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Abstract 
Background: Immune-mediated diseases (IMD) encompass a wide range of 
autoimmune and inflammatory disorders with aetiology related to immune system 
dysfunction, signifying a disease area with great potential for drug repurposing. In 
this study, we employed the genetically informed Mendelian Randomization (MR) 
method with two distinct exposure types: immune blood cell abundance and protein 
quantitative trait loci (pQTL) to validate and repurpose 834 drug targets which have 
been investigated for IMD treatment. 

Methods: Utilizing two-sample MR, we first established causal relationships between 
major peripheral immune cell types and 14 IMD. Robust associations, particularly 
with eosinophils, were confirmed across diseases such as asthma, eczema, 
sinusitis, and rheumatoid arthritis, revealing 59 high-confidence relationships. 
Intragenic variants associated with causal immune cell types were then extracted to 
create instruments for 371 existing IMD drug targets ("intermediate trait" MR). In 
parallel, we leveraged four large blood plasma protein QTL datasets to obtain 
complementary instruments for 361 targets ("pQTL" MR). 

Results:  In the intermediate trait MR analysis, we identified 811 gene-IMD 
associations (p-value <0.05), 169 of which were supported by strong colocalisation 
evidence (PPH4 ≥ 0.8). In the pQTL MR analysis, we similarly found 841 protein-IMD 
associations (p-value <0.05), 83 of which were confirmed with colocalization. 
Comparison with a list of approved drugs indicated low sensitivities across disease 
outcomes for both exposure types (intermediate trait MR: 0.49 ± 0.23 SD, pQTL MR: 
0.28 ± 0.12 SD).  

Conclusions: Drug targets identified in the pQTL and intermediate trait MR analyses 
show limited overlap (13%), presenting a comprehensive source of drug repurposing 
opportunities when the two approaches are combined. 

Keywords: immune-mediated disease; immune cells; protein QTL; drug target 
prioritisation; Mendelian randomization; molecular epidemiology 
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Introduction 
Immune-mediated diseases (IMDs) arising from dysregulated immune responses 
affect up to 10% of the global population, posing a major health burden[1,2]. Both 
innate and adaptive arms of immunity contribute to pathogenesis of IMD via altered 
immune cell frequencies and activation states[3]. Dysfunctional immune cells, 
particularly T cells and B lymphocytes, are central to the pathogenesis of these 
disorders, leading to the production of inflammatory mediators like cytokines and 
autoantibodies. 

Despite the substantial burden of autoimmune and inflammatory diseases, the 
pharmaceutical arsenal remains limited, owing to the complexity of the dysfunctional 
immune cascade underlying these heterogeneous conditions[4,5]. The absence of 
disease-specific biomarkers and need for chronic therapy compound the challenges 
of developing targeted agents. Therefore, given shared immune pathogenic 
pathways across IMD, there is substantial interest in repurposing of drugs in this 
disease category. Drug repurposing involves demonstrating the efficacy of a drug, 
previously tested for safety and effectiveness in one medical condition, for a different 
indication[6]. For example, adalimumab,  
an anti-tumour necrosis factor (TNF) monoclonal antibody has been initially 
approved for treatment of rheumatoid arthritis but has since been extended for use in 
psoriasis, ankylosing spondylitis, Crohn’s disease, and ulcerative colitis[7]. 

Since mid-2000s, genome-wide association studies (GWAS) have uncovered 
hundreds of disease-associated loci implicating immune-related genes[8]. 
Uncovering specific proteins driving IMD holds promise for new targeted 
therapeutics. Human genetic support can more than double the approval odds of 
drug target in preclinical development, as well as progression along subsequent 
phases of clinical trials[9,10]. In general, the strongest support is provided by 
variants with impact on protein-coding sequence of gene as they offer the least 
ambiguous mapping to a drug target, unlike intergenic and intronic variants[11]. 

Mendelian randomization (MR) is one approach that can help prioritise targets in the 
drug development pipeline by explicitly modelling causal relationships. MR uses 
GWAS-derived genetic variants as instrumental variables (IV) to study the lifetime 
effects of genetic perturbations of drug targets. This allows for the examination of 
causal effects on a chosen outcome of interest, such as any of immune-mediated 
diseases[12]. By leveraging the natural random assortment of genetic material 
during meiosis, MR provides a powerful framework to assess causality, mitigating 
issues of reverse causation and confounding that often plague observational 
studies[13]. 

For reliable causal inference within the MR framework, certain essential assumptions 
must be met. These include the requirement that the genetic variants employed as 
proxies exhibit a robust association with the targeted exposure (known as the 
relevance assumption). Additionally, it is crucial that the relationships between IV 
genetic variants and both the exposure and the outcome are not influenced by 
confounding factors such as environmental variables, genetic ancestry or co-
inherited genetic signals (referred to as the independence or exchangeability 
assumption). Moreover, it is necessary to ensure that the genetic variants' 
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association with the outcome is not influenced by pathways independent of the 
primary exposure, a phenomenon known as horizontal pleiotropy (exclusion 
restriction assumption). 

We can identify two main approaches in MR analyses looking at causal support for a 
given drug target against a disease indication. While the outcome GWAS used 
involve primarily disease incidence, the exposure GWAS can instrument a direct 
measure of gene expression (either messenger RNA or protein) in disease-relevant 
tissue or a downstream biomarker or clinical risk factor (here referred to as 
“intermediate trait”)[14]. In the first approach, variants related to two molecular 
phenotypes: protein and mRNA abundance are known as protein and expression 
quantitative trait loci (QTL), respectively. Typically, protein QTL are preferable given 
the closer relationship of protein levels to clinical phenotypes and mechanism of drug 
action which usually targets proteins[15]. An important constraint in the analytical 
application of pQTLs is the potential for confounding arising from artefactual effects 
caused by differential capture affinity driven by protein-altering variants (PAV) rather 
than biologically meaningful changes in protein concentration[16]. To address these 
biases, it is recommended to explore multiple independent pQTL datasets, 
incorporating different assays for the measurement of protein levels whenever 
possible[17].  

