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Abstract1

Social dynamics are an integral part of the2

spread of disease affecting contact rates3

as well as the adoption of pharmaceuti-4

cal and non-pharmaceutical interventions.5

When vaccines provide waning immunity,6

efficient and timely uptake of boosters is7

required to maintain protection and flat-8

ten the curve of infections. How then9

do social dynamics affect the timely up-10

take of vaccines and thereby the course11

of an epidemic? To explore this scenario,12

a behavioural-epidemiological is developed13

here. It features a tipping-point dynamic14

for the uptake of vaccines that combines the15

risk of infection, perceived morbidity risk16

of the vaccine, and social payoffs for deviat-17

ing from the vaccination decisionmaking of18

others. The social payoffs are derived from19

a social norm of conformity, and they cre- 20

ate a collective action problem. A key find- 21

ing driven by this dilemma is that waves of 22

vaccine uptake and infections can occur due 23

to inefficient and delayed uptake of boost- 24

ers. This results in a nonlinear response of 25

the infection load to the transmission rate: 26

an intermediate transmission rate can result 27

in greater prevalence of disease relative to 28

more or less transmissible diseases. Further, 29

global information about the prevalence of 30

the disease and vaccine uptake increases the 31

infection load and peak relative to informa- 32

tion restricted to individuals’ contact net- 33

works. Thus, decisions driven by local in- 34

formation can mitigate the collective action 35

problem across the population. Finally, the 36

optimal public policy program to promote 37

boosters is shown to be one that focuses on 38

overcoming the social inertia to vaccinate at 39
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the start of an epidemic.40

Keywords: disease awareness, public41

health policy, social behaviour, tipping-42

point, vaccination, waning immunity43

1 Introduction44

Human behaviour modulated by social45

norms and other informal social rules is46

a major driver of disease spread [12, 22].47

The uptake vaccines and the use of masks48

can be determined by social norms and49

group identity. Herd immunity suffers50

from a collective action problem, since non-51

vaccinators can free-ride on the vaccina-52

tion of others. Because such social factors53

are so important to the spread of disease,54

it is critical to incorporate them into dis-55

ease models. There is a wealth of litera-56

ture on epidemiological models addressing57

this research topic [1, 10, 13, 17, 20, 21, 45–58

47, 49, 50]. And, during the COVID-19 pan-59

demic, this literature has grown immensely.60

These models include individuals’ aware-61

ness of the the death rate or infection rates62

[32, 48] as well as individual decision mak-63

ing about uptake of non-pharmaceutical in-64

terventions [32, 37, 39]. Such models have65

shown that public policy makers face dif-66

ficult decisions in light of the role of social67

dynamics. One example is that optimal so-68

cial distancing levels can be highly sensitive69

to the R0 of the disease [32], and another70

is that misinformation can undermine the71

efficacy of public policy [43]. More gen-72

erally, public policy makers cannot assume73

that individuals are purely rational deci- 74

sion makers. Rather, their decision making 75

will be impacted by social andpsychological 76

factors. In the economics literature, these 77

have been modelled by social payoffs (or 78

relational utility), which have been shown 79

to fundamentally change the qualitative na- 80

ture of games and decision making [9, 44]. 81

Social payoffs can measure feelings of guilt, 82

joy, anger, and frustration that are gener- 83

ated by social interactions. With respect to 84

the spread of disease, these could be gen- 85

erated by individuals’ decisions to be vacci- 86

nated or use non-pharmaceutical interven- 87

tions given the behaviours of their friends, 88

family, and others in society. 89

Heterogeneity, and in particular hetero- 90

geneous behaviour, is another fundamental 91

determinant of disease spread. It is well- 92

established that heterogeneity in contact 93

patterns [5] and age structure [28] can dra- 94

matically affect infectious disease dynamics. 95

Likewise, individual variation in suscepti- 96

bility to disease can also alter how a disease 97

spreads through a community andwhat the 98

final distribution of outcomes are. Individ- 99

ual risk perception can also vary when it is 100

determined by an individual’s social envi- 101

ronment. In the example of ring vaccina- 102

tion, local dynamics can be beneficial in re- 103

ducing the spread of disease: individuals 104

with infectious neighbours choose to vacci- 105

nate to protect themselves and thereby over- 106

come the social dilemma arising from a vol- 107

untary vaccination policy [11, 31, 34, 35]. 108

An important epidemiological concern 109
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that can be influenced by social factors is110

