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One Sentence Summary: We demonstrated disrupted RSV activity in the United States 11 

following the 2009 influenza pandemic by analyzing weekly positive tests for RSV and the 12 

pandemic H1N1 virus. During the 2009/10 season, RSV experienced reduced activity, which 13 

was negatively associated with the activity of pandemic influenza. In contrast, RSV showed 14 

increased activity in the 2010/11 season due to the buildup of susceptible populations from the 15 

previous season. By focusing on the dynamics of RSV following the pandemic, we found 16 

evidence supporting interactions between the viruses at the population level. Our findings 17 

suggest that infections with pandemic influenza could: 1) reduce host susceptibility to RSV 18 

coinfection, 2) shorten the RSV infectious period in coinfected individuals, or 3) decrease RSV 19 

infectivity in coinfection. 20 

 21 

Abstract: Respiratory syncytial virus (RSV) primarily affects infants, young children, and 22 

older adults, with seasonal outbreaks in the United States (US) peaking around December or 23 

January. Despite the limited implementation of non-pharmaceutical interventions, disrupted 24 

RSV activity was observed in different countries following the 2009 influenza pandemic, 25 

suggesting possible viral interference from influenza. Although interactions between the 26 
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influenza A/H1N1 pandemic virus and RSV have been demonstrated at an individual level, it 27 

remains unclear whether the disruption of RSV activity at the population level can be attributed 28 

to viral interference. In this work, we first evaluated changes in the timing and intensity of RSV 29 

activity across 10 regions of the US in the years following the 2009 influenza pandemic using 30 

dynamic time warping. We observed a reduction in RSV activity following the pandemic, 31 

which was associated with intensity of influenza activity in the region. We then developed an 32 

age-stratified, two-pathogen model to examine various hypotheses regarding viral interference 33 

mechanisms. Based on our model estimates, we identified three mechanisms through which 34 

influenza infections could interfere with RSV: 1) reducing susceptibility to RSV coinfection; 35 

2) shortening the RSV infectious period in coinfected individuals; and 3) reducing RSV 36 

infectivity in coinfection. Our study offers statistical support for the occurrence of atypical 37 

RSV seasons following the 2009 influenza pandemic. Our work also offers new insights into 38 

the mechanisms of viral interference that contribute to disruptions in RSV epidemics and 39 

provides a model-fitting framework that enables the analysis of new surveillance data for 40 

studying viral interference at the population level. 41 

 42 

Main Text: 43 

INTRODUCTION 44 

Respiratory syncytial virus (RSV) infections are a major public health concern for infants and 45 

young children, causing severe lower respiratory tract infections (1, 2). In 2019, an estimated 46 

13,300 deaths were associated with RSV-induced acute lower respiratory infections in 47 

hospitals, and there were 45,700 RSV-attributed deaths in infants aged 0-6 months worldwide 48 

(3). In the United States (US) and other temperate regions, RSV activity is strongly seasonal, 49 

typically beginning in the fall and peaking in winter (4). During the COVID-19 pandemic in 50 

2020-2021, RSV disappeared for more than a year in the Northern Hemisphere then reemerged 51 
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out of the normal season (5, 6). This was likely due to the implementation of non-52 

pharmaceutical interventions (NPIs) to reduce the spread of SARS-CoV-2. However, 53 

disruptions to RSV activity were also observed following the 2009 influenza pandemic in 54 

different countries despite the limited implementation of NPIs (7–12). Viral interference from 55 

the novel 2009 A/H1N1 influenza pandemic (pdmH1N1) virus was suggested as a cause of the 56 

delayed RSV activity.  57 

 58 

Viral interference refers to a phenomenon where one virus prevents or reduces infection by 59 

another virus (13). Several possible mechanisms of interference have been proposed at the 60 

within-host level (14–16). Direct competition between viruses for infection of susceptible cells 61 

can result in viral interference, such that the consumption of target cells by one virus limits 62 

infection by the other. Viral interference can also occur through the host immune response. For 63 

example, antibody-mediated interference has been suggested as a mechanism for mitigating 64 

infection between genetically close viruses, such as RSV and human metapneumovirus (16). 65 

Host interferon responses (IFNs) have also been proposed as a mechanism leading to viral 66 

interference. Chan et al. demonstrated that ferrets infected with pdmH1N1 influenza A virus 67 