In the intermediate trait MR, exposure variants are extracted from GWAS for relevant 
disease risk factors or biomarkers with available lead variant(s) located in the drug 
target gene of interest. This approach offers confirmation that the genetic variant 
indeed influences the clinical outcome of interest[14]. Previously employed 
intermediate traits in MR include HbA1c for proxying effects of GLP-1 agonists[18], a 
class of antidiabetic medication, CRP for mimicking the effect of IL-6 signalling[19] 
and height for the effect of NPR2 and NPR3 signalling on cardiovascular 
disease[20]. However, limited use has been made of this approach in evaluating 
drug targets for IMD. Here, we propose a new intermediate trait category for use in 
proxying drug targets in IMD: immune cell abundance. There is substantial animal 
model, observational and MR evidence[21–26] implicating immune cell dysregulation 
in the pathogenesis of immune-mediated disorders, ranging from roles of TH2 cells, 
eosinophils, and neutrophils in allergic conditions like asthma[27,28] and 
eczema[29,30] to expansion of certain T helper lymphocyte and B lymphocyte 
lineages in autoimmune diseases such as systemic lupus erythematosus (SLE)[31], 
multiple sclerosis[32] and rheumatoid arthritis[5]. Furthermore, approved drug targets 
for IMD are usually classed as immunosuppressants or immunomodulators, which 
alter the balance of immune blood cells in their course of on-target action. For 
example, corticosteroids reduce the number of various immune cells, including 
lymphocytes and eosinophils in the blood[33], while methotrexate promotes 
monocyte apoptosis[34] and mycophenolate mofetil suppresses T and B lymphocyte 
proliferation[35]. 

Here, we implement a multi-pronged MR strategy exploiting genetic instruments from 
23 large-scale GWAS resources. Firstly, we examine causal connections between 
blood cell immunotypes and 14 IMDs. Composition of specialized white cells in 
peripheral blood underpins immunocompetence, making these genetics-derived 
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perturbations clinically relevant.  We present a comprehensive examination of 
bidirectional relationships between immune cell counts and IMD. 

In the next stage of our MR analyses, we prioritize genes as potential therapeutic 
targets for IMD using intragenic variants from immune cell GWAS established as 
causal, using a novel intermediate trait category in MR studies of autoimmune and 
inflammatory disease. As proteins constitute ultimate drug-actionable targets, we 
also employ an alternative approach leveraging blood serum protein QTLs (pQTLs) 
to instrument targets. To check the robustness of our findings, we include pQTLs 
derived in 4 largest independent studies so far, which use two different technical 
assays. Lastly, we confirm all our MR findings with the colocalisation sensitivity 
analysis. 

By evaluating concordance and complementarity of these MR approaches, we aim to 
validate known and discover novel drug target indications for immune-mediated 
disease. Integrative evaluation of previously implicated genes and their repurposing 
opportunities using existing drugs can accelerate translation of genetic insights to the 
clinic. 

Materials and Methods 
Immune blood cell exposures 
We gathered a comprehensive selection of count-based peripheral immune cell 
GWAS (Supplementary Table 1) derived from complete blood count, which 
included counts of basophils, eosinophils, granulocytes, lymphocytes, monocytes, 
neutrophils, myeloid white cells, total white blood cells and also their relative 
percentages. The GWAS were conducted using mostly the UK Biobank data of 
132,959-456,785 European ancestry individuals[36–38].  

Immune-mediated disease outcomes 
We compiled a selection of 14 IMD GWAS (Supplementary Table 2): ankylosing 
spondylitis (AS)[39], asthma[40,41], chronic sinusitis[39], eczema (atopic 
dermatitis)[39,42], eosinophilic esophagitis[43], psoriasis[44], juvenile idiopathic 
arthritis[45], rheumatoid arthritis[46], inflammatory bowel disease (IBD)[47], Crohn's 
disease[47], ulcerative colitis[47], multiple sclerosis (MS)[48], systemic lupus 
erythematosus[49], type 1 diabetes[50]. We employed European-ancestry GWAS 
with the highest power (as judged by sample size and number of top loci) whenever 
available. The biggest GWAS for two IMD: asthma[41] and eczema[42] included a 
significant contribution from UK Biobank (N > 300,000). As two-sample MR 
estimates can be biased by population sample overlap between exposure and 
outcome GWAS[51], for these traits we included replicate, independent 
GWAS[39,40] to confirm that the relationships detected in the two-sample MR 
analyses involving the immune cell exposures and Olink pQTLs (see below, also 
derived from UK Biobank). 

Protein quantitative trait loci (QTL) exposures 
Blood plasma pQTL data was obtained from large European-ancestry studies with 
protein abundance measured using two different affinity-based technologies 
(Supplementary Table 3): aptamer-based SomaScan ver 4 including ~4,500 protein 
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targets (ARIC[52], deCODE[53], FENLAND[54]) and antibody-based Olink assay 
with ~3,000 targets (UK Biobank[55]). 

Selection of genetic instruments 
To identify genetic instruments for each exposure, we selected SNPs demonstrating 
a robust association at the genome-wide significance threshold (p-value < 5 × 10-8). 
Subsequently, we conducted clumping of these SNPs to ensure that the linkage 
disequilibrium (LD), measured by r2, was maintained at less than 0.001 within a 10 
Mbp range in the 1000 Genomes European panel[56]. This step aimed to prevent 
multiple instruments from capturing the same causal effect and assure their 
independence. The clumping process was executed using plink version 1.943[57], 
facilitated by the ld_clump function in the ieugwasr R package (available at 
https://mrcieu.github.io/ieugwasr). In each MR analysis, we extracted and 
harmonized genetic variant associations for the outcome trait. Subsequently, mean 
F-statistics and R2 were computed to assess potential weak instrument bias. 

For intermediate trait instruments, prior to clumping, we obtained all genome-wide 
significant (p-value < 5 x 10-8) hits overlapping genes in the immune cell GWAS 
showing a robust, high-confidence association with immune-mediated disease. 
Using Variant Effect Predictor (VEP)[58] annotations, we subsequently selected the 
variants with the highest priority annotation (reflecting intragenic location and 
expected severity of functional consequence) available for each gene 
(Supplementary Table 4). 

