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Abstract 
Bladder cancer is 10th most common malignancy and carries the highest treatment cost among all 
cancers. The high cost of bladder cancer treatment stems from its high recurrence rate, which 
necessitates frequent surveillance. White light cystoscopy (WLC), the standard of care surveillance 
tool to examine the bladder for lesions, has limited sensitivity for early-stage bladder cancer. Blue 
light cystoscopy (BLC) utilizes a fluorescent dye to induce contrast in cancerous regions, 
improving the sensitivity of detection by 43%. Nevertheless, the added cost and lengthy 
administration time of the dye limits the availability of BLC for surveillance. Here, we report the 
first demonstration of digital staining on clinical endoscopy videos collected with standard-of-care 
clinical equipment to convert WLC images to accurate BLC-like images. We introduce key pre-
processing steps to circumvent color and brightness variations in clinical datasets needed for 
successful model performance; the results show excellent qualitative and quantitative agreement 
of the digitally stained WLC (dsWLC) images with ground truth BLC images as measured through 
staining accuracy analysis and color consistency assessment. In short, dsWLC can provide the 
fluorescent contrast needed to improve the detection sensitivity of bladder cancer, thereby 
increasing the accessibility of BLC contrast for bladder cancer surveillance use without the cost 
and time burden associated with the dye and specialized equipment. 
 

1. Introduction 

More than 50% of patients who are diagnosed with bladder cancer will develop recurrence.1–3 
Hence, once diagnosed, bladder cancer patients undergo frequent surveillance indefinitely. 
Complete tumor detection during surveillance is critical to the patient’s survival, as failure to detect 
and treat cancerous lesions, especially high-grade tumors,4–6 can lead to high risk of muscle-
invasion and mortality. 

In-office surveillance allows earlier diagnosis and the use of local anesthesia, which avoids 
surgical complications and the cost associated with general anesthesia. The standard-of-care 
surveillance procedure typically involves an in-office white light cystoscopy (WLC) during 
urology clinic. Unfortunately, WLC has limited sensitivity for detecting small and flat lesions, 
resulting in residual tumors in up to 45% of cases.7 The limited sensitivity is due to the similarity 
in morphology between small, flat tumors and healthy bladder tissue, which leads to insufficient 
contrast and hinders sensitive examination of the bladder.  

To address the sensitivity limitations of WLC, several alternative imaging tools have been 
introduced and integrated into clinical practice, including narrow-band imaging.8 The most 
promising tool, blue light cystoscopy (BLC),7,9–11 achieves a significant improvement in the 
sensitivity of detection over WLC by utilizing an exogenous contrasting dye (hexaminolevulinate, 
Cysview®) that selectively accumulates in cancerous tissues and fluoresces as bright red patches 
against a blue background under blue light illumination.10,12 With the added contrast, BLC 
successfully reduces short-term recurrence by 14-27% and increases the detection rate of high-
grade tumors by 43%, compared to WLC.7 

While BLC offers improved sensitivity, its high cost (due to the use of specialized equipment, dye 
and space) and the additional time required for dye administration limit its accessibility. As a 
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result, fewer than 5% of the hospitals in the U.S. have access to in-office BLC systems.9 A simple, 
rapid, and low-cost strategy for generating BLC images during in-office cystoscopy would 
increase the accessibility and affordability to BLC imaging for in-office use, bringing with it the 
advantage of more sensitive detection of bladder tumors that can improve patient outcomes. 

Recently, machine learning methods have gained increasing interest for their potential to improve 
the sensitivity of bladder cancer detection.13,14 For example, methods like CystoNet15 aim to 
circumvent the need for BLC by providing real-time bounding box overlays of suspected tumor 
regions during WLC, and it can achieve good sensitivity and specificity (90.9% and 98.6%, 
respectively). However, such WLC-based, supervised learning strategies use training datasets that 
were developed using manually labeled WLC images. Unfortunately, manually labeled datasets 
are fundamentally limited in their utility to assist with detecting the undetectable cancers that are 
responsible for the low sensitivity of WLC, because they only include the subset of tumors already 
detectable by human eyes with WLC.  

