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Abstract 41 

Prurigo nodularis (PN) is a chronic inflammatory skin disease that disproportionately 42 

affects African Americans and is characterized by pruritic skin nodules of unknown 43 

etiology. Little is known about genetic alterations in PN pathogenesis, especially relating 44 

to somatic events which are often implicated in inflammatory conditions. We thus 45 

performed whole-exome sequencing on 54 lesional and nonlesional skin biopsies from 46 

17 PN patients and 10 atopic dermatitis (AD) patients for comparison. Somatic 47 

mutational analysis revealed that PN lesional skin harbors pervasive somatic mutations 48 

in fibrotic, neurotropic, and cancer-associated genes. Nonsynonymous mutations were 49 

most frequent in NOTCH1 and the Notch signaling pathway, a regulator of cellular 50 

proliferation and tissue fibrosis, and NOTCH1 mutations were absent in AD. Somatic 51 

copy-number analysis, combined with expression data, showed that recurrently deleted 52 

and downregulated genes in PN lesional skin are associated with axonal guidance and 53 

extension. Follow-up immunofluorescence validation demonstrated increased NOTCH1 54 

expression in PN lesional skin fibroblasts and increased Notch signaling in PN lesional 55 

dermis. Finally, multi-center data revealed a significantly increased risk of NOTCH1-56 

associated diseases in PN patients. In characterizing the somatic landscape of PN, we 57 

uncover novel insights into its pathophysiology and identify a role for dysregulated 58 

Notch signaling in PN.  59 
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Introduction 61 

Prurigo nodularis (PN) is a chronic inflammatory skin disease characterized by intensely 62 

pruritic, hyperkeratotic skin nodules on the trunk and extremities (1, 2). Compared to more 63 

common and better characterized chronic pruritic dermatoses like atopic dermatitis (AD) or 64 

psoriasis, PN is associated with greater itch intensity (3), as well as a significant quality of life 65 

impairment (4, 5). PN emerges in middle age, disproportionately affects African Americans, and 66 

is associated with multiple systemic conditions (6–9). Despite this significant clinical burden, the 67 

etiology of PN remains poorly understood. 68 

The current understanding of PN biology centers around an interplay between 69 

cutaneous inflammation, neuronal dysregulation, and altered keratinocyte differentiation and 70 

fibroblast signaling (10–13). Recent transcriptomic studies show characteristic patterns of 71 

immune polarization in PN patients, including both Th2/Th17-centered cutaneous immune 72 

activation, and cutaneous and systemic Th22-related cytokine upregulation (10, 14). Black 73 

patients have a greater genetic risk of developing PN and distinct inflammatory signatures are 74 

seen in African American PN patients, suggesting the existence of multiple disease endotypes 75 

(15–17). However, to which extent those patterns might be explained by genetic variation or 76 

environmental exposures remains unknown. In better studied chronic pruritic dermatoses such 77 

as AD and psoriasis, genomic studies have accelerated our understanding of disease pathology 78 

and informed new treatments (18, 19), but similar investigations are lacking for PN.  79 

The relevance of genomic studies in inflammatory skin disease includes postzygotic 80 

variation. Somatic mutations throughout the body are known to drive neoplasms, but growing 81 

evidence also points to clonal expansions harboring somatic mutations in non-neoplastic 82 

disease and healthy-appearing tissue, including the skin (20–23). Such findings have informed 83 

our understanding of both the disease and the corresponding tissue biology. For example, 84 

colonic mucosa of patients with inflammatory bowel disease displays positive selection for 85 
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mutations in interleukin-17 pathway genes, which may confer a protective advantage to mucosal 86 

epithelia (20, 24). Thus, delineating somatic events associated with PN may further our 87 

understanding of not only disease pathology, but also cutaneous molecular adaptations in the 88 

setting of chronic itch, fibrosis, and neuroinflammation. This is especially pressing given the 89 

comorbidities in PN patients, including a higher risk of skin and internal malignancies (25, 26), 90 

which remain largely unexplained. 91 

In this study, we characterize the landscape of somatic events in PN lesional skin. We 92 

perform whole-exome sequencing (WES) on individual-matched lesional and nonlesional skin 93 

biopsies from a diverse cohort of PN patients, as well as AD patients as a reference group. We 94 

explore the mutational landscape of PN at the individual nodule level, identifying somatic events 95 

in lesional PN skin compared to adjacent healthy-appearing skin. We also contrast the somatic 96 

profile of PN to that of AD to elucidate molecular pathways specific to PN. Our somatic analysis 97 

also leads us to functional and multi-center epidemiological follow-up investigations. To our 98 

knowledge, this work represents the first and largest genomic study of PN. 99 

 100 

Results 101 

Whole-exome analysis 102 

An illustration of the study design is shown (Figure 1A). Briefly, we recruited 17 patients 103 

from the Johns Hopkins Itch Center diagnosed with PN (Figure 1B and C) fulfilling our selection 104 

criteria (see Methods). Patient demographics are summarized in Figure 1D. Two skin punch-105 

biopsies were obtained from each patient, one from a prurigo nodule (lesional) and one from 106 

normal-appearing skin (nonlesional) within 10 cm of the nodule. Since high-throughput WES 107 

can provide sufficient resolution for the detection of somatic events, we generated WES data 108 

from 17 lesional and 17 nonlesional PN samples in this study. In the same method, we also 109 
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generated 20 matched WES datasets from 10 patients with AD for use as reference group 110 

(Figure 1A and D).  111 

From our PN cohort (34 WES datasets across 17 patients), we obtained approximately 112 

1.7 billion reads (mean and range = 4.9 × 107 [4.2 × 107 to 6.1 × 107] and 5.2 × 107 [4.3 × 107 to 113 

7.0 × 107] for lesional and nonlesional samples, respectively). After quality control and alignment 114 

to the hg38 human reference genome, we noted an average sequencing coverage of 195 (187 115 

and 202 for lesional and nonlesional, respectively). On average, more than 93% of the exome 116 

was sequenced to at least 20X depth, providing a reliable signal for variant calling (27). Detailed 117 

sequencing and alignment information, including results from preprocessing and variant calling 118 

on our AD control cohort, is provided (Table S1). One pair of AD lesional/nonlesional samples 119 

was excluded from downstream analyses because the nonlesional sample had less than 50% of 120 

the exome sequenced to at least 20X depth. 121 

Somatic variation in PN lesional skin 122 

Somatic variants in PN nodules were identified by matching PN lesional to nonlesional 123 

samples per patient. The landscape of somatic mutations in PN is shown in Figure 1E-H. 124 

Following quality control, we identified 2387 high-confidence somatic single nucleotide 125 

variations (SNVs) SNVs and small insertions/deletions (indels) in PN lesional skin affecting 126 

1933 genes. Mutational analysis showed a median of 75 somatic (lesion-specific) mutations per 127 

patient, including SNVs and indels. We observed a median mutational burden of approximately 128 