For pQTL exposures we included the following additional steps due to nature of 
molecular phenotypes resulting in high risk of bias from horizontal pleiotropy[59]. 
First of all, we only used cis-pQTLs, defined as positioned maximum 1 Mbp away 
from gene’s TSS and discarded trans-pQTLs as cis- variants are less likely to be 
affecting the outcome through expression of multiple genes [60]. Secondly, we 
flagged SNPs (or correlated proxies at r2 > 0.6) with potentially epitope-altering 
mutations (such as: “stop_gained", "stop_lost", "frameshift_variant", "start_lost", 
"inframe_insertion", "inframe_deletion", "missense_variant", 
"protein_altering_variant”) which could result in artefactual variation in protein levels. 
However, we did not remove them due to their high frequency in the exposure 
datasets and minority of them (~25%) having been estimated to result in false 
positive pQTLs[61]. 

Two-sample Mendelian Randomization  
Two sample MR analyses (Wald ratio for single-SNP instruments or inverse variance 
weighted regression, IVW, for multi-SNP instruments) were carried out using 
TwoSampleMR R package[62]. For instances where the instrument comprised three 
or more SNPs, we conducted sensitivity analyses incorporating MR-PRESSO which 
can identify and adjust for pleiotropic outlier variants[63],  weighted median, 
weighted mode, and MR-Egger methods to ensure the consistency of estimates. 
Additionally, we computed I2 and Cochran’s Q to investigate the variability of 
estimates among the variants included in each instrument. The MR-Egger intercept 
test was applied to assess the potential impact of directional pleiotropy on our 
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results[64]. To evaluate the NOME assumption for MR-Egger, we computed the I2GX 
statistic as an indicator of potential attenuation bias [65].  

In the case of all MR analyses evaluating the effect of immune cells on IMD, where 
we had strong prior evidence of reverse relationships in which IMD may effect 
immune cell abundance[5], we conducted bidirectional MR. In addition, to examine 
whether the potential causal effects were independent of the outcome influencing the 
exposure, we also included Steiger filtering[30] in all our analyses. 

Colocalisation  
We employed the Bayesian colocalisation method coloc[66] to assess whether the 
nominally significant (p-value < 0.05) MR effects observed for drug targets were 
indicative of causation or potentially confounded by linkage disequilibrium (LD)[67]. 
Among the pQTL-instrumented MR analyses, the only three studies (ARIC, 
deCODE, UK Biobank) with published full summary statistics were used to run coloc. 
A 100 kb window around each SNP in the instrumental variable was used to define 
the colocalisation region and analysis was conducted if at least 50 variants were 
identified in the specified window. 

Drug target validation and repurposing 
Protein target-disease indication pairs for drugs with approved (globally), in active 
development (preclinical and in trials) and ceased (no development recorded for > 1 
year) status were downloaded from manually curated Pharmaprojects database  
(https://www.citeline.com/en/products-services/clinical/pharmaprojects), separately 
for every IMD included, on 29th August 2023 (Supplementary Table 14). 
Pharmaprojects has been a continuously updated industry-standard reference for 
pharmaceutical industry for over 40 years[68]. In cases of multiple drugs targeting 
the same protein, we selected the drugs with the most advanced development 
status. In addition, a manually curated list of 4,723 genes involved in immune 
response derived from the ImmPort[69] project was accessed via InnateDB[70]. 

Results 
Bidirectional causal effect of immune blood cell counts on IMD 

We first wanted to establish robust causal associations between peripheral immune 
cells and immune-mediated disease using Mendelian Randomization 
(Supplementary Figure 1). We ran a number of sensitivity MR analyses, in addition 
to the baseline IVW analyses involving all genetic instruments (Supplementary 
Table 5). IVW was also run excluding the major histocompatibility complex (MHC) 
region located at chromosome 6, between 28.5Mb–33.5Mb. This region is prone to 
skewed results due to complex LD patterns resulting in potential for including 
multiple correlated variants[71]. In addition, we also conducted outlier-adjusted MR-
PRESSO test including and excluding the MHC region (Supplementary Table 9). 
The nominally significant results (p-value < 0.05) across the 4 analyses were 
intersected to produce a high-confidence set of 59 immune cell phenotype->IMD 
associations (Supplementary Table 8). For two IMD outcomes (asthma and 
eczema) we included an independent replicate GWAS due to UK Biobank-derived 
sample overlap between exposure and outcome GWAS when using the largest 
available IMD GWAS. Across the duplicate outcome GWAS, we found a directionally 
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robust pattern of associations, regardless of sample overlap presence (Figure 1A) 
so in the subsequent analyses we focussed on results derived from the biggest, 
single representative GWAS for each disease. 

Overall, we discovered a strong positive effect of eosinophil phenotypes (count, 
percentage of white cells, percentage of granulocytes, sum eosinophil basophil 
counts) on genetic susceptibility to multiple disease (Figure 1A). These included 
disease with atopy component: asthma (OR=1.72, CI95%=1.6-1.85, p-value=3.9x10-

46), eczema (OR=1.25, CI95%=1.17-1.33, p-value=1.7x10-11), sinusitis (OR=1.57, 
CI95%=1.45-1.69, p-value=5.1x10-31) and eosinophilic esophagitis (OR=1.6, 
CI95%=1.23-2.1, p-value=4.8x10-4), but also rheumatoid arthritis (OR=1.36, 
CI95%=1.18-1.58, p-value=3.7x10-5), juvenile idiopathic arthritis (OR=1.51, 
CI95%=1.24-1.84, p-value=3.7x10-5), type 1 diabetes (OR=1.47, CI95%=1.26-1.72, p-
value=1.6x10-6) and ulcerative colitis (OR=1.22, CI95%=1.06-1.4, p-value=5x10-3). 
The IVW estimates given correspond to 1 SD change in the exposure, here 
eosinophil percentage of white cells.  

Using MR, we also assessed the reverse causal pathway: from IMD to immune cell 
counts (Figure 1B). There, we found some evidence that the relationship between 
eczema, asthma, sinusitis and eosinophil phenotypes is bidirectional. One unit 
increase in the log odds of eczema was associated with increase of eosinophil 
percentage of white cells (β=0.103, CI95%=0.058-0.149, p-value=8x10-6). For asthma 
and sinusitis, that direction of relationship was not robustly confirmed when Steiger 
filtering was applied (Supplementary Table 13), which suggested that the main 
causal direction was from eosinophils to asthma and sinusitis. 