To overcome the low sensitivity of WLC for bladder cancer, it is essential to visualize tumors that 
are not currently visible with white light imaging. Given that BLC technology is known to 
significantly increase the sensitivity of detection (detecting up to 40% more tumors that are 
initially missed by WLC),16 machine learning methods that leverage information from BLC data 
are better poised to address WLC sensitivity limitations. In 2021, Ali et al. introduced a BLC-
image-based artificial intelligence diagnostic platform for predicting malignancy, invasiveness and 
grade in bladder tissue, where they showed the classification against malignant lesions achieved 
95.77% sensitivity.17 While this represents the first attempt at developing a machine-learning-
based algorithm for bladder cancer detection using BLC data, the proposed diagnostic platform 
can only be utilized in places where BLC systems are already available. Consequently, the issue 
of low sensitivity of bladder cancer detection remains for the 95% offices where BLC systems are 
not available and unlikely to be due to recent scale-backs in manufacturing of new, in-office BLC 
systems.18  

To overcome the need for new capital expenditures to perform BLC imaging, we previously 
proposed to use machine learning to perform image-to-image (I2I) translation, a style-transfer task 
rather than an object detection or classification task. This approach is a form of domain adaption, 
where we convert an input image from the WLC domain to the BLC domain,19 preserving the 
intrinsic content (i.e., tissue structure features) while transferring the target style (i.e., the 
fluorescence under blue light illumination), without the need for exogenous dye or costly 
equipment. This conversion is akin to virtual or digital staining -- a process that has been widely 
demonstrated in histology to convert unstained slides, or a simple stain such as H&E, to have the 
appearance of more advanced, special histochemical staining, thus saving the time, cost and 
environmental impact associated with processing physical stains.20–24 Importantly, the style-
transfer approach also removes the need for manual annotation of input datasets, as the input data 
from the target domain serves as its own ground truth.  

As with all digital staining, the underlying premise of our strategy is that structural features present 
in the WLC image that are too minute to be easily detected with the human eye are correlated with 
biochemical features that lead to fluorescent staining in BLC images. For example, early-stage 
bladder tumors have small papillary structures or appear as a velvety patch on the bladder wall.25 
Under a quick glance, these small tumors may be missed due to the lack of contrast in WLC or 
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distracting inflammation in larger regions of the bladder.  However, distinct texture features (such 
as the velvety, carpet-like mucosa) and small changes in tissue color that are not apparent to human 
eyes are detectable by the machine learning model.  

In an initial proof-of-concept study on the feasibility of digital staining WLC data using a standard 
convolutional network, we showed successful style transfer from WLC to BLC.26 Like most digital 
staining implementations,22 however, the machine learning model used for that work (paired I2I 
translation) relied on the availability of near-perfectly registered source (WLC) and target (BLC) 
modality image pairs, which could only be acquired with a specialized research-grade system.27 In 
real clinical scenarios using commercially available cystoscopy systems (e.g., KARL STORZ 
Photodynamic Diagnostic system),28 WLC and BLC videos are collected sequentially (i.e., a 
manual switch is required to change from WLC mode to BLC mode). As a result, it is not practical 
to obtain sufficient aligned pairs from data collected with clinical systems to train a model based 
on paired I2I translation.  

In an effort to facilitate clinical translation of the digital staining concept for bladder cancer 
detection, here we introduce the use of unpaired I2I translation29 to perform the digital staining 
task. In so doing, we demonstrate the first use of machine learning to digitally stain WLC videos 
captured with standard-of-care clinical equipment (a Karl Storz Blue-light cystoscopy system with 
Cysview®) and transform them into BLC videos that accurately depict suspicious lesions. An 
additional benefit of using an unpaired algorithm is that it overcomes the difficulty in collecting 
paired dataset from clinical cystoscopy and can enable use of a larger number of videos for more 
comprehensive model development. 