(IAV) could be protected from subsequent RSV infection depending upon the interval between 68 

the two infections. They showed that the protection was transient and mediated by the IFNs 69 

(15). More recently, viral interference between IAV and the SARS-CoV-2 was also studied 70 

using human airway epithelial cultures. Cheemarla et al. showed that IAV infection could lead 71 

to a robust IFN response that suppressed subsequent SARS-CoV-2 infection (17). In contrast, 72 

infection with SARS-CoV-2, which elicited a relatively weak immune response, was unable to 73 

suppress IAV infection, suggesting an asymmetric IFN-dependent viral interference 74 

mechanism. 75 

 76 
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While it is evident that viral interference occurs at the host level, demonstrating the presence 77 

of viral interference at the population level and quantifying its impact on disease transmission 78 

is more challenging. For example, co-infections with two or more viruses in an individual can 79 

potentially change the typical viral dynamics (e.g., time to infectiousness, symptoms and 80 

severity) in the host, leading to changes in disease transmission patterns at the population level, 81 

as reviewed in (18). To date, most studies that analyzed population-level viral interference have 82 

primarily focused upon statistical associations between reported positive cases of different 83 

viruses, using regression and correlation analyses (16, 19). The method, lacking explicit 84 

mechanistic formulation, was unable to distinguish true viral interaction from other 85 

confounding factors, such as climate variables. Other techniques, including seasonal auto-86 

regressive integrated moving average models (20) and Granger causality (21, 22), have also 87 

been used to analyze time series of positive tests of viruses, aiming to identify potential 88 

interactions between viruses. However, neither the biological mechanisms underpinning 89 

potential viral interactions, nor the strength of interactions could be determined or quantified 90 

using these models.  91 

 92 

Mathematical models that explicitly depict the underlying mechanisms of viral transmission 93 

have advantages in being able to integrate heterogeneous mechanisms and test different 94 

hypotheses (23–25). Some mathematical models have been proposed to study the effect of viral 95 

interference between RSV and influenza viruses at the population level and to quantify the 96 

interactions by fitting the models to incidence data (26–28). However, these models did not 97 

capture the natural infection history of RSV, which are characterized by intermediate immunity 98 

lying between perfectly and imperfectly immunizing infections (29). In this work, we started 99 

by analyzing laboratory-confirmed cases of RSV and the pdmH1N1 virus in different regions 100 

in the US. We applied a dynamic time warping and hierarchical clustering method to identify 101 
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atypical RSV seasons following the 2009 influenza pandemic. We then built a mechanistic, 102 

age-stratified mathematical model that incorporates an RSV transmission model into an 103 

influenza transmission model, coupled with hypothesized viral interference mechanisms. 104 

Using Latin Hypercube Sampling to explore the parameter space, we simulated various 105 

scenarios for influenza dynamics and quantified the potential interactions between RSV and 106 

pdmH1N1 influenza virus at the population level.  107 

 108 

RESULTS 109 

RSV activity following the 2009 influenza pandemic 110 

RSV epidemics exhibit consistent seasonal timing and duration within each region of the US, 111 

with variation in timing between regions (Fig. 1A and Fig. S1). Annual RSV epidemics start 112 

in the fall and peak in the winter. Some regions (e.g., Regions 8 and 10 in the Upper Midwest 113 

and Northwest) exhibit biennial patterns, with RSV tending to start and peak earlier with a 114 

larger epidemic in even-numbered seasons (e.g., 2010/11 and 2012/13) compared to the odd-115 

numbered years (e.g., 2009/10 and 2011/12). The influenza pandemic (the shaded area, Fig. 116 

1A and Fig. S1) began in April 2009, after the 2008/09 RSV season (dashed black lines). This 117 

was followed by a second wave in most regions that started at the end of 2009, before the peak 118 

of the 2009/10 RSV season. In our analysis, we focus on RSV activity during the 2009/10 119 

season, when the pdmH1N1 virus was the sole influenza virus circulating in the population, 120 

and the 2010/11 season following the pandemic. 121 

 122 

Based on the laboratory reports of RSV-positive specimens (Fig. 1A), we quantified RSV 123 

activity following the pandemic season and in other normal epidemic seasons. Regions 1 and 124 

4 (Northeast and Southeast) exhibited consistent annual patterns of RSV activity, with a steady 125 

onset and peak timing in different seasons, including the 2009/10 pandemic year (Fig. 1B). 126 
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However, we observed delayed RSV activity in 2010/11 compared with other seasons in the 127 

two regions, as indicated by a shift of intense RSV activity to later epidemic weeks. Again, 128 

