exposure to short term-term NO2 and long-term NOx were associated with higher 

levels of VEGF-alpha (VEGFA) [81,113]; VEGFA was also identified as connected to markers of lipid 

metabolism and amino acid metabolism in our network analysis for short-term TRAP exposure (Figure 

5). For metabolomics, short-term PM2.5 was associated with higher levels of nitric oxide, and short-

term EC was associated with higher levels of prostaglandin I2 [117,146,164]. Up-regulation of VEGF 

signaling is involved in angiogenesis and can be a response to hypoxia [238]. Higher concentrations 

of these analytes associated with TRAP exposure could indicate difficulty delivering oxygen from the 

lungs to the periphery; however, VEGF signaling is not always pathological.  

The third KEGG pathway, vascular smooth muscle contraction, was represented by one 

methylomic, three proteomic, and four metabolomic markers associated with TRAP exposure 

(Supplementary S2 Tables 4-6). For methylomics, long-term PM2.5 was associated with 

hypomethylation of guanine-nucleotide binding protein, alpha subunit complex locus (GNAS) [45]. For 

proteomics, short-term UFP, BC, NO2, and CO were associated with higher levels of endoglin [132], 

and short-term diesel exhaust was positively associated with mitogen activated protein kinase 1 and 

negatively associated with protein kinase C beta type [126]. For metabolomics, short-term PM2.5 was 

positively associated with nitric oxide and 20-hydroxyeicosatetraenoic (HETE) acid [107,117,146], and 

short-term TRAP was positively associated with arachidonate and prostaglandin I2 [164,165,170]. 

Contraction of the vascular smooth muscle within arteries, arterioles, veins, and lymphatic vessels 

increases resistance in the cardiovascular system, and decreases blood flow [239]. TRAP-associated 

modulation in these signals could inform part of the relationship between TRAP exposure and blood 

pressure, and therefore CVD. Further research is needed to clarify the exact physiological 

mechanisms linking TRAP, omics signals, blood pressure, and CVD. 

The fourth KEGG pathway, lipid and atherosclerosis, was represented by no methylomic or 

proteomic markers but three metabolomic markers associated with TRAP exposure (Supplementary 
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S2 Table 6). Short-term PM2.5 was positively associated with nitric oxide, and short-term TRAP was 

positively associated with cholesterol and triglyceride [117,132,146]. Cholesterol and triglycerides, 

both positively associated with TRAP exposure, are risk factors for atherosclerosis. Furthermore, 

TRAP is already known to be associated with atherosclerosis through exacerbation of risk factors 

such as hypertension and insulin resistance [240].  

The final KEGG pathway, leukocyte transendothelial migration, was represented by three 

methylomic markers, six proteomic markers (one overlapping with a methylomic marker), and no 

metabolomic markers associated with TRAP exposure (Supplementary S2 Tables 4 and 5). The 

trends for the overlapping marker (ICAM1), as well as two of the other proteomic markers (i.e., protein 

kinase C beta type and cell division control protein homolog 42) were described previously. The other 

methylation markers associated with short-term PM2.5 encode for protein subunit alpha 13 (positive 

association) and actinin alpha 3 (negative association) [40,158]. The other proteomic markers 

positively associated with short-term TRAP exposure included vascular cellular adhesion molecule 1 

(VCAM1; with PM2.5, NO2, CO, SO4, and O3) [89,121,206], matrix metalloproteinase (MMP2; with BC 

and PNC), and MMP9 (with SO2) [79]. In our network analysis for short-term TRAP exposures, MMPs 

shared network connections with markers of processes such as lipid and amino acid metabolism 

(Figure 5). Leukocyte trans-endothelial migration is critical in the immune response and responsible 

for a facilitating a systemic reaction upon exposure to a pathogen [241]. The subclinical effects of 

differential leukocyte count post TRAP exposure have previously been noted [242], and represent part 

of the well-documented inflammatory response to TRAP. 