In the following sections, we introduce the methods for collection and preparation of the clinical 
dataset (Section 2.1), data pre-processing (Sections 2.2 and 2.3), a description of the model 
(Section 2.4) and present evaluation metrics (Section 2.5). Finally, we report the on the digital 
staining performance in Section 3. 

To our knowledge, this is the first demonstration of digital staining on cystoscopy data collected 
with clinical systems. Importantly, our proposed workflow fills the current gap in bladder cancer 
detection by enabling improved detection sensitivity through introducing fluorescent-like contrast 
to WLC images while simultaneously increasing the accessibility of BLC-like images by removing 
the time and cost requirement for conventional fluorescent visualization. It also trumpets the 
potential of digital staining to bring new cost-effective options for endoscopy to clinical scenarios 
outside of urology that can democratize access to better healthcare. 

 

2. Methods 

2.1 Data collection and data preparation 

Under approval from the Vanderbilt University Medical Center Institutional Review Board, we 
recruited 31 patients who were scheduled for a transurethral resection of bladder tumor (TURBT) 
procedure with CYSVIEW at Vanderbilt University Medical Center. From each patient, we 
collected a few short video clips (around one minute in length). Each video clip contained both 
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WLC and BLC images, since the standard cystoscopy procedure requires switching between the 
two modalities for bladder visualization. Bladder images were taken from various regions of the 
bladder and, given the nature of the clinical cystoscopy tools, the WLC and BLC images did not 
capture the exact same regions (i.e., they were unpaired). In total, we collected 45 videos (81,000 
images) using the commercial KARL STORZ Blue Light Cystoscopy with Cysview® System.  

To prepare the datasets, we down-sampled the video data by saving one of every three frames 
(with a frame rate = 30Hz) and classified each frame as WLC or BLC image.30 The down-sampling 
processing reduced data redundancy, which occurs because of the fast imaging rate of the 
cystoscope. Additionally, unusable images (such as those that include surgical tools in the field of 
view, extremely saturated, dark, or blurry images) were discarded. In total, 4491 WLC and 3965 
BLC images were used as inputs to the model with an 80/20 split, resulting in 3593 and 898 WLC 
images and 3172 and 793 BLC images used for training and validation, respectively. No 
registration/pairing was necessary for the training and validation datasets, since these images were 
used as inputs to an unpaired I2I model. For testing, however, we manually identified 100 near-
perfectly matched WLC and BLC image pairs to allow for evaluation with a ground truth. We 
were thus constrained to a small testing dataset, as it was difficult for clinicians to capture similar 
regions and orientations of tissue with the native clinical equipment. Region mismatches in WLC 
and BLC videos greatly limited the number of exact overlaps between WLC and BLC tissue 
regions, even after image registration. However, our testing dataset was specially constructed to 
include a variety of healthy and cancerous tissues from several patients, ensuring that our model 
could be tested in a manner as representative as possible. While this meant that some data from 
patients whose videos were used in the test set were also included in the training and validation 
sets, all video frames corresponding to the five seconds before and five seconds after any given 
testing image were removed from the training set to avoid overlapping information that may affect 
our evaluation assessment. The saved images were cropped to a square that circumscribe the 
circular cystoscopy field of view (FOV).  