Regions 8 and 10 showed a biennial pattern of RSV epidemics with an earlier onset and peak 129 

timing in even-numbered years (Fig. 1B). In these regions, delayed RSV activity was also 130 

evident in 2010/11 compared to other even-numbered years, and no notable shifts in the timing 131 

of RSV activity were observed in the 2009/10 season. 132 

 133 

Clustering RSV activity using dynamic time warping 134 

Epidemic curves often exhibit variations in reporting intervals and temporal dynamics, making 135 

it difficult to identify dissimilarities in disease spread patterns. To better identify and 136 

characterize potential time shifts in RSV activity following the pandemic, we used dynamic 137 

time warping (DTW) to compare RSV activity in the 2009/10 and the 2010/11 seasons with 138 

other epidemic seasons. The fundamental concept of DTW is to find the optimal alignment 139 

between multiple time series, allowing the adjustment of the timing of one of the time series 140 

while minimizing the distance between corresponding data points (30). An optimal alignment 141 

shows the indices of the elements in the query time-series that correspond to those in the 142 

reference time series (e.g., RSV time-series in the 2009/10 and 2010/11 seasons). The 143 

computed optimal alignment paths for RSV activity during the 2009/10 and 2010/11 seasons 144 

with respect to other seasons are provided in Fig. S2. We found that the alignment paths cross 145 

below the diagonal line for the 2010/11 season, indicating delayed RSV activity as depicted in 146 

Fig. 1B. 147 

 148 

The hierarchical clustering results of seasonal RSV activity are given in Fig. 2. In Region 1 149 

(Fig. 2A) and Region 4 (Fig. 2B), the seasons following the pandemic (i.e., 2009/10 and 150 
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2010/11) were closer in the dendrogram, grouped into the same cluster, compared with other 151 

seasons before or after the pandemic (as shown in the dashed box). This indicated more similar 152 

trends of RSV activity in these years. We also observed that even within the same cluster, the 153 

2009/10 season (highlighted in blue) was distant from the 2010/11 season (highlighted in red), 154 

suggesting a different pattern between the two seasons following the pandemic. Notably, the 155 

hierarchical clustering method successfully captured the biennial pattern in Region 8 (Fig. 2C), 156 

Region 10 (Fig. 2D), and other regions in the US (Fig. S3), grouping even seasons and odd 157 

seasons into different clusters. Specifically, the 2009/10 season was grouped with even-year 158 

seasons in Region 8, indicating unusual RSV activity. While the 2010/11 season in Region 10 159 

shares a cluster with other even-year seasons, its extended branch length in the dendrogram 160 

indicated a distinction from the other even-year seasons.  161 

 162 

Linking RSV activity and the 2009 influenza pandemic 163 

We further quantified RSV activity following the pandemic seasons across 10 regions of the 164 

US. Both the intensity and the center of gravity for each RSV epidemic season in each region 165 

were calculated. The onset time of RSV activity for each season was also calculated. There was 166 

a strong positive correlation (i.e., 𝜌 = 0.92) between the center of gravity and onset time of 167 

RSV activity, indicating these two methods of measuring epidemic timing agree (see Fig. S4). 168 

We explored the trends of RSV activity in the 2009/10 and 2010/11 years across the US 169 

regions, assessing changes in both intensity and center of gravity in comparison to the median 170 

values of all other seasons in the same region (Fig. 3). Most regions in the US experienced 171 

decreased RSV intensity in the 2009/10 season, with the timing of RSV activity consistent with 172 

that of other seasons. By contrast, most regions in the US showed increased RSV intensity, 173 

with delayed peak timing in the 2010/11 season. We then computed the intensity of the 174 

pdmH1N1 virus, starting from April 2009 to May 2010. We found a negative association 175 
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between the intensity of RSV and the intensity of the pdmH1N1 virus (Fig. 4A)––enhanced 176 

influenza intensity was associated with decreased RSV intensity in the 2009/10 season (i.e., 177 