waning vaccine immunity given an endemic111

disease [15, 16, 18]. How do social dynam-112

ics impact the uptake of booster shots and113

what recommendations are there to pub-114

lic policy makers to minimize the spread115

of disease? To explore these questions,116

this paper presents a compartmental epi-117

demiological model that incorporates so-118

cial behaviour, waning vaccines, and vac-119

cine boosters. Individuals weigh the pros120

and cons of deciding to be vaccinated/-121

boosted while knowing the current infec-122

tion rate of either their contact network on123

which the disease spreads or the popula-124

tion as a whole. The vaccine is assumed125

to include a real or perceived cost (this126

could be monetary or a risk of morbid-127

ity). Additionally, a negative social payoff128

(i.e. a social cost) is generated from devi-129

ating from others’ behaviour, since individ-130

uals are assumed to be conformists. It has131

been found that such conformity can result132

in non-monotonicity of the attack rate with133

respect to key epidemiological parameters134

such as the transmission rate the and the ef-135

ficacy of non-pharmaceutical interventions136

[32]. Together, these factors determine indi-137

vidual’s vaccine decision making, and thus138

the course of the disease.139

In addition to understanding how such140

dynamics impact the spread of disease, this141

paper explores the role of public policy in142

promoting boosters. Specifically, optimal143

control theory, which has been widely ap-144

plied to epidemiology [2–4, 14, 19, 29, 42],145

is employed to find the optimal strategy in 146

promoting the vaccine to the total amount 147

of infections over time. 148

2 Methods 149

2.1 ODE model 150

Consider a compartmental epidemiological 151

model coupled with a behavioural dynamic 152

to model the rate of vaccine uptake by the 153

population. The compartments for indi- 154

viduals include susceptibles, infectious, and 155

protected. By assuming that natural and 156

vaccine immunity are equivalent, the pro- 157

tected class represents both recovered in- 158

dividuals and those who have been vacci- 159

nated. The system of differential equations 160

then takes the form: 161

Ṡ(t) = αP (t)− βS(t)I(t)− ϵv(t)S(t), (1a)
İ(t) = βS(t)I(t)− γI(t), (1b)
Ṗ (t) = γI(t) + ϵv(t)S(t)− αP (t), (1c)
v̇(t) = f(∆π(I(t), v(t)))− v(t). (1d)

Here S(t), I(t), and P (t) are the frequencies 162

of susceptibles, infectious, and protected at 163

time t, respectively. α, β, and γ are the resus- 164

ceptibility, transmission, and recovery rates, 165

respectively. 166

The state variable v(t) ∈ [0, 1] is the 167

degree to which individuals’ want to be 168

vaccinated. 1/ϵ represents the time it 169

takes for an individual to be vaccinated 170

(e.g. the time until a vaccination appoint- 171

ment can be met), and thus ϵv(t) is the 172
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vaccination rate. The change in v(t) is173

determined by the Granovetter-Schelling174

social dynamic, Equation 1d. This dy-175

namic was originally developed in the so-176

cial science literature to model collective177

action [23–26, 30, 40, 41], and has re-178

cently been employed to model the uptake179

of non-pharmaceutical interventions during180

an epidemic [32]. f(∆π(I(t), v(t))) ∈ [0, 1]181

is a smoothed best response function of the182

difference between the payoffs to choosing183

to be vaccinated and choosing not be vac-184

cinated, ∆π(I(t), v(t)) (which in turn is a185

function of the prevalence of infection and186

vaccination rate as discussed below). This187

best response function represents the prob-188

ability that an individual will choose to be189

vaccinated, and thus is an increasing func-190

tion with respect to ∆π, and is assumed to191

be a sigmoid function. An example of such a192

function and the one used in the numerical193

simulations in this paper is194

f(∆π(I(t), v(t))) =

1

1 + exp(−κ∆π(I(t), v(t)))
. (2)

