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Fig. S1. Krona plots of abundances of microbiome taxonomic units derived from 16S stool
sequencing. Graphical overview of relative taxonomic composition of gut microbiomes in the
study. Stool samples were collected at baseline (V1), post fasting / one week of DASH (V2)
and after three months (V3) intervention and were characterized using 16S sequencing. (A)
Fasting + DASH. (B) DASH.
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Fig. S2. Changes to the microbiome at the level of 16S OTUs in the FASTING+DASH and DASH groups, and changes to the
immunome in the DASH arm. Unconstrained Principal Coordinates graph with first two dimensions shown. Axes show fasting and
refeeding deltas in the case of FASTING+DASH (A) and DASH, and V1-V2, V2-V3 deltas in the case of DASH after one-week
intervention and three-month. Pseudonym participant ID numbers are shown on the point markers. Transparent circle markers show
arithmetic mean position of one week intervention and three-month (A, B). Circles of (D) denote the same like in A and B, but with

Euclidean distances.
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Fig. S3. Gating strategy of monocytes, mucosa-associated invariant T cells, T cell activation
and regulatory T cells. Events are shown after gating onto FSC-Area vs. SSC-Area, followed by
gating on doublet and dead exclusion. (A) Monocytes were detected from whole peripheral blood
mononuclear cell (PBMC) fraction. Monocytes were gated in an HLA-DR" or HLA-DR'CD16
subset. Classical, non-classical, and intermediate monocytes were defined as CD14"¢"CD16",
CD14"°*CD16™", and CD14"CD16", respectively. (B) Mucosa associated invariant T (MAIT) cells
were detected in PBMCs depleted of CD4" cells using magnetic microbead sorting. MAITs were
defined as CD161"TCRVa7.2"CD4-CD3". After restimulation with phorbol 12-myristate 13-
acetate (PMA) and ionomycin for 4hrs, MAITs were stained for IL-17A, TNFa, and IFNy. (C)
Plots show cells gated on live events using LIVE/DEAD Fixable Aqua Dead Cell Stain kit, for
405nm. T cell subsets were gated as CD8'CD4", CD25°CD4'CD§8", and CD25"€"CD4*CDS".
Activation of the T cells was assessed by expression patterns of CD45RO and CD62L. Cells were
defined as i) effector memory (Tem): CD45RO'CD62L°, ii) central memory (Tcm):
CD45RO'CD62L", iii) naive (Tn): CD45ROCD62L", iv) terminally differentiated (Teff):
CD45ROCD62L", as shown in the sketch to the right. (D) Regulatory T cells (Treg) were defined
as CD4"CD25"ehCD127"" population in isolated PBMCs. Activation status of the cells was
detected by the means of surface markers (CD45RA, CD39, and CD31. Representative plots
shown.
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Fig. S4. FlowSOM analysis of monocytes and antigen-presenting cells (APCs) in the fasting
arm. Peripheral blood mononuclear cells were labelled with fluorophore conjugated monoclonal
antibodies and measured with multicolor flow cytometry. Data was extracted from the viable gate
after doublet-exclusion and down sampled to 6000 events. Samples lacking 6000 events from the
viable gate were excluded from the analysis. Monocyte like and APC-like nodules were identified
and annotated using the CD markers of the respective node. A-C, Increase (red) or decrease (blue)
for Fasting effect (A), Refeeding effect (B), and Study effect (C) is shown within the nodes. D,
Quantification of the relative changes between all three time points is shown by the pie chart within
the nodes. White, blue and red pie slices refer to V1, V2 and V3, respectively. Blue and green
background depicts monocytes and antigen-presenting cells, respectively. n = 17 at each time
point.
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Fig. S5. Microbiome functional potential changes during fast

characteristic for MetS. Heatmap shows effect sizes (Cliff's delta) of microbiome functional module (GMM) abundance from reanalysis

of samples from Forslund et al. (12) and Kushgulova et al. (20), plotted against the original data from our study. Data from Forslund et al.

(12) was used to isolate the metformin-associated microbiome functional shifts (using same module definitions as in the present work) for
comparison, and Kushugulova et al. (20) data was used to isolate a MetS signal. Fasting, recovery, and overall study effect from our novel

data are shown. Blue and red indicate significant (MWU FDR < 0.1 for metformin/MetS status, respectively, post-hoc nested model test

for confounder (the other variable) P < 0.05) depletion/enrichment in each data set. White indicates non-significant effect or absence of

the module in a dataset. Modules significantly different in abundance in the metformin substudy show some overlap with and similar

directional changes as in our fasting study, whereas recovery exhibits the opposing pattern. MetS and metformin functional signals are

starkly different from one another, however there is little overlap between features altered in MetS and by fasting in our novel data.