𝜌 =–0.38). The negative correlations between RSV activity and pdmH1N1 activity suggested 178 

the presence of viral interference from influenza on RSV transmission. No correlations were 179 

found between the intensity of the pdmH1N1 virus and the intensity of RSV (Fig. 4B) or the 180 

timing of RSV peak in 2010/11 (Fig. S5).  181 

 182 

Transmission model analyses 183 

To explore and examine various hypotheses on the mechanistic relationship between RSV 184 

activity and viral interference from influenza that might explain the statistical associations 185 

observed, we proposed a mathematical model that explicitly incorporated the transmission 186 

dynamics of RSV into that of the pdmH1N1 virus via three hypothetical viral interaction 187 

mechanisms (see Materials and Methods for detailed model description). We hypothesized 188 

that in hosts infected with pdmH1N1 virus, the IFN response leads to: 1) a reduction of the 189 

host's susceptibility to subsequent RSV infections (Fig. S6A), which was captured by a 190 

parameter 𝜃; 2) a reduction of the infectious period of RSV co-infection (Fig. S6B), captured 191 

by a parameter 𝜂; and/or 3) a reduction of the force of infection of RSV (Fig. S6C), captured 192 

by a parameter 𝜉. Detailed model equations are provided in the Supplementary Materials.  193 

 194 

The three proposed mechanisms were studied separately as Models I-III. For each mechanism, 195 

we first used Latin Hypercube Sampling (LHS) to generate a wide range of parameter values 196 

that allowed us to simulate different transmission dynamics of pandemic influenza in the 197 

2009/10 season and explore the effects of viral interference (including the possibility of no 198 

interference when 𝜃 = 1, 𝜂 = 1 or 𝜉 = 1). We then determined the goodness-of-fit of the models 199 
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based on the negative log-likelihood of the models fitted to the number of RSV-positive tests, 200 

and filtered the models to the top 2% best-fitting models to identify the corresponding 201 

parameter ranges for the viral interference mechanisms.  202 

 203 

The best 2000 (i.e., top 2%) fitting models successfully captured the difference in relative 204 

intensity of RSV activity during the 2009/10 and the 2010/11 seasons; however, the best-fit 205 

models failed to capture the shift in timing of RSV activity during 2010/11. Based on the 206 

calculated likelihood, the model without viral interference (green curves in Fig. 5) was not 207 

included in the top 2% of models. The reduction of the host's susceptibility to RSV infection 208 

(Model I, Fig. 5A), the RSV infectious period (Model II, Fig. 5B), or the force of infection of 209 

RSV (Model III, Fig. 5C) led to decreased RSV activity in the 2009/10 season, followed by 210 

increased RSV cases in the 2010/11 season. The relative intensity of RSV activity between the 211 

two seasons could not be reproduced in the absence of viral interference mechanisms. Similar 212 

results were observed for the top 3% (Fig. S7) and top 5% (Fig. S8) of the models, such that 213 

the models also captured the relative intensity of RSV activity in the 2009/10 and 2010/11 214 

seasons following the pandemic. Further, our models demonstrated that increased RSV activity 215 

in the 2010/11 season could be explained by an increase in the proportion of the population 216 

susceptible to RSV infection, as shown in Fig. S9. 217 

 218 

The identified parameter spaces for 𝜃, 𝜂 and 𝜉 from the top 2% best-fitting models for Region 219 

1 provide insight into the effect of viral interference from influenza influencing RSV infection 220 

and transmission (Fig. 6). The median estimate for the reduction of host susceptibility to RSV 221 

infection when infected with influenza virus (𝜃) was 0.44 (95% CI: 0.23-0.60, Fig. 6A). In 222 

epidemiological terms, the median estimate for 𝜃 indicates that the presence of the pdmH1N1 223 
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infection reduces the likelihood of hosts being subsequently infected with RSV by nearly 60%. 224 

The median estimate for 𝜂 implies the presence of the pdmH1N1 co-infection halves the RSV 225 

infectious period, i.e. increases the rate of recovery by a factor 1.98 (95% CI: 1.62-2.53, Fig. 226 

6B). Similarly, the median estimate for 𝜉 was 0.46 (95% CI: 0.20-0.80, Fig. 6C), suggesting 227 

the pdmH1N1 infection reduces RSV infectivity by 53%. The parameter distributions from the 228 

top 3% and top 5% of the fitted models were similar (figs. S10-11). Given the best-fit parameter 229 

distributions for the viral interference parameter excluding 1, our results suggest that viral 230 

interference plays a role in mediating the dynamics of RSV infection following influenza 231 

infection for all of the proposed mechanisms.  232 

 233 

Our models were also able to capture the trends of RSV activity in Region 10 (showing a 234 

biennial RSV pattern) and Region 4 (where seasonal RSV activity is the earliest in the US). 235 