0.52 per megabase of coding region (range of 0.26 to 9 per megabase; outlier sample was 129 

further characterized in Figure S1). We noted 35% (847 of 2387), 2.0% (48 of 2387), 0.59% (14 130 

of 2387), 0.58% (13 of 2387), and 0.3% (8 of 2387) missense, nonsense, splice site altering, in-131 

frame indels, and frameshift indels, respectively. After predicting the effects of variants on 132 

protein function, variants were classified into significance categories “High + Moderate”, 133 

indicating likely change in protein sequence, and “Low + Modifier”, indicating no known change 134 
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in protein sequence (Figure 1F). We found a median of 29 functional, lesion-specific somatic 135 

SNVs or indels per PN patient (range of 13 to 450) (Figure 1F).  136 

We observed a median somatic variant allele frequency (VAF) of 0.031 (range of 0.01 to 137 

0.449) in PN lesional skin, with Caucasian PN patients displaying a higher VAF than African 138 

American PN patients (0.033 compared to 0.029, P = 0.0056, Wilcoxon) (Figure 1G and H). On 139 

assessment of somatic variants at the gene level, there were 46 genes with nonsynonymous 140 

somatic mutations in at least two out of 17 patients with PN. We grouped recurrently-mutated 141 

genes using three a priori-defined gene sets relevant to PN based on literature and clinical 142 

judgement. There were 5 genes associated with pathologic fibrosis (NOTCH1, SCN5A, MAP1B, 143 

TTN, ITPR1) (28), 6 genes associated with neuronal migration or projection (MAP1B, RELN, 144 

TENM1, CNTN2, NAV1, RGS12) by gene ontology, and 4 cancer-associated genes (NOTCH1, 145 

TRRAP, FAT1, NCOA1) according to the Cancer Gene Census (CGC) from the Catalogue of 146 

Somatic Mutations in Cancer (COSMIC) (29). NOTCH1 had the most frequent nonsynonymous 147 

somatic mutations: we found 4 missense SNVs (p.Arg1962His, p.Asn70Ile, p.Glu450Lys, and 148 

p.Asn325Lys) and 1 in-frame deletion (p.Val413-Asp414del) across 4 patients, 2 of whom were 149 

African American. NOTCH1 is an intracellular regulator of the Notch family with pleiotropic 150 

functions in cellular proliferation and tissue fibrosis, and a known hallmark driver of cutaneous 151 

squamous cell carcinoma (cSCC) (30, 31). 3 out of 5 identified NOTCH1 mutations where within 152 

the extracellular epidermal growth factor (EGF)-like domain, which is involved in ligand binding 153 

and preventing constitutional activation (32). Somatic mutations in NOTCH1 had a significant 154 

co-occurrence with mutations in NCOA1, MISP, NAV1, MYO1C, RGS12, and VPS13B (P < 155 

0.05, pairwise Fisher’s exact test) (Figure 2A). 156 

Genes associated with fibrosis. In addition to NOTCH1, we identified somatic mutations 157 

in other profibrotic genes. We noted two missense mutations in SCN5A (p.Gly1158Asp, 158 

p.Arg1638Gln) across two PN patients. SCN5A encodes the alpha subunit of the Nav1.5 sodium 159 
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channel, which plays a key role in the depolarization of cardiomyocytes and whose 160 

channelopathy is linked to cardiac fibrosis (33). SCN10A from the same gene family, which 161 

encodes Nav1.8, which regulates pro-inflammatory responses in the skin and was significantly 162 

upregulated in the epidermis of rosacea and psoriasis skin lesions (34).  163 

We found two missense mutations in ITPR1 (p.Ala805Val, p.Glu914Lys) affecting two 164 

PN patients. ITPR1 encodes one of the three members of the IP3-receptor family that form 165 

calcium release channels and is associated with pancreatic fibrosis (28), in addition to chronic 166 

itch mediated by astrocytes (35). We also observed two recurrent missense mutations in 167 

MAP1B (p.Val1549Gly x 2) across two patients. While MAP1B is thought to be primarily 168 

involved in microtubule assembly and neurogenesis, it also plays a role in fibrosis, particularly in 169 

the eye (28, 36).  170 

In addition, we found TTN mutated in 3 patients including 4 missense mutations 171 

(p.Ala25524Val, p.Asn8023Lys, p.Ala35193Thr, and p.Val7022Ala) and one frame-shift deletion 172 

(p.Val29546AsnfsTer3). TTN has an established role in interstitial fibrosis and is frequently 173 

mutated in numerous cancers, but it encodes the largest protein in humans and is frequently 174 

mutated in reference populations (37, 38). Of note, we found a recurrent p.Ile1690Val missense 175 

mutation in Epiplakin 1 (EPPK1) in 3 of the PN patients. While EPPK1 was not in our pre-176 

defined gene sets, this was the only gene with 3 or more identical recurrent somatic mutations, 177 

at either the DNA or amino acid level. EPPK1 encodes a member of the plakin family which is 178 

involved in the organization of cytoskeletal architecture and has been shown to accelerate 179 

keratinocyte migration during wound healing (39, 40). We also found several mutations in genes 180 

related to neuronal migration or projection, detailed below. 181 

Neurotropic genes. The mutations in MAP1B are described above since it is found to 182 

have both fibrotic as well as neurotropic functions (28, 36). RELN, which is involved in nerve 183 

migration, projection, and synaptic plasticity was found to have two missense mutations 184 
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(p.Thr468Pro, p.Val167Leu) across two patients. We also found two missense mutations across 185 

two patients in TENM1 (p.Ala2661Ser, p.Gly1134Arg) and CNTN2 (p.Ala2661Ser, 186 

p.Gly1134Arg). TENM1 encodes a protein of the teneurin subfamily which is thought to function 187 

as a neuronal cellular signal transducer and is one of the most highly mutated genes in 188 

melanoma (41). CNTN2 encodes contactin 2, which is found to play an important role in 189 

neuronal excitability (42). In addition, we noted two missense mutations across two patients in 190 

RGS12 (p.Gly454Asp, p.Arg403Cys) and NAV1 (p.Pro1507Ser, p.Arg1581Cys). RGS12 was 191 

shown to be a critical modulator of serotonergic neurotransmission (43), while NAV1 is a 192 

relatively understudied gene that is involved in neuronal development and regeneration (44). 193 

Cancer-associated genes. To identify mutations in known cancer genes, we overlapped 194 

our set of 46 genes with recurrent nonsynonymous mutations and the curated CGC gene list 195 

from COSMIC (29). We found recurrent mutations in known cancer genes TRRAP, FAT1, and 196 

NCOA1. We found 3 missense mutations in TRRAP (p.Pro252Ser, p.Pro1364Leu, 197 

p.Glu2479Lys) across two patients. TRRAP is involved a cell-cycle regulation and oncogenesis 198 

and has been found to be recurrently mutated in melanoma (45, 46). Notably, previous work 199 

showed that skin fibroblasts of individuals with TRRAP mutations have significant changes in 200 

expression of genes associated with neuronal function and ion transport (45). FAT1, a regulator 201 

of cell-cell adhesion and extracellular matrix architectural integrity that is a recognized driver of 202 

cSCC (47), had one nonsense p.Gln2076Ter mutation and one splice site mutation across two 203 

patients. We also found two missense mutations in NCOA1 (p.Pro1102Ser, p.Ala498Thr) across 204 

two PN patients. 205 

We further investigated the mutation rate in known oncogenic pathways as reported by 206 