We found a positive relationship between neutrophil counts (also neutrophils 
percentage of white cells) and bowel disease: IBD (OR=1.29, CI95%=1.11-1.51, p-
value=9.4x10-4) and Crohn’s disease (OR=1.44, CI95%=1.19-1.74, p-value=1.8x10-4). 
On the other hand, we found a negative causal relationship between neutrophil 
percentage of granulocytes and atopic disease (asthma: OR=0.62, CI95%=0.55-0.71, 
p-value=6.4x10-13, eczema: OR=0.8, CI95%=0.73-0.88, p-value=8.8x10-6, sinusitis: 
OR=0.65, CI95%=0.58-0.74, p-value=1.8x10-12), as well as rheumatoid arthritis 
(OR=0.76, CI95%=0.64-0.89, p-value=1.1x10-3). Similar to eosinophils, bidirectional 
relationship was only robustly supported for eczema (β=-0.088, CI95%=[-0.132, -
0.044], p-value=7.5x10-5), but not asthma and sinusitis. 

Negative effect of immune cell type abundance on IMD was also found for 
lymphocytes. Lymphocyte percentage of white cells was negatively associated with 
the odds of asthma (OR=0.89, CI95%=0.83-0.95, p-value=4.5x10-4), eczema 
(OR=0.83, CI95%=0.75-0.93, p-value=7.9x10-4) and Crohn’s disease (OR=0.74, 
CI95%=0.59-0.93, p-value=0.01), while lymphocyte count had a negative association 
with genetic susceptibility to type 1 diabetes (OR=0.78, CI95%=0.65-0.94, p-
value=7.3x10-3) and juvenile idiopathic arthritis (OR=0.74, CI95%=0.61-0.91, p-
value=4.4x10-3). In addition, we found some evidence (p-values: 0.01 – 0.04) for 
bidirectional relationship between lymphocyte percentage of white cells with five IMD 
(Figure 1B). 
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Genetic liability to asthma and sinusitis were revealed as a potential risk factor 
across a number of immune cell phenotypes (Figure 1 B). We found a potential 
negative causal relationship between asthma (β=-0.055, CI95%=[-0.086, -0.024], p-
value=5.9x10-4), sinusitis (β=-0.042, CI95%=[-0.067, -0.018], p-value=6.3x10-4) and 
monocyte percentage of white cells but the relationship was not replicated using the 
absolute monocyte counts outcome. 

Intriguingly, we found no significant genetic support for causal association between 
any immune cell phenotypes and psoriasis as well as systemic lupus erythematosus 
(Figure 1 A). For ankylosing spondylitis and multiple sclerosis, we only found fairly 
weak statistically significant support (p-value = 0.005-0.05) for immune cell basis of 
susceptibility (AS - neutrophil count, MS - monocyte count, white blood cell count, 
and neutrophil percentage of granulocytes). 

As expected due to genetic complexity of exposure and outcome phenotypes, 
sensitivity analyses revealed a high amount of heterogeneity[72] in the MR IVW 
estimates using Cochrane’s Q (Supplementary Table 6, 11) but not horizontal 
pleiotropy as measured by MR-Egger intercept test (Supplementary Table 7, 12) 

Drug target prioritisation using intermediate trait MR 

Having established immune blood cells are putatively causally associated with 
immune-mediated disease, we were then able to prioritise drug targets using 
intermediate trait MR. In this analysis, we utilised genic variants robustly associated 
with immune cell abundance (p-value < 5 x 10-8) as proxy instruments. In total, we 
were able to instrument 1,081 variants in 371 genes (Supplementary Table 16) out 
of 834 previously targeted for treatment of any of 12 immune-mediated disease 
(Supplementary Table 14). A total of 6,127 MR analyses were conducted, with 
some genes possessing instruments across a number of intermediate traits and so 
analysed independently (Supplementary Table 15). A quarter of IVW/Wald MR 
results (1,728) displayed evidence of association at the nominal significance level (p-
value < 0.05), which revealed 811 unique gene-IMD associations. These involved 
261 genes with the highest number of hits obtained for asthma (121 genes), 
inflammatory bowel disease (109 genes), eczema (83 genes) and chronic sinusitis 
(54 genes). Overall, we found extensive overlap of majority of drug targets with 
nominally significant MR evidence across IMD (Supplementary Figure 2). The 
majority of genes with MR evidence (193, 74%) are known to contribute to immune 
function, which supports the choice of intermediate immune cell phenotypes.  

Since MR results are liable to confounding by linkage disequilibrium on their own, we 
also sought confirmation with the colocalisation approach, which assess the 
probability of shared genetic signal between the exposure and the outcome 
(Supplementary Table 20).  Figure 2 highlights the MR results for genes with 
strong colocalisation support (PPH4 > 0.8) for above-mentioned 4 IMD, using 
instruments sourced from eosinophil count GWAS: A) asthma – 27 genes, B) 
inflammatory bowel disease – 12 genes, C) sinusitis – 11 genes, D) eczema – 10 
genes. None of the targets were common to all the 4 conditions, but IL3 and GATA3 
were shared among IBD, sinusitis and asthma, CDK2, IL1R1 among eczema, 
asthma and sinusitis, IL33 and IL7R between asthma and sinusitis, ERBB3, PRKCQ, 
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STAT6 between asthma and eczema, CSF2, FADS1 and FAP between IBD and 
asthma, PPARG between sinusitis and eczema, GPR65 and IL2 between eczema 
and IBD, and finally PTPN11 was shared between IBD and sinusitis. Many of these 
are not just confirmatory for existing indications for approved drugs or drugs in 
development (PRKCQ, IL1R1, STAT6, IL2) but also suggesting additional 
repurposing opportunities for other IMD (IL7R, CDK2, GATA3, IL33, GPR65, 
PTPN11, ERBB3, FAP). However, opposite direction of effect across IMD was found 
for four targets (IL3, CSF2, FADS1, PPARG) indicating lack of feasibility for drug 
repurposing and even potential adverse side effects. 