From the identified parameter space of the viral interaction terms, similar results were found 236 

showing strong viral interference between RSV and pdmH1N1 virus in Region 10 (Fig. 6D-237 

F). The median estimate of the reduction in host susceptibility to RSV infection (𝜃) was 0.61 238 

(95% CI: 0.42-0.74, Fig. 6D), the relative rate of recovery from co-infection (𝜂) was 1.5 (95% 239 

CI: 1.28-2.22, Fig. 6E), and the relative RSV infectivity (𝜉) was 0.62 (95% CI: 0.42-0.75, Fig. 240 

6F). By contrast, we found weak interference effects between the viruses in Region 4, such that 241 

all estimated parameters were closed to 1 (Figs. 6G-I).  242 

 243 

With the identified viral interference parameters, we further predicted the co-infection rate of 244 

RSV and pdmH1N1 influenza virus in different age groups following the pandemic in the 245 

presence or absence of viral interference. The rate was computed as the fraction of infections 246 

in each age group that were co-infections. We found that the presence of viral interference 247 
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reduced the co-infection rate in all age groups (Fig. S12). In particular, our model showed that 248 

the effect was even more profound at the young age groups (i.e., < 1 year old), reducing the 249 

co-infection rate from 2% to 0.8%. Such patterns could be explained by the age-specific 250 

likelihood of a susceptible individual coming into contact with an infectious individual.  251 

 252 

DISCUSSION 253 

By focusing on the dynamics of RSV following the 2009 H1N1 influenza pandemic, we found 254 

evidence supporting the presence of interactions between the viruses at the population level 255 

and examined the underlying mechanisms. This was accomplished using statistical analysis of  256 

laboratory-confirmed positive tests of both viruses in 10 regions of the US and a mathematical 257 

modeling approach. Using a dynamic time warping and hierarchical clustering method, we 258 

identified atypical RSV activity following the 2009 influenza pandemic. The results support 259 

and contribute to the current knowledge from several observational studies that RSV activity 260 

was disrupted following the pandemic (7–12). We further showed there was a negative 261 

correlation between the intensity of RSV and pdmH1N1 activity during the pandemic. Using a 262 

two-pathogen, age-stratified transmission model, we assessed potential interactions between 263 

the viruses and identified three mechanisms of viral interference that can replicate the relative 264 

difference of RSV activity in the two epidemic seasons following the pandemic. The identified 265 

parameter space suggested that infection with the pdmH1N1 virus could reduce either the 266 

host’s susceptibility to a subsequent RSV infection, or the infectious period of RSV infection, 267 

or RSV infectivity.   268 

 269 

Although the presence of viral interference between different pathogens is evident at the host 270 

level (15, 31, 32), demonstrating the impact of this phenomenon at the population poses a 271 
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significant challenge. Mechanistic models provide a valuable approach for dissecting the casual 272 

relationship among different components, integrating heterogeneous mechanisms and testing 273 

various hypotheses. One of the most important applications of mechanistic models is to 274 

estimate key parameters, as reviewed in (33). Parameter identifiability for data fitting is an 275 

important but unresolved challenge in modeling work due to model complexity or limited time-276 

series on numerous quantities of interest (34–36). Waterlow et al. have previously highlighted 277 

the importance of parameter identifiability (26). They conducted a simulation and back-278 

estimation study to evaluate the plausible parameter space of viral interaction parameters in an 279 

RSV-influenza model. By fitting the model to a single season of simulated data, however, they 280 

demonstrated that the inference results for the interaction parameters were often imprecise, 281 

indicated by large credible intervals. By contrast, we specifically focused on the RSV-282 

pdmH1N1 pair in our study. During the 2009/10 epidemic season, the pdmH1N1 virus emerged 283 

as the only circulating influenza virus, dominating the population. The outbreak of pdmH1N1 284 

virus provided an opportunity to investigate viral interference between pdmH1N1 and RSV. 285 