κ > 0 is the sensitivity to the payoff differ-195

ence. The greater it is, the sharper the tran-196

sition in vaccination decision-making.197

When comparing the payoff differ-198

ence between being vaccinated and not,199

∆π(I(t), v(t)), individuals weigh the costs200

and benefits of choosing to be vaccinated201

including social ones. Specifically, indi-202

viduals will consider their risk of being203

infected (frequency of infectious, the trans-204

mission rate, and whether or not they are 205

vaccinated), the (perceived) cost of the 206

vaccine (this can be monetary or a risk of 207

morbidity), and a social cost for deviating 208

from the behaviour of others. The latter 209

is derived from assuming a social norm of 210

conformity: individuals pay a social cost 211

for not behaving like the average behaviour 212

in the population. Social costs derived from 213

norms in this way have been studied within 214

the psychological game theory literature 215

[6–9, 38, 44]. Summing together these 216

components, the payoff for vaccinating 217

ṽ ∈ {0, 1} is 218

π(I(t), v(t), ṽ) =

− (1− ṽ)βI(t)− ρṽ − θ(v(t)− ṽ)2. (3)

It is assumed that the protection provided 219

by the vaccine wanes, but that there is no 220

vaccine failure, hence the first term −(1 − 221

ṽ)βI(t). ρ is the risk or cost to be vaccinated. 222

θ(v(t) − ṽ)2 is the social cost, which is posi- 223

tive if ṽ ̸= v. The payoff difference is there- 224

fore 225

∆π(I(t), v(t)) = π(I(t), v(t), 1)− π(I(t), v(t), 0)

= βI(t)− ρ− θ(1− 2v(t)).

(4)

A similar type of payoff difference has 226

been previously used tomodel the adoption 227

of non-pharmaceutical interventions, which 228

change the transmission rate [32]. 229
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2.2 Agent-based model230

In addition to the above system of ODEs,231

an agent-based small-world network model232

is also considered here. The network, an233

Erdős-Rényi random network, plays two234

roles. For one, the disease can spread along235

it node to node. For another, it determines236

the information that individuals have and237

the social pressures they experience (indi-238

viduals pay a social cost from deviating239

from the behaviour of their neighbours).240

Thus the payoff comparisons individuals241

make between choosing to be vaccinated or242

not depend on the infection status and pref-243

erences of an their neighbourhood, which is244

either their immediate neighbours (the local245

scenario) or all individuals in the network246

(the global scenario).247

Each turn in the agent-basedmodel is one248

day, and individuals are selected in a ran-249

dom order to determine the outcome for250

them that day. On day t, a susceptible in-251

dividual n is infected with probability252

Pinf(n, t) = βI ′n(t) (5)

where I ′n(t) is the frequency of infectious in-253

dividuals in n’s local neighbourhood on day254

t (i.e. those with whom they share an edge).255

If a susceptible is not infected, they may256

choose to be vaccinated/boosted. When257

making this decision, individuals observe258

the infection status and vaccination prefer-259

ences of their neighbourhood, N . Using260

Equation 2, individual n chooses to vacci-261

nate with probability 262

Pvax(n, t) = ϵf(In(t), vn(t)) (6)

where f is Equation 2. In(t) is the frequency 263

of infectious individuals in n’s neighbour- 264

hood (e.g. In(t) = I ′n(t) in the case of lo- 265

cal information). vn(t) is the average prefer- 266

ence to be vaccinated in n’s neighbourhood. 267

Specifically, 268

vn(t) =
∑
m∈Nn

Pvax(m, t)

ϵ|Nn|
(7)

where Nn is n’s neighbourhood and |Nn| 269

its size. Note that any infectious or pro- 270

tected individuals in n’s neighbourhood af- 271

fect these values, since it is their opinions 272

rather than their statuses that affect n’s pref- 273

erence. Eachday an infected individualmay 274

recoverwith probability γ. And, a protected 275

individual will lose protection and become 276

susceptible with probability α. 277

Parameter Definition
1/α = 100 days resistance period
β = 0.4/day transmission rate
1/γ = 7 days recovery period
δ neighbours mean node degree
1/ϵ = 3 days time to be vaccinated
κ = 1000 payoff sensitivity
θ = 0.01 relational cost
ρ = 0.01 risk of vaccine morbidity

Table 1: Parameters for numerical simula-
tions.