Overall, we found 339 MR results at nominally significant level which were supported 
by strong colocalisation signal. Among 169 unique gene-IMD associations with 
robust coloc evidence, we found that a minority of associations (62, 36.7%) were 
confirmatory of existing drug target indications and the majority, 107 (63.3%), were 
novel.  

We also provide additional MR sensitivity statistics for heterogeneity 
(Supplementary Table 17), pleiotropy (Supplementary Table 18) and Steiger 
filtering (Supplementary Table 19). Since heterogeneity and pleiotropy tests rely on 
multi-SNP instruments (≥ 2 and ≥ 3 SNPs, respectively), we only obtained their 
results for a limited number of MR analyses (392 and 45, respectively). High levels of 
estimate heterogeneity (p-val < 0.05) were only seen for 86 out of 392 associations 
(22%) and no significant evidence for pleiotropy was found. The main direction of 
causal effect from immune cell-instrumented drug target to IMD was confirmed for 
the majority of MR associations (5,352, 87.3%) using Steiger filtering. 

Drug target prioritisation using protein QTL MR 

Next, we leveraged an alternative source of instrumental variables for drug targets 
for IMD: protein QTL corresponding to genetic associations with circulating protein 
concentration in the blood serum. For comparison purposes, we used three studies 
which applied the SomaScan technology for protein measurement (ARIC, deCODE 
and FENLAND), and one study which used the Olink technology (UKBioBank, 
UKBB). Across the four cohorts combined, we were able to obtain strong instruments 
for 361 proteins (233, 193, 169, 280 in ARIC, deCODE, FENLAND and UKBB, 
respectively, Supplementary Table 23) out of 834 with IMD indication in 
Pharmaprojects, which were used to run 11,370 cohort-specific MR analyses 
(Supplementary Table 22). Over 10% of IVW/Wald MR results (1,431) showed 
evidence of association at the nominal significance level (p-value < 0.05), which 
reflected 841 distinct gene-IMD associations. These included 284 unique proteins 
with the highest number of hits returned for inflammatory bowel disease (82 
proteins), Crohn’s disease (80 proteins), rheumatoid arthritis (75 proteins) and 
psoriasis (72 proteins). Similar to intermediate trait MR, we uncovered ubiquitous 
sharing of drug targets with nominally significant MR evidence across IMD 
(Supplementary Figure 3) and a high proportion of targets (78.7%) with immune-
related function. 

Comparison of MR results obtained from the four cohorts using two dimensionality 
reduction methods (hierarchical clustering- Supplementary Figure 4 and principal 
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component analysis - Supplementary Figure 5) showed a strong effect of a 
particular protein measurement chemistry. SomaScan-sourced pQTLs (ARIC, 
deCODE, FENLAND) clustered distinctly away from Olink (UKBB), underscoring the 
importance of inclusion of instruments from diverse sources. When considering 
overlap of gene-IMD nominally significant associations across all the 4 pQTL 
sources (Supplementary Figure 6 A), the top 3 categories contained singletons 
present only in UKBB (273 associations), ARIC (127 associations), deCODE (83 
associations), followed by 63 associations shared across the 4 cohorts. However, 
this result is mostly driven by a priori limited sharing of genetic instruments across 
cohorts and when considering MR analyses involving only shared drug targets, the 
top category is composed of significant MR hits across all the four cohorts 
(Supplementary Figure 6 B). Analogous conclusions can be drawn when sub-
setting to gene-IMD associations significant at stringent Bonferroni-corrected p-value 
threshold (p-value < 10-7, Supplementary Figure 6 C-D). 

Confirmation of MR results with colocalisation (Supplementary Table 27) revealed 
strong support (PPH4 ≥ 0.8) for 230 MR associations (16% out of 1,431) comprised of 
83 distinct protein-IMD associations. In keeping with results from intermediate trait 
MR, two-thirds of these associations were novel (53) rather than confirmatory of 
existing disease indications for drug target (30). Figure 3 highlights the advantage of 
using multiple pQTL sources (A – ARIC, B – deCODE, C- UK Biobank) for ulcerative 
colitis, the IMD showing the highest number of hits with strong colocalisation support. 
VSIR and CD274 loci robustly colocalised with pQTLs across the 3 cohorts, while 
evidence for colocalisation for STAT3 was found both in ARIC and deCODE. 
Additionally, UKBB pQTLs independently prioritised 6 proteins (CD6, IL10, IL10RA, 
IL1RL1, ITGAV, OSMR), none of which were instrumented in the other 3 pQTL 
studies.  

Among the MR analyses with sufficient number of exposure SNPs for heterogeneity 
analysis (Supplementary Table 24), only a small number showed significant 
evidence (p-value < 0.05) against the null hypothesis of homogeneity (297 out of 
2875, 10%). MR Egger intercept test (Supplementary Table 25) revealed only 8 MR 
results (out of 1,576) with evidence for pleiotropy, 4 of which involved IL5RA pQTL 
used as exposure. Using Steiger filtering (Supplementary Table 26), the direction of 
causal effect from protein QTL to IMD was confirmed for all the MR associations, bar 
3 for the BRD2 protein. 

Integrative MR-based validation and repositioning of drug targets  

We used Pharmaproject’s list containing approved drug targets to disease indication 
assignments to compare the sensitivity of intermediate trait MR (Supplementary 
Table 21) and protein QTL MR (Supplementary Table 28) approaches. Sensitivity 
was generally poor but with a large variance across disease outcomes. Mean 
intermediate trait MR sensitivity was estimated at 0.49 (± 0.23 SD), while for pQTL 
MR the mean sensitivity was 0.28 (±0.12 SD); similar results were obtained when 
focussing on drug targets in development.  