With the availability of regional-level data, we were able to dissect variations in the temporal 286 

dynamics (i.e., annual/biennial patterns) of RSV activity in different regions in the US and 287 

estimate the interaction parameters between the viruses. A key finding of the models suggests 288 

that the strength of interaction between the viruses could be estimated from surveillance data 289 

of both viruses in such situations, revealing that the activity of pdmH1N1 has an appreciable 290 

impact on RSV activity.  291 

 292 

At the individual level, the host interferon response has been shown to be the mechanism 293 

underpinning viral interference between RSV and the pdmH1N1 virus (15). Depending upon 294 

the interval between pdmH1N1 and RSV infections, the within-host viral production of RSV 295 

could be completely suppressed, reduced, delayed, or shortened. Based on the within-host RSV 296 
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viral dynamics, we proposed three mechanisms through which innate immunity, stimulated by 297 

the pdmH1N1 virus, could modulate the following RSV coinfection. The model fits showed 298 

that each of the three mechanisms could successfully recapitulate a decrease in RSV activity, 299 

followed by an enhanced RSV epidemic, in the two seasons following the pandemic. Our model 300 

demonstrated that the increased intensity of the 2010/11 RSV season could be attributed to an 301 

increased proportion of susceptible individuals in the population. Baker et al. similarly showed 302 

that population susceptibility to influenza and RSV infections increased during the COVID-19 303 

pandemic, leading to larger outbreaks following the relaxation of NPIs (37). More recently, 304 

Lowensteyn et al. showed that the unprecedented RSV epidemic following the COVID-19 305 

pandemic in the Netherlands was associated with waning immunity to RSV due to low 306 

circulation of RSV during the NPIs period (38). 307 

 308 

We note that none of the mechanisms considered in the model, including the null model (i.e., 309 

no viral interference), could capture the shift in timing of the 2010/11 RSV epidemic. One 310 

possible explanation would be that we only assumed a transient viral interference interval 311 

lasting up to a week, occurring in co-infected individuals and disappearing when the infection 312 

resolves. The IFN response was not explicitly considered in our model, and could persist 313 

slightly longer than the influenza infectious period. Although previous studies have suggested 314 

that cross-protection following influenza infection against RSV could last more than two weeks 315 

(39), this was not demonstrated in a ferret model, which shares several similarities with the 316 

respiratory tracts of humans (40). The duration of cross-protection between RSV and the 317 

pdmH1N1 virus only lasted a week in ferrets, as shown in (15).  318 

 319 
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Delayed RSV activity in the 2010/11 season could also be explained by the circulation of other 320 

respiratory viruses (e.g., rhinovirus and influenza B virus), which our model did not explicitly 321 

include. Here, our focus was not on exploring virus interactions among multiple influenza 322 

strains and RSV in general. Instead, our specific emphasis was on studying viral interference 323 

from the pdmH1N1 virus on RSV infection, where the interactions are evident at the host level. 324 

This focus was guided by experimental studies indicating that the genetic strains of influenza 325 

viruses elicit varying levels of host immunity (41). We also assumed that the RSV-influenza 326 

interaction was unidirectional during the 2009/10 season, meaning that only the pdmH1N1 327 

virus would exhibit interference on RSV. This assumption is justified considering that the 328 

influenza pandemic preceded the normal 2009/10 RSV season, and our analysis focused on the 329 

disruption in RSV activity following the 2009 influenza pandemic. Note that neither could, nor 330 

did we intend to show the absence of viral interference from RSV against influenza viruses. To 331 

study viral interference from RSV in shaping the transmission dynamics of influenza may 332 

require time-series data from multiple epidemic seasons, as shown in a modeling study (27). 333 

 334 

Besides potential viral interference, other factors can also change disease transmission patterns, 335 

leading to the variations between model predictions and the surveillance data. Behavioral 336 

changes can have significant impacts on viral circulation and transmission patterns, as observed 337 

during the COVID-19 pandemic (42). After the implementation of NPIs, there was a sharp 338 

decline in the number of positive RSV tests, and RSV activity remained disrupted in the 339 

following seasons (5, 43). It is not clear how much of a role, if any, viral interference from 340 

SARS-CoV-2 played in disrupting RSV activity. Understanding the interplay of the effects of 341 

NPIs and viral interference is important to evaluate the role of behavioral and immunological 342 

factors more accurately on disease transmission. Additionally, environmental factors such as 343 

temperature and humidity (29) and vaccination coverage (44) can also play roles in shaping the 344 
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trajectory of disease spread. Incorporation of these factors into the dynamic model can be 345 

improved in future work upon data availability. 346 

 347 

Dynamic time warping (DTW) is a widely used statistical algorithm (30, 45), but its application 348 

in identifying various disease transmission patterns has been limited. Recently, multiple studies 349 

have used DTW to analyze the trajectories of COVID-19 in different countries, aiming to 350 

identify, cluster and predict future trends in disease transmission (46–49). Here, we utilized 351 