For both simulations of the agent-based 278

model and numerical solutions of the sys- 279

tem of ODEs, the parameter values from Ta- 280
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ble 1 were used. α, β, and γ were chosen281

to roughly match the values for the SARS-282

CoV-2 virus. An exposed category for in-283

fected individuals is omitted for analytical284

tractability and because numerical simula-285

tions showed qualitatively similar results.286

The mean node degree for the agent-based287

model is δ, whichwas explored over the val-288

ues 10 and 100 in a population of 10, 000 in-289

dividuals. Though vaccines can be adminis-290

tered through walk-ins, the delay of 1/ϵ = 3291

was chosen to represent a delay between292

when an individual decides to be vaccinated293

and when they may schedule and make an294

appointment. κ = 1000 is chosen so that295

there is a smooth but abrupt change in be-296

haviour. A magnitude higher or lower κ297

has a marginal effect on the results. Finally,298

the magnitude of θ and ρ were taken from299

[32], which were found to be the range in300

which oscillations in preferences during an301

epidemic can occur.302

3 Results303

3.1 Equilibria analyses304

First consider the ODE model. Given that305

S(t) + I(t) + P (t) = 1, we may reduce it to306

the three dimensional system:307

Ṡ(t) = α(1− S(t)− I(t))− βS(t)I(t)

− ϵv(t)S(t), (8a)
İ(t) = βS(t)I(t)− γI(t), (8b)
v̇(t) = f(∆π(I(t), v(t)))− v(t). (8c)

Here, we find the equilibria of this re- 308

duced system and analyze their stability. 309

To start, consider the disease free equilib- 310

rium (DFE). There are a set of DFE corre- 311

sponding to different equilibrium vaccina- 312

tion rates: (S̄, Ī , v̄) = (α/(α + ϵv̄), 0, v̄). 313

Theorem 3.1. If β/γ < 1+ϵv̄/α and ∂f/∂v < 314

1 at a DFE, then it is stable. 315

Proof. Let f = f(∆π(I(t), v(t))) for no- 316

tational simplicity. Linearizing about the 317

DFE,we have the following Jacobianmatrix: 318

JDFE =

−α− ϵv̄ −α− βS̄ −ϵS̄

0 βS̄ − γ 0

0 βf ′ ∂f/∂v − 1

 ,

(9)
which has eigenvalues λ1 = −α− ϵv̄ < 0, 319

λ2 = βS̄ − γ = γS̄

(
β

γ
− 1− ϵv̄

α

)
, (10)

and λ3 = ∂f/∂v − 1. Thus the DFE can 320

be stable so long as: β/γ < 1 + ϵv̄/α and 321

∂f/∂v = 2θf ′ < 1. Since f ∈ [0, 1] is a sig- 322

moidal function, there may be at most three 323

equilibria for f(0, v̄) for v̄ ∈ [0, 1] and a min- 324

imum of one. And for at least one of these 325

equilibria ∂f/∂v|DFE = ∂f(0, v)/∂v|v=v̄ < 326

1. 327

Next consider the endemic equilibrium 328

(EE). Here, S̄ = γ/β and 329

Ī =
α− (α + ϵv̄)γ/β

α + γ
. (11)

Note that Ī ∈ (0, 1) if and only if β/γ > 1 + 330

ϵv̄/α, which leads to the next theorem. 331
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Theorem 3.2. If β/γ > 1 + ϵv̄/α, ∂f/∂v < 1,332

and ∂f/∂I < αβ(α+β+ϵv̄)/γϵ at an EE, then333

it is stable.334

Proof. Linearizing about the EE,we have the335

following Jacobian matrix336

JEE =

−α− βĪ − ϵv̄ −α− γ −ϵγ/β

βĪ 0 0

0 βf ′ 2θf ′ − 1

 ,

(12)
and characteristic polynomial337

λ3 + (1− 2θf ′ + α + βĪ + ϵv̄)λ2

+ ((1− 2θf ′)(α + βĪ + ϵv̄) + (α + γ)βĪ)λ

+ (γϵf ′ + (α + γ)(1− 2θf ′))βĪ = 0. (13)

Note that if ∂f/∂v = 2θf ′ < 1, then all of338

the coefficients are positive, which is a nec-339

essary though not sufficient condition for340

stability by the Routh-Hurwitz criteria. We341

further require that c2c1 − c0 > 0 for coeffi-342

cients ci of λi as follows:343

c2c1 − c0 =

(α + βĪ + ϵv̄)2
(
1− ∂f

∂v

)
+ (α + βĪ + ϵv̄)