 

2.2 Color Normalization 

Cystoscopy videos collected via clinical systems present several challenges for this work. Besides 
the aforementioned challenge of collecting perfectly registered datasets for the source and target 
image pairs to enable validation, large variations in brightness and color that exist across the patient 
population and across different images collected in a single video make it difficult to perform 
successful training on raw images extracted from clinical videos. As shown in Figure 1(a, d), both 
WLC and BLC images exhibit color and saturation variations. Sources of such variations include 
the illumination settings of the cystoscopy device (which may be auto-controlled) and conditions 
inside the bladder (e.g., urine and debris in the bladder can cause a color shift in BLC videos). 
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Figure 1. Color normalization and optimization process for WLC and BLC images to align color 
distributions of video datasets. A subset of the WLC/BLC images are used to find the Wasserstein 
barycenters (WB), which serve as the reference distributions. Original WLC and BLC images are 
transformed into color normalized WLC and BLC images using optimal transport. Additionally, for BLC, 
to restore the red channel that contain important fluorescent information, color normalized images are 
further adjusted to generate color-normalized BLC images with the Red Channel Restoration step, using 
red channel intensities in the original color channel and the relative intensity ratios between the RGB color 
channels. 

These variable conditions can make it very difficult to appropriately predict the details needed for 
style transfer. Especially variable images result in out-of-distribution data, which can lead to 
failures of deep neural networks during both the training and testing phase. To achieve successful 
training on a model, in most cases, either the training set must have a homogeneous distribution 
or the heterogeneity of the training data must be known (e.g., using labels). While recent studies 
have investigated methods to generalize for out-of-distribution data,31,32 these primarily aim to 
decorrelate irrelevant features from those that are relevant. In our data, out-of-distribution cases 
are results of suboptimal imaging conditions, where saturation, green hues (due to urine content), 
and large shadowy regions mask important details. Therefore, performing normalization on every 
image to yield a consistent color distribution and to address the problem of saturation is a much 
more efficient approach, as it will yield more realistic generated images without significant 
imaging artifacts. In summary, our out-of-distribution data can be recovered to reveal valuable 
relevant features.  

To account for these variations and work towards developing color-wise homogeneously 
distributed datasets, we first generated the color point cloud for a given image from its color 
distribution: each pixel was represented as a point in 3D space, where red, green and blue intensity 
values form the three coordinate axes, shown in Figure 1b. We then approached this color 
normalization challenge by solving an optimal transport (OT) problem:33,34 that is, we find found 
the most efficient way to transform one distribution (input image color distribution) into another 
distribution (a reference color distribution). Solving an OT problem requires calculation of the 
Wasserstein distance, which returns the minimum cost for transforming one distribution into 
another. We found the reference color distribution by computing the Wasserstein barycenter (WB) 
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for WLC input distributions across several patients. The WB is defined as the distribution that 
minimizes its Wasserstein distance with respect to other distributions.35–37 In other words, the WB 
serves as the “reference distribution” to which we attempted to map all other images. When 
computing the WB, a selection of high-quality, nicely contrasted images that represent various 
pathological states were manually chosen to ensure that the normalized data contained high 
contrast and minimal artifacts that could impede visual clarity. The images came from 14 patients 
and were specifically selected because the images presented a wide variety of saturation, color 
distributions, and tissue features. With the reference distribution in hand, we then found the OT 
mapping between each input WLC frame and the reference distribution, transforming the input 
image color point clouds into color-normalized WLC datasets, shown in Figure 1c. Ultimately, 
the color-normalized WLC images would become the source data (i.e., network input) for our 
style-transfer process. 

The same normalization process was necessary for BLC images. Hence, we similarly selected BLC 
images from the same 14 patients (Figure 1d) and created a BLC reference color distribution 
(Figure 2e) to produce color-normalized BLC data (Figure 1f). However, we found that while the 
color normalization step effectively unifies the brightness and color distribution for the WLC data, 
color-normalized BLC images showed diminished fluorescence signal, which could lead to missed 
tumors. This phenomenon is explainable: when optimal transport is applied on all three, color 
channels in the RGB color space, the red channel of each individual image is also made more 
uniform, contributing to the artifact. To restore the level of true tissue fluorescence associated with 
the red channel, we performed color normalization only on the green and blue channels of the 
BLC. Then we performed a Red Channel Restoration step (shown in Figure 1g) to compute a new 
red channel based on the normalized blue and green channels, wherein we first scaled the intensity 
distribution of the red channel in the original image by a ratiometric intensity scaling factor, which 
was determined by comparing the blue-channel intensities of the color-normalized and the original 
images. We then combined this newly scaled red channel data with the normalized green and blue 
channels to generate a color-normalized BLC image.  