DTW to examine and visualize similarities of RSV time-series, yielding clusters of RSV 352 

activity before and after the 2009 influenza pandemic in the ten different regions of the US. 353 

The method successfully identified the biennial pattern of RSV epidemics in certain regions of 354 

the US and atypical RSV seasons following the pandemic. The graphical representation of 355 

clusters based on DTW provides an accessible and interpretable method for comparing both 356 

temporal and spatial time-series of incidence data, enhancing our understanding of disease 357 

transmission patterns longitudinally or geographically. The DTW method also has a promising 358 

potential for detecting and identifying atypical epidemic seasons.  359 

 360 

We identified three plausible viral interference mechanisms that could shape RSV epidemics 361 

following the influenza pandemic. We do acknowledge that these mechanisms are not mutually 362 

exclusive. This raises the question of what kind of data would be needed to further distinguish 363 

among the models and examine the relative importance of each mechanism for RSV 364 

transmission. One possible direction would be to emphasize the incidence of coinfections over 365 

a period of time. By fitting the prevalence of coinfections to mathematical models, we could 366 

estimate essential kinetic parameters separately, such as the force of infection or the recovery 367 

rate from the coinfected components. The comparison between these estimated parameter 368 
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values and the baseline values (i.e., the rates from individuals infected with one virus) helps 369 

discern different mechanisms and evaluate the relative contribution of each process. 370 

 371 

Our study provides statistical and mathematical support for the presence of viral interference 372 

between the pdmH1N1 influenza virus and RSV at the population level. Multiple mechanisms 373 

mediated by the host immune response are capable of explaining RSV transmission dynamics 374 

following the 2009 influenza pandemic. Given the experimental support for within-host 375 

interference between RSV and influenza through IFN responses, all of these mechanisms could 376 

contribute to shaping RSV epidemics. The results have implications for implementing and 377 

evaluating disease control interventions. For example, mitigation measures that effectively 378 

decrease disease transmission could decrease the epidemic size in the current season but 379 

potentially lead to a larger outbreak in the following season, even if the measures are applied 380 

for only a week (i.e., transient protection). Hence, it is imperative to deliberate upon the optimal 381 

degree of disease suppression and the duration for which interventions should be applied prior 382 

to their implementation, as discussed in (50).   383 

 384 

There are some limitations to our study. First, we did not have age information on the positive 385 

tests for RSV and influenza over time. Therefore, we assumed a well-mixed population and did 386 

not account for varying levels of immunity across different age groups beyond the age-specific 387 

contract matrices. It is possible that influenza virus stimulates a weaker innate immune 388 

response in young children compared to other age groups (51). In our model, the estimated 389 

interference parameters are interpreted as the average effects of viral interaction across the 390 

entire population. Although our model cannot be used to assess the strength of viral interference 391 

in each age group, our results are still sufficient to demonstrate the presence of viral 392 
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interference between pdmH1N1 and RSV within the population in general. Another limitation 393 

of our analyses is that our model did not take into account other circulating pathogens (e.g., 394 

rhinovirus or human parainfluenza virus) due to the added complexity and additional 395 

parameters required. For example, interference between rhinovirus and influenza viruses was 396 

recognized by epidemiological observations (31), and the delayed 2009 influenza pandemic in 397 

Europe was attributed to the prevalence of rhinovirus (7). The analysis of viral interference 398 

between the pandemic influenza virus and other viruses will be left for future work. 399 

Additionally, our model estimates did not show strong viral interference effects between the 400 

viruses in Region 4. The difference in the estimates of viral interference for Region 4 is likely 401 

attributable to the different pdmH1N1 activity in this region. In Regions 1 and 10, there was a 402 

strong second wave of pdmH1N1 before the 2009/10 RSV season, whereas the second 403 

pdmH1N1 wave was not observed in Region 4. It is not clear why the pandemic influenza 404 

exhibited different activity in these regions. 405 

 406 

Our findings, which indicate an association between the incidence of RSV infections and 407 

pdmH1N1 infections, also have implications for enhanced surveillance of disease transmission 408 

of other viruses. As other respiratory viruses (e.g., seasonal influenza viruses and SARS-CoV-409 