Given fairly low predictive power of individual MR approaches, we were interested to 
compare how much additional information combining them can provide. Intersecting 
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all nominally significant gene-IMD associations found in intermediate trait and pQTL 
MR (Figure 4 A) showed only 13% overlap (190 associations). The remainder of 
associations were symmetrically distributed between intermediate trait MR (621, 
42%) and pQTL MR (651, 45%). When sub-setting to MR analyses which 
instrumented the same genes across both approaches (Figure 4 B), the fraction of 
overlap substantially increased (39%), with slightly more associations found only in 
intermediate trait MR (177, 36%) than pQTL MR (122, 25%). Altogether, we counted 
167 highest confidence MR hits with p-value < 10-7 (Bonferroni-corrected threshold), 
with 77 (46%) specific to intermediate trait MR, 60 (36%) shared, and 30 (18%) 
specific to pQTL MR (Figure 4 C). The vast majority of singleton associations were 
due to availability of a given gene exposure only through one approach. Only 9 and 2 
gene-IMD associations were found solely via intermediate trait MR and pQTL MR, 
respectively (Figure 4 D), when limiting the analysis to the subset of MR results with 
overlapping target gene exposures.  

We summarised information regarding the drug targets with the highest confidence 
evidence present in both intermediate trait MR and pQTL MR in Table 1. We found 
genetic evidence for repurposing opportunity in asthma and eczema for already 
approved rheumatoid arthritis drug anakinra which targets interleukin 1 receptor, 
type I (IL1R1). For pateclizumab, an antibody directed towards lymphotoxin alpha 
(LTα) which had been halted for development as a rheumatoid arthritis medication 
due to lack of efficacy[73], we found genetic evidence for potential in treatment of 3 
other IMDs. In addition, we discovered strong MR support for STAT6 inhibition in 
asthma, currently in preclinical development by Recludix and Sanofi.  

For drugs in phase 1 clinical trials, we identified potential repurposing opportunities 
across 2 other IMD for a psoriasis target bromodomain-containing 2 (BRD2) kinase. 
Interestingly, validation of disease indication was found for CD200 receptor 1 
(CD200R1) and eczema, as well as tumor necrosis factor receptor 1 (TNFRSF1A) 
and multiple sclerosis but misaligned direction of effect suggests that the drugs 
currently being trialled could potentially fail. For drug targets in phase 2 trials, we 
found confirmatory MR evidence for interleukin-7 receptor (IL7R) and eczema, 
multiple sclerosis, as well as STAT3 and Crohn’s disease. On the other hand, 
repurposing opportunities were uncovered for interleukin 4 (IL4), IL7R and asthma, 
STAT3 and ulcerative colitis.  

Among drugs in the phase 3 clinical trials, we found the highest number of 
repurposing opportunities (4 IMD) for azeliragon, a small-molecule inhibitor of AGER. 
We also provide genetic validation for cytokine targets of monoclonal antibodies: 
interleukin 23 receptor (IL23R) for IBD with Crohn’s disease (but featuring 
misaligned direction of effect relative to currently developed drug), as well as colony 
stimulating factor 2 (CSF2), interleukin 1 receptor like 1 (IL1RL1), interleukin 33 
(IL33) for asthma.  For CSF2 and IL1RL1 inhibitors, MR suggests eczema as an 
additional disease indication, while for IL1RL1 and Fc γ receptor IIb (FCGR2B) MR 
delivered repositioning evidence favouring inflammatory bowel disease.  
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Discussion 
This study leveraged the Mendelian Randomization method to establish genetically-
predicted immune cell mediation of IMDs. We then conducted MR analyses involving 
immune cell abundance-derived and protein QTL-derived genetic instruments to 
systematically prioritize indications for approved and in-development IMD drug 
targets, highlighting avenues for repurposing and providing validation for drugs in 
preclinical stages and in clinical trials. Integrating multiple MR approaches with 
colocalisation strengthens confidence in our findings, while indicating that a 
substantial proportion of MR results may stem from LD patterns between distinct 
causal variants rather than true causality. 

Using a crude measure of immune system activation – immune cell abundance 
(absolute and relative), we sought to establish bidirectional causal relationships of 
broad immune cell categories with immune-mediated diseases.  Notably, eosinophil 
phenotypes emerged as key players, exhibiting a strong positive effect on diseases 
with atopic components. The observed bidirectional causal effect between eosinophil 
phenotypes and specific diseases aligns with prior research implicating eosinophils 
in the pathogenesis of atopic conditions such as asthma, eczema and eosinophilic 
esophagitis with their mechanistic contribution to type 2 inflammation[74,75]. Tissue 
eosinophilia is linked to epithelium remodelling along with airway hyperreactivity 
manifestations in asthma as well as skin and oesophageal mucosa infiltration in 
eczema and eosinophilic esophagitis, respectively. Reverse positive association of 
asthma, eczema and sinusitis with eosinophils could be attributed to secondary 
immunologic activation resulting in positive feedback loop in the atopic march[76,77]. 
Less expected was a robust MR relationship of eosinophiles with a range of 
autoimmune diseases: rheumatoid arthritis, juvenile idiopathic arthritis, type 1 
diabetes and ulcerative colitis, which requires further investigation and triangulation.  

We found a strong positive association between genetically predicted neutrophil 
counts and incidence of inflammatory bowel disease and Crohn’s disease. In 
observational studies of IBD initiation, neutrophils have been found to migrate and 
accumulate at the site of inflamed mucosa, resulting in microbial dysbiosis, 
intensified intestinal architectural damage, compromised resolution of inflammation, 
and an elevated risk of thrombosis[78]. On other hand, functional deficiency of 
neutrophils can accelerate disease progression, underscoring the multifaceted role 
of these granulocytes. In addition, our MR analysis found that the “neutrophil 
percentage of granulocyte” exposure displays a protective effect for allergic disease 
and rheumatoid arthritis. This phenotype is less straightforward to interpret unlike 
absolute counts and may be related to changed relative balance of granulocyte types 
between peripheral and disease injury sites.  

Negative association of lymphocyte abundance with a number of IMD demonstrated 
in our MR analysis similarly requires a more fine-grained inspection, given disparate 
roles of various lymphocyte types (and their subtypes): T helper[79], T regulatory 
cells[80], memory T cells[81], B lymphocytes[82] etc. across the spectrum of 
inflammatory and autoimmune disease. Future larger GWAS studies of more fine-
grained immunotypes will likely reveal new causal relationships for immune-
mediated disease, such as shown recently for SLE[83]. Similarly, leveraging GWAS 
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of specific disease subtypes as they become available will lead to more precise 
allocation of drug targets to conditions, which recognises their heterogeneity[84,85].  