The Cancer Genome Atlas (48). We found the Notch signaling pathway to be most commonly 207 

mutated in our PN cohort, with variants detected in 9 out of 17 patients (52.9%), including 208 

mutations in NOTCH1, NOTCH4, CNTN6, FBXW7, JAG2, and SPEN. Notch signaling is 209 
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followed by the RTK-RAS and Wnt pathways, which were altered in 5 (29.4%) and 4 (23.5%) 210 

PN patients, respectively. A list of high-confidence somatic SNV and indel calls made in this 211 

study is included in Table S2. 212 

Gene set enrichment analysis. Gene set enrichment analysis offers a relatively unbiased 213 

view into the somatic landscape at the pathway level and can highlight patterns that are too 214 

subtle to identify at the gene level (49). As a proxy for the somatic selection, we first conducted 215 

an enrichment analysis of high-VAF (>0.3) nonsynonymous somatic mutations. Different 216 

patterns by race were observed (Figure 2). Notably, high-VAF mutations in African American PN 217 

patients were associated with epithelial-to-mesenchymal transition (NOTCH4 and TASOR; 218 

FDR-adjusted P < 0.05). 219 

We then performed enrichment analysis of all genes that were found to have recurrent 220 

nonsynonymous somatic mutations in PN lesions. We included pathways from 3 term 221 

databases: Gene Ontology (GO) Biological Process, GO Cellular Component, and NCI-Nature 222 

Pathways. After correction for multiple hypothesis testing, the most significantly mutated 223 

networks were related to Notch-mediated signaling, neuronal migration, and polymeric 224 

cytoskeletal fiber (Figure2, B-D). 225 

Since we identified NOTCH1 as the most frequently mutated gene in PN lesional skin, 226 

and loss-of-function mutations in NOTCH1 have been established to occur commonly in cSCC 227 

(50), we compared our PN somatic calls to a publicly available cSCC variant dataset from a 228 

recent metanalysis by Chang et al. (47). We included 83 cSCC samples for this analysis, with a 229 

median tumor mutational burden and VAF of 21.4 per megabase and 0.258, respectively. Not 230 

surprisingly, cSCC samples had a significantly higher mutational burden and VAF than our PN 231 

samples (P < 0.001, Wilcoxon) (Figure 3A and B). NOTCH1 was mutated in 55.4% of cSCC 232 

samples, second only to TTN. Overall, there were 6 genes that mutated in 25% or more of the 233 

cSCC samples and also in two or more samples of our PN cohort: NOTCH1, FAT1, TTN, FLG, 234 
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and RELN (Figure 3C-E). Out of those genes, NOTCH1 and FAT1, are the ones previously 235 

identified as likely cSCC drivers (47) (Figure 3C-E). In addition, TASOR2, a gene found to be 236 

differentially regulated in several cancers but whose function remains understudied (51), was 237 

the only gene not mutated in any of the cSCC samples while having somatic mutations in two of 238 

our PN patients. 239 

Somatic copy number variation in PN 240 

In addition to somatic SNVs and indels, somatic copy-number variation (CNV) may 241 

contribute to the phenotype of PN phenotype by altering gene dosage. Copy number analysis of 242 

exome data identified a median of 66 somatic CNVs per PN patient (range of 48 to 344), 243 

including characteristic recurrent deletions in chromosome 1p13 (6/17; 35%), 4p (5/17; 29%), 244 

4q13.2 (4/17; 24%), 5q (3/17; 18%), 7q21 (3/17; 18%), 11q14 (5/17; 29%), 12 (7/17; 41%), and 245 

19q13.42 (4/17; 24%). Since the method we used gives a greater weight to high amplitude 246 

events that are less likely to occur by chance, we also identified significant gains in 247 

chromosome 7p22 and chromosome 17q25.3 in one sample (P < 0.05; see Methods). We noted 248 

distinct patterns of recurrent somatic CNV in PN by race: Caucasian patients more commonly 249 

had deletions in chromosome 1p13.3 (4/5; 80%) and duplications in chromosome 15 (3/5; 60%), 250 

whereas African American patients more commonly had deletions involving chromosome 4p 251 

(5/12; 42%), 4q13.2 (4/12; 33%), 7q21 (3/12; 25%), 11q14 (5/12; 42%), and 12 (5/12; 42%) 252 

(Figure 4A-C). Overall, recurrent somatic deletions had an overlap with 3173 gene loci and 253 

somatic duplications overlapped with 5 gene loci: FOXK2, WDR45B, EIF3B, RSPH10B2, and 254 

CCZ1B.  255 

Previous studies show that CNV affects gene expression and biological processes (52, 256 

53). To investigate the functional impact of somatic CNV in PN, we overlapped genes affected 257 

by recurrent somatic CNV calls in our PN cohort with genes found to be differentially expressed 258 

in PN lesional skin using RNA-seq data (10). We identified 264 genes that were significantly 259 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.25.23295810doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.25.23295810
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Rajeh et al.  11 

downregulated (FDR-adjusted P < 0.05; log fold-change < 0) as well as recurrently deleted in 260 

PN lesional skin. Enrichment analysis of those 264 genes showed that the deleteriously affected 261 

pathways were most significantly related to neural crest cell development, negative regulation of 262 

chemotaxis, and negative regulation of axonal extension (Figure 4E). Manual review of the 263 

enrichment results revealed that it was primarily driven by a recurrent 7q21 deletion affecting 264 

SEMA3C, SEMA3E, SEMA3A, and SEMA3D (Figure 4D). There were two gene loci that 265 

overlapped recurrently duplicated segments and were significantly upregulated in PN lesional 266 

skin: FOXK2 and EIF3B. 267 

Since not all of the RNA-seq samples we used overlapped with the WES samples, and 268 

to demonstrate that the enrichment in neurotropic pathways is driven by somatic deletions, we 269 

repeated the enrichment analysis using expression data only as a negative comparator–there 270 

was no significant enrichment in those neuronal pathways without CNV information (Figure S2).  271 

We then performed CNV signature analysis to investigate the common etiology, if any, of 272 

such wide-scale somatic events. We identified 3 CNV signatures in our samples based on loss-273 

of-heterozygosity status, total copy number state, and segment length. One CNV signature was 274 

highly similar to known signature CN12 from the COSMIC curated database (0.837 cosine 275 

similarity), which is believed to be a focal loss-of-heterozygosity signature indicating 276 

chromosomal instability in association with a enome doubling event (54). African American and 277 

Caucasian patients displayed similar exposure to CN12 (P = 0.58, Fisher’s exact test) (Figure 278 

4F-G). 279 

Somatic mutational landscape of PN compared to AD 280 

Distinct somatic mutational landscape in PN. Somatic mutational analysis of AD lesional 281 

skin revealed a median of 75 lesion-specific mutations per patient (range of 37 to 1161), with 282 

the highest frequency of recurrent nonsynonymous somatic mutations in TTN (4/9; 44%), 283 