Figure 2 shows two representative cases of the visual improvement gained by this Red Channel 
Restoration step for blue light images. In each example, the top row shows the effect of the original 
RGB color normalization process (as used in WLC processing), and the bottom shows the 
corrected image with Red Channel Restoration. In the tumor case, severe fluorescence wash-out 
appears in the top image, compared to the fluorescence that is restored in the post Red Channel 
Restoration (bottom) image. In the example of normal bladder tissue, the original color 
normalization led to falsely labeled fluorescence, which was removed after adjusting the red 
channel intensity. Arrows highlight the difference in fluorescence between the top and bottom row 
of each example, showing that the accurate level of fluorescence in a color-normalized image can 
be achieved with Red Channel Restoration step.  
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Figure 2. Comparison between color normalized BLC images (performed on all three color channels) vs. 
final color-normalized images with red channel restored illustrated in a tumor case and a normal case. 
Arrows show the lost fluorescence (example 1) and false fluorescence (example 2). 

Following the color normalization steps described above, all WLC and BLC images used for 
training, validation and testing were processed to achieve color-wise homogeneous distributions.  

 

2.3 Establishing a ground truth dataset for evaluation 

To properly evaluate the performance of our model, we established a testing dataset that comprised 
WLC images for which we had identified corresponding BLC images obtained from the same 
location to serve as ground truth network outputs.  

Because the clinically collected datasets were inherently unregistered, to generate our registered 
pairs, we manually identified 100 images that appeared to be near-perfectly matched by human 
eye. The selected image pairs were then elastically registered with MATLAB using fitgeotform2d 
to estimate a geometric transformation based on control point mappings between a source and 
target image. The control points were selected manually, where we focused on vessel patterns, 
tumor features and distinct bladder wall features shared by both the source image and the target 
image. The BLC was the source and the WLC served as the target in this case. The green channel 
from the WLC and the green or blue channel from the BLC (depending on the absence or presence 
of green-hue artifact,30 respectively) were used to find the transformation matrix T that enabled 
registration. Figure 3 demonstrates the registration process and the associated overlays of WLC-
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BLC pairs before and after registration (bottom row). We calculated the mutual information (MI) 
index before and after the registration, between the green channels of the WLC and BLC pair, and 
we measured a maximum increase of 27.17 in the MI between the image pair after registration, 
which on average improved by 1.62 compared to unregistered WLC and BLC pairs.  

  

Figure 3. Registration of WLC and BLC pairs. Overlay images (green for WLC and purple for BLC) are 
shown for before (left) and after (right) registration. White arrows point to misalignment before registration. 
The MI improvement after registration for this image pair is 2.88.  

 

2.4 Unpaired I2I model 

For our unpaired image-to-image (I2I) model we used the Density Changing Regularized Unpaired 
Image Translation (DECENT) method, which combines a ResNet-based generator with a 
PatchGAN discriminator and employs autoregressive flows38 for density estimation (Figure 4).39 
The term density here refers to the probability density of an image, which describes the areas that 
appear most important to the human eye through placing higher importance on edges and textures. 
In brief, the density-changing assumption by Xie et al. removes the restrictive one-to-one mapping 
assumption that is normally assumed in unpaired I2I tasks by looking at the neighboring 
information. The one-to-one assumption is not suitable to solve tasks where there is unequal 
amount of information in the two domains, as in our case. In Xie’s study, this restrictive 
assumption was removed by mapping the high density region of images in one domain to the high-
density region of images in the other domain, and vice versa.  
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Figure 4. (a) Examples of unpaired input data. Each set of input data represents images that do not have 
corresponding, registered pairs in the other dataset. (b) The p atch-density-based GAN model utilized in 
our unpaired I2I. Blue dashed box represents the generator(G) which produces dsWLC images from WLC 
inputs. 