 

3.2.7 Oxidative Stress 

 

Multiple KEGG pathways represented in the methylomic, proteomic, and metabolomic literature 

are associated with the oxidative stress response (Table 2; Figure 2). For example, the citrate cycle, 

pentose phosphate metabolism, MAPK signaling, p53 signaling, Janus Kinase/signal transducers and 

activators of transcription (JAK-STAT) signaling, apoptosis, and regulation of autophagy KEGG 

pathways are all known to be activated in response to oxidative stress [219,243–249]. The biomarkers 

related to several of these pathways were described previously. Others are described in this section. 

The p53 signaling pathway is activated in response to oxidative stress and TRAP exposure, and 

helps to ensure cell survival [244,245]. For this pathway, one methylomic and seven proteomic 

markers (including one overlapping gene-protein marker) were identified as significantly associated 

with TRAP (Supplementary 2 Tables 4, 6, 7). Short-term exposure to PM2.5 was associated with 

hypomethylation of SERPINE1 [142]. Additionally, short-term exposure to PM10 and PM2.5-10 was 

associated with lower levels of the corresponding protein, whereas long-term exposure to PM2.5, 

PM2.5-10, NO2, CO, and O3 were associated with higher levels [69,71,73]. Furthermore, short-term BC 

and NO2 were associated with higher levels of insulin-like growth factor binding protein 1 and 3, while 

short-term diesel exhaust was associated with lower levels of insulin-like growth factor binding protein 

2 and 14-3-3 protein sigma [79,126]. Finally, long-term PM2.5 and PM10 exposures were associated 

with higher levels of alpha-1 antitrypsin [83]. Given the role of p53 signaling in anti-angiogenesis, 

programmed cell death, metabolism regulation, and vasodilation, this pathway can affect 

cardiovascular outcomes [250,251]. In addition, p53 signaling plays a supportive role in the 
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maintenance of lung homeostasis; therefore, dysregulation and deficiency of p53 signaling can be 

associated with respiratory diseases [252]. 

Similarly to the p53 signaling pathway, the JAK-STAT signaling pathway is activated by 

oxidative stress and reactive oxygen species [248]. This signaling pathway is mainly involved in 

coordinating immune responses, including cytokine signaling [253]. Four methylomic markers and 

fourteen proteomic markers (including four overlapping gene-protein markers) of this pathway were 

identified as significantly associated with TRAP (Supplementary 2 Tables 4, 6, 7). Three of the 

methylomic markers (for genes CSF2, IL6, and IL10) were described in the section on inflammation 

and immunity. Briefly, short- and long-term TRAP was associated with hypomethylation of these 

markers and higher levels of the proteins they encode [58,73,88–

91,113,115,124,141,162,205,225,235,254,255]. Hypermethylation of one methylomic marker relevant 

here (related to a gene that encodes interferon gamma (IFNG)) was associated with short-term TRAP 

exposure (though short-term BC was associated with hypomethylation) [38,256]. Relatedly, short-term 

PM2.5, NO2, CO, PAHs, and PM constituents were associated with higher levels of the protein IFNG 

[113,205]. Short-term TRAP was also positively associated with other proteins involved in JAK-STAT 

signaling including granulocyte colony-stimulating factor 3, granulocyte-macrophage colony-

stimulating factor receptor alpha, interleukin 2 alpha, interleukin 5, interleukin 7, interleukin 12,  and 

signal transducer and activator of transcription 3 (STAT3) [113,115,124,132,162,208]. In contrast, 

short-term TRAP was associated with lower levels of interleukin 4, interleukin 13, and protein tyrosine 

phosphatase non-receptor type 6 [113,115,162]. These associations with markers related to JAK-

STAT signaling are important for the relationship between TRAP exposure and CVD outcomes 

because dysregulation of JAK-STAT signaling is associated with CVD [257,258]. Furthermore, 

cytokine signaling induced through the JAK-STAT pathway is implicated in COPD, asthma, and other 

respiratory conditions  [259,260]. 