(
1− ∂f

∂v

)2

+ γϵĪ

(
αβ(α + β + ϵv̄)

γϵ
− ∂f

∂I

)
> 0. (14)

Conversely, ∂f/∂v > 1 or ∂f/∂I > αβ(α +344

β+ϵv̄)/γϵ are necessary conditions for an EE345

to be unstable.346

When there are no stable DFE and EE, cy-347

cles can occur. Figure 1 depicts an example.348

With an initially highly susceptible popula- 349

tion, the infection spreads inducing vacci- 350

nation. However, due to the social cost of 351

not conforming, vaccination rates rise more 352

slowly than they would only computing the 353

risk of the infection and the cost to vacci- 354

nate. Once vaccination rates are high, they 355

remain so even after the disease has been 356

controlled. In this case, conformity aides in 357

sustaining vaccination rates. Once the vac- 358

cination rates do drop, susceptibility rises 359

due to waning immunity, which leads to an- 360

other outbreak. 361

Figure 1: A representative example of
observed cycles. Rising infections sway
susceptibles to become vaccinated, which
drives down infections. In turn, the vaccina-
tion rate declines. As immunity wanes, sus-
ceptibles rise and the process repeats. Ini-
tial conditions are S0 = 0.99, I0 = 0.01, and
v0 = 0.01 and parameter values are taken
from Table 1.
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3.2 Parameter analyses362

Figure 2 shows the effects of various pa-363

rameters on the infection load, i.e. the to-364

tal amount of infectious individuals. The365

infection load is calculated by summing up366

the number of infectious from time t = 0 to367

t = 400 in increments of 1. In each panel, a368

single parameter is variedwhile the remain-369

der are taken from Table 1.370

Figure 2: Infection load (y axes) for varying
parametersα, β, γ, ϵ, θ, and ρ. When varying
a parameter, the others are fixed and taken
from Table 1.

Recent studies have shown non-371

monotonicity in outcomes from epidemics372

for changing parameters [32, 37], which is373

also observed for several parameters here. 374

For example, the highest infection load oc- 375

curs for an intermediate transmission rate 376

β. When β is sufficiently low, individuals do 377

not want to be vaccinated. Thus, increasing 378

β will increase the infection load up until 379

the vaccine is widely desired at which point 380

the infection load drops. In addition to this 381

general observation, there are also smaller 382

variations in the infection load for varying 383

β; specifically, a sawtooth like pattern. This 384

result is due to the tipping point dynamic, 385

which leads to the nonlinear uptake of 386

vaccines and thus the non-monotonicity 387

observed. 388

Varying the social cost θ also results in 389

non-monotonicity, since there is a trade-off 390

between low andhigh values of it. If θ is low, 391

there is little social resistance to increasing 392

the vaccine uptake when vaccinations are 393

infrequent and infections are low but rising. 394

At the start of an epidemic with a largely 395

unvaccinated population, this is beneficial. 396

On the other hand, there is also little social 397

resistance to decreasing the vaccine uptake 398

when infections are reduced, which reduces 399

the rate at which individuals receive boost- 400

ers and leaves the population susceptible to 401

a resurgence of the disease. When θ is large, 402

social resistance retards vaccine uptake at 403

the start of the epidemic, but can sustain in- 404

dividuals receiving boosters. Altering the 405

other parameters generally results in mono- 406

tonic changes in infection load. Increasing 407

α and ρ increases the infection load nonlin- 408

early while increasing γ and ϵ decreases it. 409

8
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3.3 Optimal control410

Conformity due to the social norm results411

in a slow sub-optimal uptake of vaccines at412

the beginning of the epidemic. This is be-413

cause the descriptive norm (the norm that414

describes the behaviour of others) is, cor-415

rectly, that vaccine uptake is low. Can a pub-416

lic policy campaign that adjusts this belief417

alter the outcome of the epidemic when it418

is endemic? To explore this possibility, con-419

sider a control variable u(t) for the system420

that represents the degree to which public421

policy promotes individuals’ desires to be422

vaccinated. Assuming that there is some423

upper bound its strength, we have that 0 ≤424

u(t) ≤ umax ≤ 1. Payoffs are thus adjusted425

by replacing v(t) (the true vaccine prefer-426

ence of individuals)with (1−u(t))v(t)+u(t)427

(the promoted one) into the payoffs. The428

state equations for the optimal control prob-429

lem are thus those of Equations 8a-8c with430

∆π(I(t), v(t)) replaced with431

∆π(I(t), v(t), u(t)) = βI(t)− ρ

− θ(1− 2((1− u(t))v(t) + u(t))). (15)