The model consisted of three loss terms: an adversarial loss, an identity mapping loss, and a patch 
density loss. A least squares loss function was used for the discriminator. The loss term coefficients 
used in this study were the same as in the original study: 1.0, 10, and 0.01, respectively. The 
generator and discriminator modules were optimized using the Adam optimizer with an initial 
learning rate of 0.0002. The inputs to the model were color-normalized WLC (𝑥!"#$) and BLC 
(𝑥%&#$) images that were resized (with a bilinear interpolation method in PyTorch) to 256 by 256 
pixels from original size of 1024 by 1024, without correspondence between the WLC and BLC 
datasets. The outputs of the network were the digitally stained WLC (dsWLC) images, G(𝑥!"#$), 
sized 256 by 256 pixels. Images were resized in this proof-of-concept study to enable direct use of 
the original model parameters (the original model expects a 256 by 256-sized input). In future 
experiments, original image sizes can be maintained to capture fine structural features to achieve 
better staining accuracy. 

 

2.5 Evaluation metrics 

To quantitatively assess the performance of the network for staining accuracy and color 
consistency, we defined three categories of analysis metrics. All assessments were performed by 
comparing the network-generated dsWLC image with the ground truth BLC image obtained from 
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the registration process. Testing and evaluation were performed only on those image pairs for 
which we had BLC images as ground truth.  

2.5.1. Staining accuracy 

Staining accuracy was defined as the percentage of correctly stained pixels of an image. To 
quantitatively measure staining accuracy, a fluorescence mask was developed for pixel-to-pixel 
evaluation. First, to remove black pixels from analysis, such as the cystoscopy viewing window 
surrounding each image, all pixels below a grey intensity of 40 (on a scale of 1 to 255) were 
excluded, resulting in image region masks such as those shown in the grey bounding box of Figure 
5. Next, each image was analyzed in the RGB color space. Note that the fluorescent features of the 
tumor have a distinct red channel intensity, separate from the blue-lit background. Hence, the red 
to blue channel ratio (R-B) ratio was determined for each pixel in the image and used to generate 
a fluorescence mask. All ratios between 0.6 and 0.85 were tested in increments of 0.05, and 0.8 
was empirically determined to best capture a fluorescent region using the ground truth BLC image 
as a reference. Figure 5 shows representative clinically collected BLC and digitally stained images 
along with their corresponding image region and fluorescence masks. Because the circular field of 
view was distorted during the registration process, only the overlapping region between the 
registered BLC and dsWLC images was used in quantitative analysis.  

  

Figure 5. Fluorescence-segmentation-based staining accuracy assessment. Left two columns show the 
registered ground truth BLC, dsWLC images and their corresponding image region mask and fluorescence 
mask. Middle column shows the shared region between registered BLC and dsWLC. Right-most column 
shows overlapping-region-masked dsWLC image with overlays depending on staining accuracy: correctly 
stained (no overlay), incorrectly stained from fluorescent to nonfluorescent (aqua) and incorrectly stained 
from non-fluorescent to fluorescent (yellow). Fluorescence is determined by the R-to-B ratio threshold. 

For each BLC-dsWLC registered pair, we used the mask of the BLC as the ground truth and 
computed the percentages of correctly and incorrectly stained pixels in the mask of the generated 
image. A correctly stained pixel suggests that a fluorescent (red) pixel in the ground truth also 
shows fluorescence in the dsWLC image, and a non-fluorescent (blue) pixel in the ground truth 
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also appears blue in dsWLC. Incorrectly stained pixels were further divided into two cases: (1) a 
fluorescent pixel in the ground truth showing up as non-fluorescent pixel in dsWLC (i.e., false 
negative), or (2) a non-fluorescent pixel in the ground truth appearing fluorescent in dsWLC (i.e., 
false positive). The right column of Figure 5 shows the incorrectly stained pixels overlaid on top 
of the dsWLC image, where pixels without color overlay are correctly stained pixels.  