Apoptosis, or programmed cell death, can be caused by oxidative stress [246]. Representing the 

apoptosis KEGG pathway, TRAP was associated with one methylomic marker, three proteomic 

markers (including one overlapping with a methylomic marker), and one metabolomic marker 

(Supplementary 2 Tables 4-6). Trends for the overlapping methylomic-proteomic marker, tumor 

necrosis factor alpha, were described previously. For the other proteomic markers, short-term PM10, 

UFP, NO2, CO, and PAHs were positively associated with interleukin 1 beta, whereas short-term UFP, 

BC, NO2, and CO were inversely associated with tropomyosin receptor kinase B [91,132,205]. For 

metabolomics, short-term PM2.5 and UFP and long-term PM2.5 were associated with lower levels of the 

sole metabolite, sphingosine [95,98,168]. Apoptosis is a vital part of normal cell turnover and immune 

system functioning, implicating this pathway in cardiorespiratory disease [261–263]. 

The final oxidative-stress related KEGG pathway, the regulation of autophagy, is involved in 

apoptosis and helps maintain cellular homeostasis [246,247,249,264]. This pathway was represented 

by one methylomic marker and two proteomic markers (including one overlapping marker) associated 

with TRAP. Trends were previously described for the overlapping marker, interferon-gamma. The 

other protein, interferon alpha 2, was positively associated with short-term PM2.5 [115]. Proper 

functioning of adaptive autophagy processes is important for cardiovascular health and aging [265–

267]. 
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3.2.8 TRAP, Omics, and Respiratory Disease  

 

Short- and long-term TRAP exposure is associated with worse respiratory outcomes, including 

worse lung function [58,87,108,151,268–272], and with more asthma exacerbation and COPD burden 

[271,273–276]. In our review, three methylomic markers, seven proteomic markers (including three 

overlapping methylomic-proteomic markers), and three metabolomic markers were represented in the 

KEGG pathway for asthma (Table 2). The overlapping markers included three inflammation and 

immunity markers (TNF, CD40LG, and IL-10); we described trends for these previously 

[58,69,88,91,113,115,120,124,141,205,206,206,209,235,255,269,277]. For the other proteomics 

markers, short-term PM2.5, PM10, NO2, CO, and SO2 were inversely associated with IL-4, short-term 

CO was inversely associated with IL-13 [113,124,278]; and short-term NO2 and diesel exhaust were 

positively associated with IL-5 [113,124]. Additionally, short-term PM2.5, PM10, CO, and SO2 were 

inversely associated with monocyte chemoattractant protein 1 whereas long-term PM2.5, NO2, and 

NOx were positively associated with this protein [81,113,115]. For metabolomic markers, short-term 

TRAP was positively associated with leukotriene C4, and inversely associated with prostaglandin D2 

[165]; and short-term NO2, CO, and EC were inversely associated with histamine [163]. These trends, 

along with others described in previous sections suggest plausible biological processes that affect the 

TRAP exposure-respiratory disease relationship. For example, it has been observed that linoleate 

metabolism is associated with asthma [101], and arginine and proline metabolism as well as 

methionine and cysteine metabolism are associated with asthma and COPD [103]; these are 

processes associated with TRAP exposures. Additionally, elevated NO is characteristic of airway 

inflammation [279] and we previously described trends relating TRAP to higher NO [58,117,146]. 

Similar trends are observed between TRAP exposures and markers of systemic inflammation (e.g., 

CRP, fibrinogen) that are associated with worse lung function [280–283]. Finally, the associations we 

described previously relating TRAP exposures to cytokines and chemokines have implications for 

airway remodeling asthma, and COPD [215]. 