DNHD1 (3/9; 33%), USP20 (3/9; 33%), and ANKRD36 (3/9; 33%) (Figure 5 A). Of note, none of 284 
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the AD samples had somatic mutations in NOTCH1 (Figure 5D). Somatic mutations in AD 285 

lesional skin had a median mutational burden of 0.66 per megabase (range of 0.28 to 92.7) and 286 

median VAF of 0.04 (range of 0.010 to 0.405), which were significantly higher than those of PN 287 

(P < 0.001, Wilcoxon) (Figure 5B and E). 288 

To investigate the somatic mutational landscape more characteristic of PN compared to 289 

AD, we started with the set of 46 genes that had nonsynonymous mutations in at least two PN 290 

patients and filtered those genes that had any nonsynonymous mutations in our AD cohort. This 291 

analysis yielded 21 genes for PN. We performed enrichment analysis on the resulting gene list. 292 

The most significant pathways were related to the Notch-mediated HES/HEY network, E2F 293 

transcription factor network, microtubule cytoskeleton, neuron migration, and others (Figure 5F 294 

and G).  295 

We found a nonsense mutation (p.Trp1374Ter) and two missense mutations 296 

(p.Glu1017Gly, p.Ser1067Leu) across two AD patients in DUOX2. Notably, the same nonsense 297 

mutation in DUOX2 appeared in one PN sample and this is the only recurrent nonsense 298 

mutation we observed across both conditions. DUOX2 is primarily responsible for the release of 299 

hydrogen peroxide through NADPH oxidase and variant protein products have been associated 300 

with elevated plasma IL17C levels (55, 56). 301 

Mutational signatures. Analysis of the mutational processes in PN and AD lesional skin 302 

identified the presence of 4 single-nucleotide substitution (SBS) and 2 double-nucleotide 303 

substitution signatures (DBS). SBS signatures were most similar to SBS7b (UV exposure; 304 

similarity: 0.966), SBS6 (DNA mismatch repair; similarity: 0.806), and SBS5 (unknown etiology, 305 

similarity: 0.781), from the COSMIC database (57) (Figure 5A). SBS5 has unknown etiology but 306 

it is found to have increased burden in many cancer types and is clock-like in that its exposure 307 

correlates with the age of the individual (57). We also detected a de-novo SBS signature in AD 308 

and PN characterized by frequent A[T>]G and G[C>T]C substitutions. SBS signatures had 309 
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similar distribution across PN and AD groups. DBS signatures only correlated with DBS1 (UV 310 

exposure; similarity: 0.999), characterized by transcriptional bias with more CC>TT 311 

substitutions. We also identified a de-novo DBS signature characterized by frequent TG>CA 312 

substitutions. For each detected mutational signature, a multiple linear regression model was 313 

built to test if age, sex, PN diagnosis (compared to AD diagnosis), and itch intensity significantly 314 

predicted the corresponding signature’s exposure. The regression model of DBS1 was 315 

statistically significant (goodness-of-fit adjusted R2 = 0.66, P = 0.004). DBS1 was significantly 316 

associated with PN diagnosis (β = 0.779, P < 0.001) and itch intensity (β = 0.187, P = 0.003). 317 

Immunofluorescence analysis. Our somatic analyses identified NOTCH1 as the most 318 

frequently mutated gene in PN lesional skin. As functional validation, we performed 319 

immunofluorescent (IF) staining of four lesional and four matching nonlesional PN samples 320 

confirmed to have mutations in NOTCH1. Representative skin section images are shown in 321 

Figure 7A. Intensive staining for the notch intracellular domain (NICD), an indicator of active 322 

Notch signaling, was observed in both lesional and nonlesional skin of PN patients. However, 323 

NICD showed significantly higher expression in lesional dermis compared to nonlesional dermis 324 

from the same PN patients (t(3) = 5.92, P = 0.010, paired Student’s t-test). There was no 325 

significant difference in NICD expression between lesional and nonlesional PN epidermis (t(3) = 326 

-0.226, P = 0.836) (Figure 7B and C). PN lesional skin had significantly higher co-localization of 327 

Notch1 with vimentin, a relatively specific marker for fibroblasts, compared to nonlesional skin of 328 

the same patients (t(3) = 4.77, P = 0.018) (Fig 7 D & E). While NOTCH1 also co-localized with 329 

KRT10, a keratinocyte marker, there was no significant difference in co-localization between 330 

lesional and nonlesional PN skin (t(3) = -2.09), P = 0.128) (Figure S2). 331 

Multi-center analysis. To test and demonstrate the clinical relevance of our findings for 332 

PN patients, we first identified the top 10 non-congenital, nonredundant diseases with the 333 

highest evidence for NOTCH1 involvement, as determined by the gene-disease association 334 
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(GDA) score from DisGeNET (58). Highest GDAs included aortic valve calcification (0.65), 335 

precursor T-cell lymphoblastic leukemia/lymphoma (0.6), and head and neck SCC (0.6). We 336 

then leveraged a mult-center cohort through the TriNetX Research Network. 42,397 PN patients 337 

without a history of any neoplasms were identified. Controls were identified through 1:1 338 

propensity-score matching based on age, sex, race, ethnicity, smoking status, and history of 339 

hypertension (Figure 8A; Table S3). Compared to matched controls, PN patients had a higher 340 

relative risk (RR, [95% confidence interval]) of precursor T-cell lymphoblastic 341 

leukemia/lymphoma (5.33, [2.88 to 9.88]), head and neck SCC (4.19, [3.22, 5.45]), cervical 342 

cancer (3.00, [1.85 to 4.80]), breast cancer (2.91, [2.50, 3.40]), bladder cancer (2.83, [1.924, 343 

4.158]), connective tissue disease (2.48, [2.15, 2.87]), aortic valve calcification (1.96, [1.78, 344 

2.18]), and aortic aneurysm (1.93, [1.680, 2.219]) (Figure 8B). There was no significant 345 

increased risk for adenoid cystic carcinoma or glioblastoma in PN patients. 346 

Discussion 347 

This is the first study to our knowledge to comprehensively investigate somatic 348 

mutational events in PN, and we identified recurrent nonsynonymous somatic mutations in PN 349 

lesional skin related to the Notch pathway. Increased Notch signaling was observed in PN 350 

lesional dermis, along with increased NOTCH1 expression in fibroblasts from PN lesional skin. 351 