From these cases, we computed the positive predictive value (PPV) and negative predictive value 
(NPV) for each image, where a true positive means a fluorescent pixel in BLC appeared fluorescent 
in dsWLC and a true negative means a non-fluorescent pixel stayed non-fluorescent in dsWLC. 
Finally, we established thresholds for PPV and NPV values to declare to identify staining success 
for each image and evaluated the performance of digital staining on the image level for the entire 
testing dataset. Only tumor image pairs (i.e., the ground truth BLC image shows fluorescence) 
were used for the PPV calculation, as normal images had no positive regions to match.  

2.5.2. Color consistency  

To verify the realistic appearance of the generated image, the color of the resulting dsWLC image 
was compared with that of the corresponding BLC image. Each pair of BLC and dsWLC  images 
was analyzed in the RGB color space.  Using the fluorescence segmentation mask, we computed 
the average RGB values for the fluorescent and non-fluorescent regions of each image. For BLC 
images, we computed average RGB values from fluorescent and non-fluorescent regions of the 
image using the fluorescent mask; similarly, for dsWLC images, we computed average RGB 
values from the union fluorescent regions and non-fluorescent regions of the BLC and dsWLC 
fluorescent masks, which ensures that the RGB analysis is performed on correctly stained pixels. 

 

3 Results and Discussion 

Figure 6 shows examples of digitally stained WLC images from the testing data. The preliminary 
results demonstrated successful fluorescent labeling on tumor regions of cystoscopy images for 
different morphological tumor appearances. Realistic bladder wall appearance was preserved and 
comparable fluorescent intensities to color-normalized ground truth BLC images were generated.  
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Figure 6. Preliminary results of digital staining in clinically collected cystoscopy data. Four examples of 
morphological varying bladder tumor images are presented. Digital staining was performed on color 
normalized WLC images (second column from the left), which produces digitally generated BLC images 
(middle column) that show similar appearance with the color-normalized ground truth BLC images (4th 
column from the left). Original WLC and BLC images are included in the left-most and right-most column, 
respectively. 

When PPV and NPV thresholds (calculated per image) were set to 0.5, we computed 80.58% 
staining accuracy from the testing dataset with fluorescent masks associated with a red-blue 
channel intensity ratio of 0.8. We also tested other combinations of thresholds as well as various 
intensity ratios for fluorescent mask. The resulting staining accuracies are summarized in Table 1. 
Some inaccuracies in the digital staining can be observed in Figure 6. For example, false negative 
staining in the dsWLC images tends to occur around the outer edge of the FOV (such as row 1 and 
row 3). We reason that this could be due to the varying lighting conditions in the WLC image (i.e., 
brighter in the center, darker around the edge). Saturation in the input WLC images may lead to 
false fluorescence in the resulting dsWLC image (row 2). False fluorescence in the clinical, ground 
truth BLC is also known to be commonly found at the tangential bladder wall,40 and thus can lead 
to “false negative” regions when comparing the fluorescent masks of the dsWLC to the ground 
truth (row 4). 

As mentioned before, the choice of the fluorescent mask, which depends on the red-to-blue channel 
intensity ratio, also has an effect on the resulting staining accuracy analysis. Specifically, when the 
ratio was set too low, non-fluorescent regions were counted as fluorescent pixels in the mask, and 
thus lead to lower staining accuracy calculations. On the other hand, when the channel intensity 
ratio is set too high, fluorescent regions may be incompletely captured by the mask. Though higher 
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values of the red-to-blue channel intensity ratio resulted in higher accuracy from this dataset, use 
of higher values may not be an accurate representation of the staining performance.  

Table 1. Staining accuracy percentages calculated with different red to blue channel intensity ratios for 
the fluorescent masks.  