 

3.2.9 TRAP, Omics, and CVD 

 

As described above and elsewhere, many studies have observed associations between TRAP 

exposure and biomarkers related to CVD (e.g., [284–286]). A subset of studies used meet-in-the-

middle approaches (i.e., identifying common associations of exposures and CVD outcomes with 

biomarkers), mediation analyses, and other approaches to more directly link TRAP exposures to CVD 

outcomes (e.g., heart rate [256], blood pressure [143,144], incident CVD [81]). As in our review, these 

studies considered biomarkers for processes related to inflammation and immunity, endothelial 

function, and oxidative stress. Most of these studies considered only single omic types, but one that 

considered both proteomic and metabolomic biomarkers identified 20 biomarkers associated with 

both short-term TRAP and changes in blood pressure or heart rate variability [132]. As in our review, 

that study identified biomarkers implicated in lipid metabolism (e.g., trimethylamine N-oxide), cellular 

energy production (e.g., succinic acid), inflammation (e.g., C-reactive protein), coagulation (tissue 

factor pathway inhibitor), endothelial function (e.g., angiotensin-converting enzyme), and oxidative 

stress (e.g., malondialdehyde). Our review was able to take this type of logic one step further—with 
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the network analyses (Figures 3-6). By integrating information across multi-omic types, we can build 

on the systems biology approaches now being used to understand the pathophysiology of CVD (e.g., 

[287,288]). Specifically, our network analyses suggest that interconnections among amino acid 

metabolism, lipid metabolism, inflammation, coagulation, and endothelial function are important to the 

relationship between TRAP exposures and CVD. 

 

4. Conclusions  

 

To our knowledge, this is the first systematic review synthesizing the literature focused on 

TRAP-associated methylomic, proteomic, and metabolomic biomarkers in the context of respiratory 

and cardiovascular outcomes. Through a comprehensive, integrated lens, we explored TRAP-

associated pathways involving lipid metabolism, cellular energy production, amino acid metabolism, 

inflammation and immunity, coagulation, endothelial function, and oxidative stress. We find that a 

multi-omics synthesis provides new insights into the biological pathways associated with TRAP and 

has advantages over single-omic approaches. Synthesizing results from the (predominately single-

omic) literature, we showed that similar or analogous biomarker signals were observed across 

multiple omic types (e.g., TRAP exposure associated with methylation of genes encoding for proteins 

that are also associated with TRAP). Specifically, we identified consistent patterns between 

methylation status and protein levels within cytokine-cytokine signaling, TLR signaling, MAPK 

signaling, complement and coagulation cascades, cell adhesion molecules, and asthma KEGG 

pathways. Additionally, we observed analogous proteomic and metabolomic associations with TRAP 

exposure within certain lipid and amino acid metabolism KEGG pathways. Finally, within the arginine 

and proline metabolism KEGG pathway, we were able to integrate methylomic, proteomic, and 

metabolomic findings together to provide evidence suggesting possible mechanistic linkages between 

TRAP exposure, subclinical indicators, and clinical disease. Corroborating evidence across multiple 

levels of biology – including with a focus on functional interrelationships and network analyses – is 

only possible with multi-omics. Furthermore, multi-omics has the potential to aid in the discovery and 

assessment of quantitative biomarkers at different levels of biology (related methylation patterns, 

proteins, and metabolites) that could predict subclinical and perhaps clinical respiratory and 

cardiovascular responses to TRAP exposure, thereby improving clinical and public health decision 

making. This could perhaps be clinically translated using advances to epigenetic clocks and other risk 

prediction tools.  

 

4.1 Strengths and Limitations  

 

A major strength of our systematic review is that we provided a synthesis of findings from 

across three types of omics markers. This multi-omics process offers superior insight into the 

biological underpinnings of respiratory and cardiovascular disease than single-omics methods alone. 