PN patients were also found to be at an increased risk of several NOTCH1-associated 352 

conditions compared to matched controls. Additional findings related to PN biology include 353 

downregulated and somatically deleted genes in PN lesional skin associated with neuronal 354 

pathways, driven by a 7q21 deletion only seen in African American PN patients. Finally, PN 355 

patients had significantly more UV-associated mutational signatures compared to AD patients, 356 

after controlling for age and race. 357 

Our findings highlight a role for Notch signaling in PN pathology. The Notch intracellular 358 

pathway is highly conserved and plays key roles in specifying cell fates during normal tissue 359 
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development and homeostasis (59). Abnormal Notch signaling has been implicated in various 360 

human diseases and neoplasms (60). Our study identifies NOTCH1 as the gene with most 361 

frequent nonsynonymous somatic mutations in PN. Enrichment analysis revealed that 362 

recurrently mutated genes in PN were significantly related to the Notch-mediated HES/HEY 363 

network, even after filtering genes mutated in AD controls. NOTCH1 mutations have been 364 

strongly associated with multiple malignancies, including cSCC—a recent metanalysis of 83 365 

cSCCs using multiple cancer gene discovery methods found NOTCH1 as the top driver gene of 366 

cSCC (47). In the present study, NOTCH1 was the most recurrently mutated gene in PN, and 367 

NOTCH1 mutations significantly co-occurred with NCOA1 mutations of the same oncogenic 368 

pathway, suggesting a proliferative attribute to PN lesional skin. Our comparison between PN 369 

and cSCC somatic data also identified FAT1 as a recurrently mutated gene in our PN samples, 370 

another high-confidence driver of cSCC. PN patients are more likely than the general population 371 

to have coexisting health conditions, including malignancies (1, 61). In particular, we previously 372 

found PN patients at increased risk of developing SCC (25). The present study also found an 373 

association between PN and several malignancies using a multi-center cohort, and further found 374 

new associations between PN and NOTCH1-associated conditions. 375 

In addition to its role in cellular proliferation, Notch signaling also has established roles in 376 

tissue fibrosis in several diseases, including renal, hepatic, pulmonary, and myocardial fibrosis 377 

(62–65). The profibrotic effect of Notch1 is likely a function of fibroblast proliferation, 378 

myofibroblast differentiation, and immune dysregulation through TGF-β signaling (30, 66, 67). 379 

Activation of Notch signaling was observed in the lesional skin of patients with systemic 380 

sclerosis, and stimulation of healthy dermal fibroblasts with a Notch1 ligand resulted in a 381 

phenotype similar to that of systemic sclerosis with increased release of collagen and 382 

differentiation of resting fibroblasts into myofibroblasts (68). Interestingly, these findings are 383 
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aligned with single-cell RNA sequencing studies indicating increased myofibroblasts in PN 384 

lesional skin (14). 385 

Given its immunomodulating properties, hyperactive Notch signaling further contributes 386 

to fibrosis by inducing an M2 to M1 (proinflammatory) macrophage polarization, leading to 387 

myofibroblasts proliferation and recruitment of fibrocytes (69). The transition between M2 and 388 

M1 macrophages is also induced by IL-31 (70), which helps connect Notch dysregulation, 389 

inflammatory cytokine release, and itch propagation to tissue fibrosis (71, 72). Further, 390 

transcriptomic analysis of liver cancer hepatocytes shows a correlation in NOTCH1 expression 391 

and POSTN, which encodes periostin (73). Periostin, an extracellular matrix protein released by 392 

skin fibroblasts, is found in the dermis of patients with PN at levels that correlate with itch 393 

intensity (74). Recent single-cell studies in PN showed significantly increased periostin in 394 

lesional skin and supports a fibroblast-neuronal axis in PN regulated by periostin (14). 395 

Hyperactivation of a compromised Notch1 receptor may be one possible mechanism by which 396 

somatic mutations in NOTCH1 lead to the clinical cutaneous fibrosis observed in PN lesional 397 

skin. IF analysis demonstrated both significantly increased Notch signaling in lesional PN 398 

dermis and increased expression of NOTCH1 in lesional PN skin fibroblasts. Due to its 399 

profibrotic and proinflammatory roles, and its relatively high mutation rate and activation in PN 400 

lesional skin, our study identifies NOTCH1 as a driver in PN biology and Notch signaling as a 401 

putative target for therapeutics (60). 402 

This study also finds significant somatic mutations in neuronal pathways. Notch1 is 403 

known to inhibit neurite outgrowth in neurons, and inhibition of hyperactive Notch signaling can 404 

reverse neurogenesis and neurite outgrowth defects (75, 76). We also observed recurrent 405 

nonsynonymous mutations in genes related to neuron projection including MAP1B, TENM1, and 406 

CNTN2, which were not mutated in AD. Those genes were also found to be significantly 407 

downregulated in PN lesional skin compared to nonlesional skin (10), suggesting the mutations 408 
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lead to altered neuronal structure in PN lesional skin. Further, analysis of somatic CNV in PN 409 

reveals that recurrently deleted segments affect genes which are most significantly related to 410 

neural crest development and negative regulation of axon extension. 411 

Previous functional studies on lesional and nonlesional PN skin biopsies show altered 412 

intraepidermal and dermal nerve fiber density (77). Our mutational profiles suggest primary 413 

neuronal gene dysregulation in PN lesional skin. This is supported by association studies 414 

showing a correlation between a PN diagnosis and other systemic neuropathies (78).  415 

Following our somatic CNV analysis, enrichment in axonal growth and guidance was 416 

largely due to a recurrent 7q21 deletion that overlaps with SEMA3A and related genes of the 417 

Semaphorin−plexin signaling pathway. This deletion was only observed in African American 418 

patients. This is notable in light of the disproportionate burden of PN in skin of color patients, 419 

with African Americans having a 3.4 to 4.4 times increased odds of developing PN compared to 420 

Whites (26, 61). In addition to CNV differences, we also observed unique high-VAF mutations 421 

affecting epithelial-to-mesenchymal transition African American PN patients, suggesting a 422 

distinct somatic evolutionary landscape in those patients. This is remarkable given that African 423 

Americans with PN often present much differently than Caucasian patients with more fibrotic 424 

lesions (Figure 1B and C). Previous transcriptomic studies suggest unique patterns of immune 425 

polarization in African American patients with PN (15). Somatic CNV analysis in this study adds 426 

further molecular foundation for the high rate of PN in African Americans and suggests a novel 427 

disease endotype may exist in these patients. 428 

We observed other mutations that suggest a branch of common etiology between PN 429 

and AD. The only recurrent nonsense mutation in PN and AD was in DUOX2, which is involved 430 

in the release of hydrogen peroxide through NADPH oxidase (55). DUOX2 is highly sensitive to 431 

mutation, and altered protein products have been associated with elevated plasma IL17C levels, 432 

which is characteristic of the inflammatory profiles of AD and psoriasis (55). Transcriptional and 433 
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functional studies show elevated Th17 signatures in PN patients as well, both in the skin and 434 

systemically (10, 79). However, the difference in PN is that its immunophenotype is more likely 435 

an imbalance between Th17 and Th22, with elevated levels of IL-22 (10). Interestingly, Notch 436 

signaling is shown to promote IL-22 secretion and the skewing of naïve CD4+T cells toward 437 

Th22 cells (80). Further, Notch1 inhibition was shown to effectively alleviate the severity of 438 

psoriasis-like skin inflammation by regulating Th17 differentiation and function (81). Hyperactive 439 

Notch1 signaling can also destabilize regulatory T cells (82, 83), leaving way for unrestrained 440 