YES P | RESPONDER
YES Normotensive at V3?
—P[ SBP V3135 mm Hg ]—
Yi’ N.D.
Increase more than
W’ 5 mm Hg in SBP
at V3?
W’ RESPONDER
Antihypertensive
medication
reduced? YES
el | RESPONDER
Decrease more
YES than 5 mm Hg
i 2
in SBP at V37 NON-
Antihypertensive NO RESPONDER
medication
NO unchanged? YES
—p N.D.
NO »(Decrease more
than 5 mm Hg
i 2
in SBP at V3~ NON-
=== | RESPONDER
NOT-DETERMINABLE (N.D.) NON-RESPONDER ( RESPONDER Y
medication | & SBP 1 at V3 medication =& no | in SBP at V3 medication | & normotensive at V3
or or or
medication 1 & | in SBP at V3 medication T & no | in SBP at V3 medication | & no 7 in SBP at V3
or
FASTING: 2, DASH: 3 FASTING: 10, DASH: 14 medication = & | in SBP at V3
FASTING: 23, DASH: 19
\. J

Fig. S6. Decision tree for the determination of blood-pressure responders and non-
responders. Individual 24h systolic ambulatory blood pressure (SBP) and individual anti-
hypertensive medication at 3 months (V3) was evaluated in relation to baseline (V1) and patients
were categorized as responder, non-responder or not determinable. Normotensive SBP was defined
as being £ 135 mm Hg. Significant change in the SBP was defined as an increase or decrease being
> 5 mmHg. Patients were categorized as responders if at V3: 1) their anti-hypertensive medication
was reduced and SBP was < 135 mm Hg, ii) anti-hypertensive medication was reduced and SBP
did not increase significantly, iii) if their anti-hypertensive medication did not change and their
SBP significantly decreased (Fasting n=23, DASH n= 19). Patients were categorized as non-
responders if at V3: i) their anti-hypertensive medication was not changed and SBP did not
decrease significantly, ii) if their anti-hypertensive medication was increased but SBP did not
decrease (Fasting n= 10, DASH n = 14). Patients were categorized as not-determinable if at V3: 1)
their anti-hypertensive medication was decreased and SBP significantly increased, ii) their anti-
hypertensive medication was increased and SBP significantly decreased (Fasting n = 2, DASH =
3).
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Fig. S7. Fasting and recovery effects are not replicated in an equally powered control cohort,
indicating they are intervention-specific. Volcano plots show post-hoc FDR for all features
significantly altered in either arm between any two time points in the fasting arm (horizontal axis),
compared to the same sample number DASH arm (vertical axis). Point color shows which time
point comparison is plotted. Quadrants (formed by the FDR < 0.05 thresholds) and summary
counts highlight features significantly altered in each dataset for immune cell (A) and microbiome
functional or taxonomic (B) features. Only the fasting arm had a significant effect on the
microbiome, and while a smaller fraction of immune features are altered in the DASH-only arm,
these are largely not significant in the fasting arm.
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Fig. S8. Association between the immunome, microbiome and body weight-related features.
Chord diagram visualizes the interrelation between body weight-related parameters (body weight,
waist circumference, BMI, waist-hip ratio (WHR), and body fat percentage), fasting impacted
microbiome functional or taxonomic features, and immune cell subsets. Features are shown that
form triplets of immune, microbial and phenotype variables where at least two of three correlations
are significant (Spearman FDR < 0.05, post-hoc nested model test accounting for same-donor
samples < 0.05) in the fasting arm of our cohort, and where in addition one or more feature
significantly (drug-adjusted post-hoc FDR < 0.05) are affected by the intervention. Color of the
connectors indicates positive or negative correlation (Spearman’s rho), color of the cells within
the tracks indicates changes upon fasting, refeeding and study effect (Cliff’s delta).
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Fig. S9. Long-lasting blood pressure responders and non-responders differ in microbiome
and immunome composition. (A-C) Cuneiform plot shows effect sizes (Cliff’s delta; hue and
marker size shows effect size, marker direction shows sign of effect) of immunome features (A),
gut functional profiles using KEGG and GMM (B), and gut taxon abundances assessed using the
mOTUv2 framework (C) significantly (posthoc FDR < 0.05) differing between responders and
non-responders at the different time points. (D), Prediction model for blood pressure response
using the changes of immune features between baseline (V1) and follow-up (V3). Single subject
prediction was quantified using a leave-one-out cross-validation approach. Ten immune cell
features were used to build up a multivariate logistic-regression algorithm. The bar plots represent
the regression in a model with binary output (responder yes=1 vs no=0) for every feature. (E),
Selection frequency of the different parameters for the prediction model shown in Fig. 4c over the
different classifiers built by using a leave-one-out cross-validation. (F), Selection frequency of the
different parameters for the prediction model shown in (D) over the different classifiers built by
using a leave-one-out cross-validation. Treg: CD25"€"CD127°%CD4".
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