We compiled methylomic, proteomic, and metabolomic evidence from methodologically diverse 

studies in a novel way to understand how short- and long-term TRAP exposure-associated multi-

omics signals relate to one another, allowing us to identify the most relevant biological pathways that 

may be involved in the pathogenesis of cardiorespiratory disease. Nevertheless, our review had 
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several limitations. First, to synthesize results across studies that used heterogeneous exposure 

metrics and methods, we made the simplifying assumption of categorizing short- and long-term 

exposures as <30 days and >30 days, respectively. This decision was supported by convention within 

the literature but does not necessarily reflect a critical biological change occurring at 30 days. 

Additionally, due to the availability of published studies, there were fewer long-term exposures 

represented in our analysis. Second, to synthesize the biological implications of the individual 

biomarkers identified as associated with TRAP, we made simplifying assumptions that we could 

include all individually identified biomarkers together in our pathway and network analyses, and 

although we considered short- and long-term exposures separately, we did not separate results by 

pollutant type. It is likely that different TRAP components have different biological impacts. More 

generally, it is possible that direct comparisons or synthesis were not warranted in each case due to 

certain differences in study population, exposure metric, or other methodological choices within the 

individual studies that would result in meaningful differences in the true underlying biology. Third, our 

synthesis of the results and identification of relevant pathways was necessarily limited by the choices 

of the individual studies. If the studies did not include certain biomarkers that may in fact be important 

to the physiological response to TRAP, we could not capture them – particularly for proteomics, this 

may have limited our findings since there were somewhat fewer studies with large numbers of 

proteins assayed and the literature may have overrepresented certain biological pathways due to 

precedent rather than biology. Future studies may consider a more comprehensive set of proteins. 

Similarly, if metabolite identification with a high level of confidence was not provided by the individual 

studies, we may have missed critical biological pathways. Third, we limited the scope of our review to 

exclude people who were pregnant and/or under 18 years old. Future research should consider these 

important populations. Finally, and perhaps most critically, we could not assess whether TRAP 

exposures resulted in meaningful biological cascades following the gene to protein to metabolite 

paradigm as no study we reviewed included all three omics types and none included the repeated 

measures of the omics markers that would be needed to assess dynamic biological processes.  

 

4.2 Future Directions 

 

 Building on the strengths of the studies presented in this review and the conclusions that 

could be drawn by comparing the results using heterogenous research methodologies, several critical 

areas for further research are warranted. The primary challenges our field currently faces are related 

to the true integration of multi-omics signals within studies that can appropriately characterize the 

dynamic and complex biological processes linking TRAP exposure to subclinical and clinical disease. 

To address this critical challenge, we need large, longitudinal studies representing diverse study 

populations. Ideal features include time-varying, high-resolution exposure assessment coupled with 

repeated quantification of multi-omics signals in multiple tissue types with comprehensive assay 

coverage. If multiple cohorts are included in a study, standardization of methods across cohorts would 

facilitate interpretation and comparability of results. A major goal of such a study would be to consider 

how air pollution exposures might lead to physiological signals suggestive of the biological cascades 

leading from exposure to subclinical disease to clinical disease. A consideration of both the short- and 

long-term physiological effects of TRAP would be warranted (including a consideration of individual 
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TRAP components and TRAP mixtures). It would also be worth examining sex and gender 

differences, along with other differences that could lead to disparities in health consequences 

attributed to air pollution exposure. The use of emerging and novel data management and analysis 

approaches that can handle large and complex data structures inherent in multi-omics studies will be 

important (e.g., multiblock methods and tensor decomposition methods) [24,287,289–294]. Finally, it 

would be critical to consider the optimal multi-omics integration approach (e.g., whether each omics 

type is analyzed first and then types are synthesized, or whether processing integrates across omics 

types earlier) [295–297]. If such a comprehensive study could be conducted, it would provide 

mechanistic insight into the pathophysiology and progression of disease and would inform 

identification of multi-omic signatures of air pollution exposure that could be predictive of key health 

outcomes. Insights gained from such studies could inform screening priorities, clinical decision-

making, and public policy.   
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