Th2-driven inflammation and itch (84). The Notch pathway was found highly mutated and 441 

hyperactive in PN lesional in this study, providing support and a genomic context to the 442 

Th17/Th22-skewed immunologic signature of PN. This is an area where precision therapeutics 443 

will make an impact, as each PN patient’s treatment can be informed by their immunologic or 444 

genomic signature.  445 

To investigate the etiology of somatic mutational processes we observed, we performed 446 

mutational signature analysis in PN and compared it to that of AD. The relative frequency of 447 

DBS1, a highly specific signature for UV exposure with frequent tandem CC>TT mutations, was 448 

significantly associated with PN. This was after controlling for age, race, and itch intensity. 449 

DBS1 significantly correlated with itch intensity in both conditions. NOTCH1 is one of the most 450 

highly mutated genes in sun-exposed versus non-sun-exposed normal human skin samples 451 

(85), and chronic UV-A exposure was shown to expand dermal fibroblasts harboring NOTCH1 452 

amplifications (86). Subacute skin-barrier damage maybe an early-event in PN patients that 453 

increases susceptibility to UV-induced DNA damage, paving the way for accumulated somatic 454 

mutations and exacerbating dysregulation in the skin microenvironment. Interestingly, we did 455 

not find DBS1 associated with age. Previous work shows a similar pattern in skin fibroblasts 456 

where UV-associated DNA damage did not correlate with age, suggesting a proliferative origin 457 

(87). 458 
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We recognize some limitations in our study. First, we only sequenced samples from 17 459 

PN cases and 10 AD controls, although PN is a relatively rare condition (61). Thus, we may 460 

have missed somatic events relevant to PN in a subset of patients. In addition, CNV analysis 461 

using WES data is limited in scope and cannot delineate all complex somatic structural 462 

variations. Nonetheless, our study represents the first and largest genomic sequencing effort for 463 

a rare and understudied disease. Our characterization of the somatic landscape in PN reveals 464 

novel insights into its pathology. Aberrant Notch signaling is identified as a likely driver in PN 465 

development, likely through profibrotic and immune deregulatory functions, with potential 466 

systemic involvement. We also provide support for the neuronal dysregulation pathophysiology 467 

of PN through identifying recurrent loss-of-function mutations in MAP1B, TENM1, and CNTN2, 468 

as well as recurrent copy number deletions supported by gene expression data. Finally, our 469 

mutational signature analysis revealed a strong association between DBS1 and PN, suggesting 470 

a potential role for UV-exposure in PN development or maintenance. Our findings represent 471 

much needed progress to profile PN on the molecular level.  472 

Methods 473 

Sample collection. Patients diagnosed with moderate-to-severe PN, with more than 20 nodules 474 

and a Worst-Itch Numeric Rating Scale (WINRS) score (88) of more than 7 out of 10 were 475 

recruited from the Johns Hopkins Itch Center. For AD controls, patients diagnosed with 476 

moderate-to-severe AD with a validated Investigator Global Assessment (vIGA) score (89) of 477 

greater than or equal to 3 and a WINRS score of more than 7 out of 10 were recruited from the 478 

Johns Hopkins Itch Center. 6-mm punch biopsies from lesional PN or AD skin and healthy, 479 

nonlesional skin within 10 cm of the nodule were collected. Half of each biopsy was formalin-480 

fixed, paraffin-embedded (FFPE) and the other half was stored in RNALater solution (Ambion). 481 

All patients signed a consent form approved by the local Institutional Review Board. 482 
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Whole-exome analysis. Library preparation was performed with the SureSelectXT reagent kit 483 

before hybridization. SureSelect XT Human All Exon V5 library was used for hybridization. 484 

NovaSeq6000 S4 was used for sequencing 150 bp paired-end reads. Illumina's CASAVA 485 

(v1.8.4) was used to convert BCL files to FASTQ files. Initial quality control was performed using 486 

FastQC (v0.11.8). Trimgalore (v0.6.7) (90) was used to trim adapters, low-quality base calls, 487 

and short reads using default parameters. Following the “Best Practices” workflow suggested by 488 

the Broad Institute, BWA-mem (v0.7.17) (91) was used for alignment against the hg38 reference 489 

genome, Piccard-tools (v2.9.0) were used to mark duplicate reads, GATK (v3.8.0) 490 

IndelRealigner (92) was used to clean indel artifacts, and GATK BaseRecalibrator was used to 491 

recalibrate base quality scores and improve downstream variant calling. Samtools (v1.10) (93) 492 

and GATK were used to determine coverage at different levels of partitioning and aggregation. 493 

One AD sample was excluded due to low coverage (see Results). GATK MuTect2 was used to 494 

call somatic. To focus on somatic events relevant to the development of a prurigo nodule, and to 495 

further reduce the likelihood of germline calls, MuTect2 paired mode was used with lesional and 496 

nonlesional samples as the “tumor” and normal samples, respectively. The default parameters 497 

were used. Common germline variants and artifacts were filtered using a panel of normal 498 

exomes from the ExAC database; variants present in 2 or more samples within the panel of 499 

normals were removed. Somatic variants were then filtered using the following criteria: minimum 500 

phred quality of 20, minimum read depth of 20, and minimum variant allele frequency of 0.01. 501 

The functional effects of passed somatic SNVs and indels were then predicted using SnpEff 502 

(v5.0) (94). The R package Maftools (v2.21.05) (95) was used to summarize and visualize 503 

variant calls. 504 

After variant calling, we considered excluding a hypermutated AD sample with 34,228 505 

detected somatic variants after filtration. The rest of the AD samples had a median of 83.5 506 

variants (range of 48 to 578).  While this high number of variants might represent significant 507 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.25.23295810doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.25.23295810
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Rajeh et al.  21 

underlying germline variation or technical artifacts, it may also reflect true hypermutation related 508 

to AD. Since this study did not focus on investigating AD pathology, and the AD variants were 509 

rather primarily used to curate a gene list that is more likely to be specific to PN somatic 510 

mutagenesis, the hypermutated AD sample was not excluded. 511 

Gene set enrichment analysis. Enrichr (96) was used to perform gene set enrichment analysis 512 

using the following term databases: GO Biological Process, GO Cellular Component, and NCI 513 

Nature Pathways. Significant GO terms and pathways were calculated using an alpha level of 514 

0.05 after applying the Benjamini–Hochberg correction and output was visualized in R. 515 

Copy number analysis. Somatic CNV was inferred using CNVkit (v0.9.4) (97), using baited 516 

genomic regions for the whole-exome target capture kit S04380110 (i.e. SureSelect Human All 517 

Exon V5). Nonlesional samples were combined into a pooled reference for CNV calling, as 518 

opposed to an individual-matched analysis, which is the recommendation of the CNVkit authors 519 

for reduced CNV noise. Significantly recurrent CNV segments were identified using CNVRanger 520 

(98), which implements the statistical approach described by Beroukhim et al. to highlight 521 

regions that are aberrant more often than would be expected by chance, with greater weight 522 

assigned to high-amplitude events (homozygous deletions or high-level copy-number gains) 523 