Assume then that we wish to minimize432

the infection load as well as the control u(t).433

This gives us the cost functional434

J (I(t), u(t)) =

∫ T

0

I(t) + wu(t)dt (16)

to minimize where w > 0 is the weighting435

of the control. Though the epidemic is en-436

demic and thus the time horizon is infinite437

(T → ∞), we can truncate the time for the 438

numerical solutions to T = 400. Using Pon- 439

tryagin’s minimizing principle, we have the 440

Hamiltonian 441

H(S(t), I(t), v(t), u(t)) = I(t) + wu(t)

+ λS(t)Ṡ(t) + λI(t)İ(t) + λv(t)v̇(t). (17)

The optimality condition is 442

∂H
∂u

= w + λv(t)2θ(1− v(t))f ′ = 0, (18)

and the adjoint equations are 443

λ̇S(t) = λS(t)(α + βI(t) + ϵv(t))

− λI(t)βI(t), (19a)
λ̇I(t) = −1 + λs(t)(α + βS(t))

− λI(t)(βS(t)− γ)− λv(t)βf
′, (19b)

λ̇v(t) = λS(t)ϵS(t)

− λv(t)(2θ(1− u(t))f ′ − 1). (19c)

Since we are assuming a finite time horizon 444

problem, we have the transversality condi- 445

tions: λS(T ) = λI(T ) = λv(T ) = 0. 446

Figure 3 depicts a numerically solution 447

using Julia and the InfiniteOpt.jl package 448

[36] for the optimal control along with the 449

resulting trajectories for the state variables 450

for the first 200 days. The weight and max- 451

imum control are w = 0.01, and umax = 0.8, 452

respectively. All other parameters are taken 453

from Table 1. At the start of the epidemic, 454

the control is maximized to overcome social 455

resistance to vaccination and thereby blunt 456

the initial spread of the disease. Once vac- 457

cination rates are high, the control can be 458
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removed, since vaccinations are bolstered459

by social pressure. As this pressure wanes,460

the control must be reintroduced at sev-461

eral times as the vaccination levels dip to462

sustain boosting and control of the disease.463

Long term, this must be sustained to pre-464

vent reemergence of the disease.465

Figure 3: Numerically solved optimal con-
trol solution. Initial conditions are S0 =
0.99, I0 = 0.01, and v0 = 0.01. w = 0.01
and umax = 0.8. Other parameter values are
taken from Table 1.

3.4 Networks and heterogeneity466

Here is reported the results for the net-467

work model that incorporates heterogene-468

ity. Figure 4 depicts representative time se-469

ries for the different cases of local or global470

knowledge of the disease and vaccine up- 471

take rates as well as different neighborhood 472

sizes (withe mean node degree δ = 10 and 473

100). The population size is 10, 000 individ- 474

uals with initially 1% infected and the pref- 475

erence to be vaccinated at 0.01 for all indi- 476

viduals. 477

Localness results in fewer infections and 478

flatter waves of infection than globalness. 479

For individuals near the locus of the in- 480

fection, the perceived and real risk of be- 481

ing infected is high and thus they vacci- 482

nate preventing the spread of disease to oth- 483

ers. This phenomenon is known as ring vac- 484

cination and is a means by which volun- 485

tary vaccination strategies can be effective 486

[27, 31, 33–35]. More information leads to 487

steeper switches in desires to become vac- 488

cinated as can be seen in panels b-d. Indi- 489

viduals become coordinated and synchro- 490

nized in their decision about whether or 491

not to be vaccinated, which results in larger 492

swings in vaccine uptake levels and peaks 493

in infections. The social payoff from the 494

norm retards uptake of the vaccine, initially. 495

This effect allows the disease to progress 496

more than under local information, which 497

spreads out the decision making and vacci- 498

nation in space and time preventing these 499

swings of behaviour. 500

4 Discussion 501

This paper has explored the effect of a so- 502

cial norm of conformity on decisions to vac- 503

cinate when the vaccine has a waning im- 504
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(a) Local, δ = 10 (b) Local, δ = 100