Having established putatively causal relationships between immune cell traits and 
IMD, we then proceeded onto gene-centric MR analysis prioritising drug targets 
using the intermediate trait approach. Following the paradigm of triangulation[86], we 
also corroborated and compared our findings with MR analyses utilising protein 
QTLs as exposures. The two approaches applied instruments derived from the same 
tissue – blood and focussed on targets with established roles in immunity, albeit 
largely non-overlapping between the two analysis sets, with only one-third shared. 
Altogether, we were able to track MR evidence for 548 drug targets at various stages 
in the development pipeline. Furthermore, we demonstrated the importance of 
utilizing multiple protein quantification studies, as unique signals were obtained from 
each. We also evaluated concordance across aptamer and antibody-based platforms 
to help derive consistent signals. Within intermediate and pQTL MR, we determined 
a substantial sharing of drug targets with MR evidence, especially for related atopic 
disease such as asthma, sinusitis and eczema, or different forms of inflammatory 
bowel disease: ulcerative colitis and Crohn’s disease. When compared, the two 
approaches yielded distinct disease sets with the highest number of drug targets with 
MR evidence, with only IBD overlapping across the top 4 in each method, thus 
providing complementary MR evidence.  

Thanks to the utilization of the MR framework, our results are less likely to be 
affected by environmental confounding and reverse causation bias, factors that can 
impede causal inference in conventional epidemiological study designs. However, 
soundness of conclusions from our MR studies is related to fulfilment of main MR 
assumptions. We satisfied the relevance assumption by using a strict p-value 
threshold for exposure variants (p-value < 5 x 10-8) which resulted in strong 
instrumental variables (min F-stat=30). We used the colocalisation sensitivity method 
to test against the second assumption of exchangeability. Colocalisation compares 
the shape of pQTL or gene-specific intermediate trait association signal with 
outcome GWAS, which should reduce the number of linkage disequilibrium-related 
artefacts. Doubts remain around genes with coloc evidence located in the MHC 
region: AGER, BRD2 and LTA which were found to associate with a number of IMD. 
The complex LD structure in the region, which extends beyond our colocalisation 
window[87] may have contributed to some false positives. 

The colocalisation method employed by us requires the presence of just a single 
causal variant at the locus, unlike MR. This limitation was off-set by short 
computation time and lack of requirement for LD matrices for exposure and outcome 
GWAS[88]. This entails that small PPH4 values may not always represent evidence 
against colocalization, especially in cases where both PPH3 and PPH4 (both traits are 
associated, but with a different or shared causal variant, respectively) are small, 
indicating low power of analysis[67]. An additional measure undertaken against 
violation of the exchangeability assumption was to restrict our analysis to individuals 
of European descent, minimizing (but not eliminating[89]) the bias associated with 
population stratification. On the other hand, this may limit the generalizability of our 
findings to diverse human populations.  
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The exclusion restriction assumption was tested using the Egger intercept test, and it 
did not reveal much evidence for presence of horizontal pleiotropy, except for IL5RA 
pQTL. Nevertheless, this assumption cannot be definitively tested here due to the 
use of mostly single SNP instruments in intermediate trait and pQTL MR. However, 
restricting variants to cis-SNPs in proximity to the target gene is expected to limit 
bias from alternative pathways[15]. 

We encountered some limitations to our chosen study design. First of all, we were 
only able to find instruments for 548 out of 834 IMD drug targets (66%: 371 in 
intermediate MR and 361 in protein QTL) which have been deployed for preclinical 
and clinical investigations of IMD. Second of all, our MR analysis cannot instrument 
a drug that concurrently affects multiple parallel biological pathways. Multiple targets 
may be represented individually or in combination through a factorial MR 
approach[90] or meta-analysis[91], if only summary GWAS data are available. Since 
our analysis’ focus was on drug targets rather than mechanism of action for 
individual drugs, we took the former approach. In general, genetics-based methods 
such as MR cannot be informative about effectiveness of particular drug molecule 
chemistry[12]. Thirdly, our MR studies leverages only GWAS of disease incidence as 
there is a scarcity of genetic studies of disease progression[92]. Focusing solely on 
incidence may fail to capture genetic factors specifically associated with the severity, 
rapidity of onset and complications of the disease course. 

Harnessing drugs which were already approved for use, we were able to quantify the 
sensitivity of both intermediate MR and pQTL approaches. Despite instrumenting a 
distinct set of targets, both methods arrived at similarly low average sensitivity (< 
0.5). There is a host of possible reasons responsible for this result. In the 
intermediate trait MR, we may be lacking the most relevant immune cell phenotype 
to construct an instrumental variable with, such as counts of individual lymphocyte 
types. While blood is broadly of high relevance to all immune-mediated disease[4], 
for individual drug targets it may not always be the most biologically meaningful 
compartment to proxy drug’s mechanism of action[12]. That said, a number of 
organs and tissues release their proteins into the blood in health and disease, for 
example the complement proteins synthesised by the liver[93]. Plasma protein 
abundance and activation are influenced by post-translational mechanisms such as 
cleavage and secretion; these processes cannot be modelled using instruments 
derived simply from protein levels in the plasma. Context-specific QTLs from 
inflammatory states[94] or single-cell specific QTLs obscured by bulk tissue 
analysis[95,96] could act as more appropriate instruments in future studies. 

Equally, pQTL analysis can be prone to false positives resulting from protein-altering 
variants which affect protein epitope; pQTLs detected in this case are going to reflect 
a mixture of changes due to the epitope effect and actual abundance[16]. Where 
proteins exist as inactive membrane-bound or circulating precursors as well as 
activated soluble forms, proteomic assays will be typically unable to clearly separate 
between different states. Such ambiguities makes interpreting the directionality of 
associations from MR problematic[94]. For instance, misaligned effect directionality 
relative to drug’s mechanism of action found in the pQTL MR for the association 
between TNFRSF1A and multiple sclerosis may stem from the exposure SNPs 
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containing an epitope altering mutation. Furthermore, our pQTL MR results utilising 
non-PAV linked variants for two cytokine receptors: interleukin 4 receptor (IL4R) and 
interleukin-2 receptor subunit alpha (IL2RA) show opposite directions of effect to 
those established in the appropriate drug trials targeting asthma[97] and 
eczema[98,99], respectively.  