(99). 524 

RNA-seq data. In order to corroborate and contextualize the functional impact of somatic CNV 525 

calls, we utilized in-house gene expression data from lesional and non-lesional PN samples. 526 

Differential expression pipeline is described previously (100). Briefly, normalization and 527 

differential expression of RNA-seq data was carried out using the DESeq2 (101) R package, 528 

with adjustment for multiple hypothesis testing using Benjamini-Hochberg. Genes with adjusted-529 

P less than 0.05 and log2 fold-change change < 0 or > 0 were considered down- and 530 

upregulated, respectively. A relatively permissive absolute fold-change cutoff was used to allow 531 

enrichment to be driven by somatic CNVs. 532 
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Mutational signature analysis. Mutational signatures for the landscape of single nucleotide 533 

substitution (SBS), double nucleotide substitution (DBS), and CNV across exomes were 534 

extracted based on the non-negative matrix factorization method previously described and 535 

implemented in the Sigminer R package (v2.1.7) (102, 103). CNV signatures were classified as 536 

recently described by Steele et al.; in brief, to capture biologically relevant copy number 537 

features, a CNV signature encodes the copy number profile of a sample by summing the counts 538 

of segments into a 48-dimensional vector based on total copy number, heterozygosity status, 539 

and segment size (54). The optimal number of mutational signatures to extract was determined 540 

by inspecting the cophenetic correlation coefficient, an indicator of the robustness of consensus 541 

matrix clustering, and choosing the minimal number of signatures after which the coefficient 542 

starts sharply decreasing (104). Signatures were then compared with the curated set of 543 

COSMIC signatures v3.3 (57) using cosine similarity. Signatures with less than 0.7 similarity to 544 

any known signatures in COSMIC were considered de-novo. 545 

Mutational burden. We calculated mutational burden as the number of nonsynonymous 546 

mutations occurring per megabase of coding regions. 547 

Shannon Diversity Index for somatic mutations. Variant-allele frequency (VAF; v) was inferred 548 

as the number of reads supporting the variant allele, SNV or indel, divided by the total reads 549 

supporting the reference allele and the reads supporting the variant allele. Assuming we 550 

sequenced n sites, the Shannon Diversity Index, H, for a sample was then calculated as: 551 

 H = - ∑ ��
�

��� � ln ��� 552 

Immunofluorescence analysis. We selected four PN patients whom we found to have NOTCH1 553 

mutations. Lesional and nonlesional FFPE skin samples of 5-µm thickness were deparaffinized 554 

and subjected to heat-induced antigen retrieval using Trilogy buffer (Trilogy® 920P x1, Sigma-555 

Aldrich) and treated with DAKO protein blocking reagent (X0909, DAKO, Capinteria, CA, USA). 556 

The slides were then incubated with primary antibodies for Notch1 (ab52627, Abcam, 1:150) 557 
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and human NICD (AF3647, R&D Systems; dilution, 1:20) at 4ºC overnight, followed by reaction 558 

with conjugated secondary antibodies, DAPI intranuclear stain (62248, Thermofisher Scientific) 559 

and mounted with ProLong Glass Antifade Mountant (P36980, Thermofisher Scientific). For 560 

quantification, photomicrographs were obtained with Leica SP8 confocal microscope (Leica 561 

Microsystems, Deerfield, IL, USA) at 20x objective and x63 objective oil immersion using 562 

instrument settings. Background normalized fluorescence intensity of the antibodies in the 563 

epidermis and dermis was measured in arbitrary units (AU) using Image J software (NIH, 564 

Bethesda, MD, USA). 565 

Gene-disease associations. We used DisGeNET (v7.0) (58) to identify diseases associated with 566 

NOTCH1. At the time of the study, DisGeNET had 1,134,942 gene-disease associations 567 

(GDAs) between 21,671 genes and 30,170 diseases. Their methodology ranks diseases based 568 

on a GDA score which gives a higher weight to associations reported by several expert-curated 569 

databases and with a large number of supporting publications (58). We excluded congenital 570 

conditions (e.g., bicuspid aortic valve) and redundant terms (e.g., malignant neoplasm and 571 

breast neoplasm: only breast neoplasm was included). The 10 remaining diseases with the 572 

highest GDA were then selected as a priori primary outcomes in our PN cohort study. 573 

Cohort study. The TriNetX Research Network is an international, federated clinical database 574 

which contains approximately 107 million patient records at the time of this study. We first 575 

identified patients with a diagnosis of PN without any previous history of neoplasms before PN 576 

diagnosis. We utilized the International Classification of Diseases 10th Revision Clinical 577 

Modification (ICD-10-CM) code L28.1, which is given mostly by dermatologists and has been 578 

validated (105). Controls were identified through 1:1 propensity-score matching based on age, 579 

sex, race, ethnicity, smoking status, and history of hypertension. Primary outcomes were 580 

determined through corresponding ICD-10-CM codes and association was determined through 581 
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cumulative relative risk estimated using the TriNetX analytics web platform. All TriNetX analyses 582 

were completed on 02/10/2023. 583 

Statistics. Statistical tests and visualizations were performed using R (version 4.2.0). 584 

Adjustment for false-discovery rate (FDR) due to multiple hypothesis testing was conducted 585 

using the Benjamini–Hochberg method. An alpha level of 0.05 was used to denote significance. 586 

Study approval. This study was approved by the Johns Hopkins Institutional Review Board 587 

(IRB00231694). 588 
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Figure 1. Somatic mutational landscape of PN. (A) Schematic of the study design including sample 830 
collection and analysis. (B, C) Example skin images of two patients with prurigo nodularis (PN) enrolled in 831 
this study. (B) Dorsal left arm of an African American patient with scattered prurigo nodules. (C) Right arm 832 
of a Caucasian patient with scattered prurigo nodules. (D) Demographic information of PN and atopic 833 
dermatitis (AD) patients. (E) Waterfall plot displaying somatic mutations in 15 of the most frequently 834 
mutated genes in PN lesional skin compared to nonlesional skin. Ties were broken by known gene 835 
function. Columns represent the 17 PN patients. Numbers shown on the right indicate the frequency of 836 
gene mutation. Total nonsynonymous somatic SNPs and indels per sample are displayed on top. One 837 
sample was hypermutated with 450 mutations. Bottom plot shows the frequency of different classes of 838 
SNVs. Variants annotated as Multi Hit are those genes which mutated more than once in the same 839 
sample. (F) Total number of somatic mutations per sample, broken down by predicted impact on protein 840 
product based on snpEff, with functional (High or Moderate) impact in yellow and nonfunctional (Low or 841 
Modifier) in blue. (G) Boxplot showing the variant allele frequency (VAF) of nonsynonymous somatic 842 
mutations across race. (H) **, P < 0.01. 843 

 844 

 845 

 846 

 847 

Figure 2. Distinct somatic selection in lesional skin of African American patients with PN. (A) 848 
Nonsynonymous somatic mutations are ordered by their genomic locations on the x-axis and the 849 
corresponding VAF is shown on the y-axis. Variants with 0.3 or higher VAF are labelled with their gene 850 
name. (B and C) Bar graph showing the pathway enrichment results of high-VAF (>0.3) nonsynonymous 851 
mutations in African American and Caucasian PN patients, respectively. 852 