 

Because fluorescence contrast is critical to sensitive diagnosis of bladder tumors, we investigated 
the average RGB colors in fluorescence regions and normal regions of the color-normalized 
ground truth and generated images. The mean RGB values calculated from all images in the testing 
set are reported in Figure 7, along with the corresponding color blocks for easy visualization. As 
can be seen in both the color blocks as well as the RGB values, the non-fluorescent regions for 
ground truth and dsWLC are very similar. The fluorescent regions of the dsWLC image are slightly 
brighter than the ground truth, and we reasoned that this is because for dsWLC images, we 
computed the RGB values from the union fluorescent regions of the BLC and dsWLC fluorescent 
masks, and one of the main inaccuracies that occurred in the dsWLC fluorescence was at the edge 
of the FOV. Therefore, fewer darker fluorescent regions were captured in the dsWLC, resulting in 
an overall brighter average RGB measurement.   

 

Figure 7. Average RGB values computed from fluorescent and non-fluorescent regions of the testing color-
normalized BLC and dsWLC image pairs. 
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4 Discussion 

In our current pipeline, color-normalized of the WLC is the most time-consuming step that 
prevents direct, real-time implementation. In the future, however, it is possible that such color 
modification can be built directly into the model, which will streamline the process and enable the 
presented work to be deployed as an accessible, cost-effective alternative to in-office BLC 
imaging.  

While the current work aims to recreate blue light images, it is well-known that blue light imaging 
suffers from a high level of false positives caused by inflammation and irritations in the bladder.40 
Here we have recreated the results of current BLC images, which means our digitally stained 
outputs may similarly demonstrate a high false positive rate if tested on clinical samples. We 
hypothesize, however, that a more comprehensive deep learning digital staining model may 
outperform standard BLC imaging and effectively avoid rendering benign tissues as fluorescent, 
since cancerous lesions have distinct textures (carpet-like or papillary appearance) and colors from 
the normal and benign bladder wall.4,41 Such features are often less distinguishable under WLC 
examination by human eyes, but may be sensitively and specifically detected by the model, if a 
large number of samples is used for training and are combined with histological confirmation 
results. Such a model, however, would likely require access to histological confirmation of tissue 
type. The current study, which aimed only to recreate BLC appearance, did not obtain histological 
confirmation, Instead, our assessment of the model output relied on BLC images as the assumed 
ground truth, which is a low-specificity imaging modality. In the future, it should be possible to 
improve the current model to potentially achieve digital staining with better specificity than the 
BLC, by incorporating additional inputs to the network and introducing additional loss terms, such 
as a texture map that captures the unique tissue textures that are present on tumor regions. For 
example, false positive staining of tangential bladder walls is a well-known aberration in 
conventional BLC40 that could be corrected for in the model, yielding an improvement in 
specificity over clinical BLC.  

 

5 Conclusion 

In summary, we successfully demonstrated digital staining of clinically acquired WLC datasets 
for the first time to produce dsWLC images as a quick, low-cost alternative to BLC imaging and 
the use of exogenous contrasting agents. The study produced successful outcomes with a 80.58% 
staining accuracy and minimal changes in color channel intensities to the original BLC images, 
suggesting the promise and feasibility of the proposed method to be implemented in a larger 
clinical study. The result of our study paves the way for a cost-effective alternative of BLC for in-
office examinations, increasing bladder cancer detection sensitivity and removing the cost, space 
and time requirement for the instillation of the physical dye needed to perform BLC. 

Introducing the digital staining workflow to clinical practices would increase accessibility of BLC 
imaging, leading to more sensitive tumor detection, thereby reducing the number of recurrences 
caused by failure to detect tumors under WLC imaging and lowering patient’s risk of experiencing 
muscle invasion and mortality. We expect that future efforts to recruit more patients and obtain 
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histological information can lead to increased accuracy of labeling CIS tumors, contributing to 
solving one of the most vexing problems in bladder cancer detection.  
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