We did also find strong evidence supporting truly directionally discordant effect of 
proteins whose pQTLs were not genetically linked to protein-altering variants. The 
role of individual proteins in IMD risk can be complex, with the same protein 
increasing risk for one condition while protecting against another. We replicated 
previous findings from Ferreira et al. (2013)[100], Rosa et al. (2019)[101] and Zhao 
et al. (2023)[94] for IL-6 receptor using cis-pQTL from across 4 pQTL cohorts, with 
opposing effects found on the risk of atopic disease and rheumatoid arthritis. We 
observed a similar phenomenon for BRD2 and CD40, with genetic predisposition to 
higher BRD2 increasing risk of multiple sclerosis but protecting against rheumatoid 
arthritis, and vice versa for CD40. This echoes real-world evidence from TNF-
targeting therapies, which are efficacious for rheumatoid arthritis but not multiple 
sclerosis, where they may actually hasten disease progression[102]. As expected, 
we also uncovered disease-discordant significant effects using intermediate MR. IL3, 
CSF2 and FADS1 were found to display a positive association with asthma but 
negative with IBD, in the case of CSF2 this could be also verified using pQTL 
instruments, with direction of effect in agreement. Such findings can diminish genetic 
support for drug repurposing across IMD. 

Conclusions 
The present study utilized Mendelian Randomization (MR) to first clarify bidirectional 
genetic associations between peripheral immune cell phenotypes and a spectrum of 
IMD. We found a complex pattern of causal relationships, with elevated eosinophils 
associated with increased odds of several diseases and increased neutrophil 
percentage of granulocytes showing a protective effect for atopic conditions. 

Intermediate trait Mendelian Randomization leveraging immune cell abundance 
instruments revealed 261 genes associated with immune-mediated diseases, with 
the highest count of hits for asthma, inflammatory bowel disease, eczema and 
chronic sinusitis. Colocalisation analysis provided further confirmation for 169 gene-
disease pairs, with over 60% representing novel associations beyond existing drug 
indications. We then explored drug target prioritization utilising genetic associations 
of circulating protein concentrations as exposure. We compared results from 
different protein measurement technologies (SomaScan and Olink) which prioritized 
284 proteins linked to diseases like inflammatory bowel disease and rheumatoid 
arthritis. Colocalisation analysis supported 83 protein-disease pairs, two-thirds of 
which were novel and may warrant experimental investigation.   

Integrative analyses combining the intermediate trait and pQTL approaches showed 
relatively little overlap (13-39%), indicating their complementarity. Among shared 
signals, both validation for indications undergoing clinical trials and repurposing 
opportunities were revealed for: bempikibart and lusvertikimab (eczema – validation, 
asthma - repurposing) as well as lenzilumab, namilumab, plonmarlimab (asthma – 
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validation, eczema – repurposing). New atopic indications for anakinra[103] could 
progress rapidly given that the drug is already approved. 

Overall, multi-modal human genetics resources enable comprehensive evaluation of 
therapeutic candidates for immune-mediated disease. We highlight the importance of 
considering multiple data sources and methodologies in drug target prioritization for 
a more robust assessment. Given that ∼57% of pipeline compounds fail due to 
inadequate efficacy[104], genetically-informed indication selection holds certain 
promise to boost success rates. 
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Figure 1.  A) A complete-linkage clustered matrix of the central odds-ratio estimates 
of the associations between peripheral immune cells (x-axis) and immune-mediated 
disease (IMD y-axis). High-confidence associations with p-values of: < 0.05 (*), 
<0.005 (**), <0.0005 (***) in the IVW analysis excluding the MHC region are 
highlighted with an asterisk(s). B) Heatmap of the central beta estimates of the 
associations between immune-mediated disease (IMD, y-axis) and immune cell 
counts (x-axis). High-confidence associations with p-values of: < 0.05 (*), <0.005 
(**), <0.0005 (***) in the IVW analysis excluding the MHC region are highlighted with 
an asterisk(s). Multiple sclerosis is missing from the heatmap as no instrument 
outside of the MHC region was available for this exposure. 
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Figure 2. Intermediate trait MR results for 4 IMD showing the highest number of hits with strong colocalisation support (PP
A) asthma, B) inflammatory bowel disease, C) chronic sinusitis, D) eczema. The x-axis represents the central effect size e
and y-axis represents the -log10(P-value) in MR analysis, while the gene symbols and colocalisation probabilities of nomin
significant MR hits (p-value < 0.05; beta > 0 in red, beta < 0 in blue) with strong colocalisation evidence highlighted in light
andPPH4 values listed in parenthesis. We used eosinophil counts as GWAS source for exposure instruments. 
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Figure 3. pQTL MR results for ulcerative colitis, the IMD showing the highest number 
of hits with strong colocalisation support (PPH4 ≥ 0.8). Plot compares MR results 
across different blood plasma pQTL exposure sources: A) ARIC, B) deCODE, C) UK 
Biobank. The x-axis represents the central beta estimate and y-axis represents the -
log10(P-value) in MR analysis, while the gene symbols and colocalisation 
probabilities of nominally significant MR hits (p-value < 0.05; beta > 0 in red, beta < 0 
in blue) with strong colocalisation evidence highlighted in light green and PPH4 
values listed in parenthesis.  
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Figure 4. Venn diagram showing gene-IMD association overlap between significant 
intermediate trait MR and pQTL MR results. A) nominal p-value threshold met, 
including all tested genes with a suitable instrument; B) nominal p-value threshold 
met, including only overlapping target genes between intermediate and pQTL 
instrument sources; C) Bonferroni-corrected p-value threshold (p-value < 10-7)* met 
in either set, including all tested genes with a suitable instrument; D) Bonferroni-
corrected p-value threshold met in either set, including only overlapping target genes 
between intermediate and pQTL instrument sources. 

*Bonferroni-corrected threshold equalled: 0.05 / (number of proteins tested x number 
of outcomes tested) 
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