 853 

 854 

Figure 3. Co-occurrence and enrichment of recurrent somatic mutations in PN lesional skin. (A) 855 

Somatic mutational correlation matrix of all 46 genes with recurrent nonsynonymous somatic mutations in 856 

PN lesional skin. Significant pairs were identified with Fisher’s exact test. (B-D) Gene ontology (GO) term 857 

and pathway enrichment results of recurrently-mutated genes across three pathway databases. Terms 858 

with FDR-corrected P < 0.05 are colored in yellow. 859 

 860 

Figure 4. Somatic mutations in PN and cSCC. (A) Rank order plot showing the somatic mutational 861 
burden (number of nonsynonymous mutations occurring per megabase of coding regions) across 17 PN 862 
patients and 83 cutaneous squamous cell carcinoma (cSCC) patients. Red dashed line indicates the 863 
median mutational burden. Inset is a boxplot comparison of somatic mutational burden between the two 864 
cohorts. (B) Boxplot showing VAF of all nonsynonymous somatic variants in cSCC and PN patients. (C) 865 
Venn diagram depicting the overlap between known cSCC driver genes, genes that were found mutated 866 
in 25% or more of the 83 cSCC samples (cSCC recurrent), and genes that were found mutated in 2 or 867 
more of our 17 PN samples (PN lesional recurrent). (D, E) Somatic mutations falling within the NOTCH1 868 
and FAT1, respectively. y-axis indicates the number of PN (top) or cSCC (bottom) patients the carrying 869 
the somatic mutation. Colored rectangles indicate known functional domains of the protein product. EGF, 870 
epidermal growth factor; LamG, laminin G. 871 

 872 

 873 

Figure 5. Landscape of somatic CNV in PN. (A) Normalized copy number per sample per chromosome 874 
for African American and Caucasian patients. (B) Circular plot illustrating the proportion of samples with 875 
deletions (red) and duplications (blue) per genomic region for African American patients (outer ideogram) 876 
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and Caucasian patients (inner ideogram). (C) Examples of recurrent somatic CNV events only observed 877 
in African American patients or Caucasian patients on chromosomes 12 and 15, respectively. (D) RNA-878 
seq data was used to determine differentially down- and up-regulated genes in PN lesional skin. 879 
Transcript log2 fold-change is shown on the y-axis with respect to genomic location on chromosome 7 on 880 
the x-axis. Overlayed red box shows the location of the recurrent 7q21 somatic deletion. (E) GO term 881 
enrichment results of 264 genes that overlapped recurrent deletions while also being differentially 882 
downregulated in PN lesional skin. Terms with FDR-corrected P < 0.05 are colored in yellow. (F) 883 
Decomposition plot showing the relative contributions of CNV signature components to the three somatic 884 
CNV signatures detected (HomDel: homozygous deletion, LOH: loss-of-heterozygosity). (G) Distribution 885 
of CNV signatures in African American and Caucasian PN patients. 886 

 887 

Figure 6. Somatic mutational differences between PN and AD. (A) Ten genes with the most frequent 888 

nonsynonymous somatic mutations in our AD cohort. (B) All nonsynonymous somatic mutations in AD 889 

and PN are ordered by their genomic locations on the x-axis and the corresponding VAF is shown on the 890 

y-axis. Variants with 0.3 or higher VAF are labelled with their gene name. (C) Histograms showing the 891 

frequency of nonsynonymous somatic variants on the x-axis at the corresponding VAF on the y-axis, in 892 

AD and PN. P-value indicates the significant difference in means (Wilcoxon). (D) Mutational diversity per 893 

sample using a normalized Shannon Diversity Index based on the VAF of somatic SNVs and indels in PN 894 

and AD patients. One hypermutated AD sample was not excluded (see Methods). (E) The top mutated 895 

genes in our PN cohort are illustrated, with the corresponding relative frequency and percentage of 896 

alteration in AD and PN samples. (F) Rank order plot showing the somatic mutational burden per 897 

megabase across 17 PN patients, 9 AD patients, and all 33 cancers in The Cancer Genome Atlas cohort. 898 
Red lines indicate the median mutational burden. A dictionary for cancer symbols is included in Table S3 899 

(G, H) GO term enrichment results of 21 genes with nonsynonymous somatic mutations in at least two PN 900 

samples and no AD samples across two pathway databases. Terms with FDR-corrected P < 0.05 are 901 

colored in yellow.  902 

 903 

Figure 7. Somatic mutational signatures in PN and AD. (A) Decomposition plot of the 4 somatic SBS 904 

signatures detected showing the relative proportion of each transition and transversion subtype. (B) 905 

Distribution of SBS signatures in PN and AD samples. The inset figure shows the relative exposures of 906 

mutational signature types. Not shown, but included in all analyses, is a hypermutated AD sample with 907 

>20,000 instances of SBS5. (C) Boxplot showing the distribution of SBS signatures in PN compared to 908 

AD. (D) Decomposition plot of the two somatic DBS signatures detected showing the relative proportion 909 

of each base-pair mutation subtype. (E) Distribution of DBS signatures in PN and AD samples. The inset 910 

figure shows the relative exposures of DBS signature types. Samples not shown did not display any 911 
known DBS signatures (E) Partial regression plots of DBS1 on each of age, race, itch intensity, and 912 

condition (PN versus AD), after controlling for the remaining covariates. Overall model adjusted R2 = 0.66. 913 

 914 

Figure 8. Notch signaling is activated in lesional skin of PN patients. (A) IF staining of NICD in 915 
lesional and nonlesional skin sections of a PN patient with a NOTCH1 somatic mutation. Representative 916 
skin sections are shown at 189-fold magnification of the dermis. NICD (green), DAPI (blue). (B & C) 917 
Paired boxplot showing the difference in relative expression of NICD between lesional and nonlesional 918 
PN dermis (B) and epidermis (C). (D) IF staining of Notch1 and vimentin in lesional and nonlesional skin 919 
sections of a PN patient. Notch1 (red), vimentin (green), DAPI (blue). Representative skin sections are 920 
shown at 189-fold magnification of the dermis. (E) Paired boxplot showing the difference in relative co-921 
localization of Notch1 and vimentin between PN lesional and nonlesional skin. 922 

 923 
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Figure 9. Higher risk of NOTCH1-associated diseases in PN patients. (A) A multi-center cohort of PN 924 
patients and propensity-score matched controls was obtained using the TriNetX Research Network. The 925 
top 10 acquired, non-redundant diseases associated with NOTCH1 were determined based on available 926 
literature support using the DisGeNET database (B) Cumulative relative risk of NOTCH1-associated 927 
diseases in PN patients compared to matched controls. LL/L, lymphoblastic leukemia/lymphoma; H&N 928 
SCC, head and neck squamous cell carcinoma; ***, P < 0.0001; ns, no significant difference in risk. 929 
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