(c) Global, δ = 10 (d) Global, δ = 100

Figure 4: Representative time series for the networkmodel with local or global knowledge
of disease prevalence and vaccine uptake levels. Initial conditions are S0 = 0.99, I0 = 0.01,
and v0 = 0.01. Parameter values are from Table 1.

munity. It has been shown that this can lead505

to both disease free and endemic equilibria506

as well as a nonlinear response to varying507

parameters. Further, it has shown that there508

is an optimal public policy in promoting the509

vaccine, which begins with a strong promo- 510

tion to overcome the “norm stickiness” [32] 511

followed by a relaxation and then a return 512

to promote boosting at regular intervals to 513

keep the disease under control. 514
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Mirror results in [32, 37], varying key pa-515

rameters of this system is non-monotonic516

and nonlinear. In particular, changing the517

transmission rate does not always increase518

the number of infectious individuals. For519

a high transmission rate, individuals will520

regularly receive boosters thus limiting the521

spread of the disease. However, there is an522

intermediate level of transmission in which523

the social dynamic frustrates efficient and524

timely uptake of the vaccine resulting in a525

high infection load. Another key parame-526

ter with a nonlinear response to variations527

is the weight of the social cost θ. For a very528

low social cost, there is little social imped-529

iment to being an early adopter of the vac-530

cine. However, there is also little social pres-531

sure to sustain adoption of boosters. In-532

creasing the social cost from such a low level533

can be beneficial. Since, although it impedes534

the initial adoption of the disease, it pro-535

motes sustained boosters and thus reduces536

future waves of infection.537

Heterogeneity in behaviour stemming538

from heterogeneity in information and local539

conditions can promote a low infection load540

and flatten the curve of infections. Global541

information, on the other hand, synchro-542

nizes the behaviour of individuals leading543

tomass uptake of the vaccine aswell asmass544

abandonment of receiving boosters. This ef-545

fect results in a greater infection load and546

larger peaks of infections as vaccination lev-547

els wane and individuals choose to be vacci-548

nated too late in response to a resurging epi-549

demic. Boosters are thus taken in response550

to rising infections rather than in prepara- 551

tion for them. Nonetheless, global informa- 552

tion may be useful in some scenarios not 553

covered here. Synchronization of behaviour 554

may be effective when information is inac- 555

curate or when the disease can be eradi- 556

cated. Though shaping of information has 557

been explore to some degree here, future 558

work could more deeply explore this idea. 559

A further limitation of the model and di- 560

rection of future research include the as- 561

sumption that vaccination decision making 562

is not modulated by the duration of the epi- 563

demic. The population can repeatedly be 564

activated to choose to be vaccinated. In 565

reality, individuals could become disillu- 566

sioned with receiving boosters regardless 567

of the levels of infections in the popula- 568

tion. This could be especially true if there 569

is inaccurate information and group dy- 570

namics that drive vaccination decision mak- 571

ing. Here individuals are “rational” with 572

respect to social pressures, and these pres- 573

sures are essentially the same. Although, in 574

the agent-based model, they can vary as the 575

neighbourhoods vary. However, individu- 576

als could have different social pressures de- 577

pending on different social norms. e.g. in- 578

dividuals may only wish to conform with 579

those who share a similar identity to them. 580

Or, they may be driven to take the oppo- 581

site behaviour of those different from them. 582

There aremany such scenarios that could be 583

explored. 584

Given the model and results here, what 585

recommendations are there for public pol- 586
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icy makers? For one, when vaccine uptake587

is low and uncommon, vaccination should588

be promoted heavily and to a degree greater589

than the current infection rates warrant so590

as to overcome social resistance. However,591

resources used for such promotion can be592

saved once vaccination becomes common,593

since social dynamics can sustain it in the594

short term. As the disease prevalence de-595

creases, however, it is key to promote the596

vaccine again to prevent following waves597

of infection. Additionally, it may be use-598

ful to promote vaccinationmore locally than599

globally. Though this may be a futile ef-600

fort, if individuals’ behaviours can be de-601

coupled from the global dynamics and the602

behaviours of peers outside of their locality,603

that would promote a steadier and more lo-604

calized uptake of the vaccine and promote605

fewer infections.606
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