2) are expected to co-circulate in the upcoming epidemic seasons, our study provides a 410 

framework for studying viral interactions and understanding transmission dynamics. 411 

Additional information on the frequency of RSV and other viruses, along with coinfections, 412 

would enable us to further validate our results. The mechanistic model proposed in this work 413 

is flexible to incorporate the effects of vaccination in preventing disease, such as introducing a 414 

model compartment that is resistant to infection and becomes susceptible over time. The 415 

extended model can be used for the evaluation of various vaccination scenarios, assessing the 416 

impact of vaccination coverage on long-term disease patterns while considering the presence 417 
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of viral interference. Through systematic analysis of these scenarios, our model can provide 418 

valuable insights into the dynamic interplay between vaccination strategies and the patterns of 419 

disease transmission, contributing to informed decision-making in public health interventions. 420 

 421 

MATERIALS AND METHODS 422 

Laboratory reporting of RSV and influenza 423 

Weekly data on laboratory reporting of RSV tests in ten Health and Human Services (HHS) 424 

regions in the US from June 2007 to July 2019 were obtained from The National Respiratory 425 

and Enteric Virus Surveillance System (https://data.cdc.gov/Laboratory-426 

Surveillance/Respiratory-Syncytial-Virus-Laboratory-Data-NREVSS/52kb-ccu2/about_data). 427 

The regional map can be found on the https://www.hhs.gov/about/agencies/iea/regional-428 

offices/index.html website. Positive RSV tests were detected using three diagnostic methods: 429 

1) antigen detection; 2) reverse transcription polymerase chain reaction (RT-PCR); and 3) viral 430 

culture. Correspondingly, the data on laboratory reporting of influenza tests in the US from the 431 

same period were obtained from the Center for Disease Control and Prevention (CDC) website 432 

https://gis.cdc.gov/grasp/fluview/flu_by_age_virus.html. 433 

 434 

The raw laboratory data were rescaled based on the number of positive tests to account for 435 

variations in testing practices over time (29). We first calculated a one-year moving average of 436 

the weekly number of RSV or influenza tests (both positive and negative tests) in each region 437 

centered on each week. We then calculated a weekly scaling factor for each region equal to the 438 

average number of RSV or influenza tests during the entire period of reporting (i.e., 12 439 

epidemic seasons from 2007-2019) divided by the one-year moving average. The rescaled 440 

number of RSV or influenza-positive tests for each region was then calculated as the reported 441 
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number of positive tests multiplied by the weekly scaling factor. The rescaled data for RSV 442 

and influenza are shown in Fig. 1 and S1.  443 

 444 

Demographic Data 445 

Information about population size in each age group was obtained from the US Census 446 

Bureau’s American Community Survey. Birth rates varied between regions and over time 447 

based on the crude annual birth rate for each HSS region from 1990 to 2019. These were 448 

obtained from https://wonder.cdc.gov/controller/datarequest/D66. To capture aging among 449 

infants and children more accurately in our mathematical model, we divided the <1 year and 450 

1-4 years age class into 12-month age groups. The remaining population was divided into 5 451 

classes: 5-9 years, 10-19 years, 20-39 years, 39-60 years and >60 years old. Individuals were 452 

assumed to age exponentially into the next age class, with the rate of aging equal to the 453 

multiplicative inverse of the width of the age class.   454 

 455 

The onset timing, center of gravity, and intensity of RSV activity 456 

To determine the onset timing (measured by week) of each seasonal RSV epidemic for each 457 

region, we initially fitted a p-spline curve to the RSV incidence data. We then calculated the 458 

first and second derivatives of the fitted curve. The onset timing corresponds to the time point 459 

at which the second derivative of the fitted p-spline curve reaches its maximum value during 460 

the increasing segment of the first derivative (52). The center of gravity of RSV activity for 461 

each season in each region (𝐺!,# 	) was measured as the mean epidemic week, with each week 462 

weighted by the number of positive tests, such that 𝐺!,# = ∑ 𝑤	 ×	𝑌!,#,$	
$∈[1:52] /463 

	∑ 𝑌!,#,$	
$∈[1:52] 	, where 𝑤 is an index for the week of each epidemic year, and 𝑌!,#,$ is the 464 

number of rescaled positive RSV tests in region 𝑟 during epidemic season 𝑠 and week 𝑤. To 465 
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determine the RSV intensity for each season and region, we also used the fitted p-spline curve. 466 

The epidemic peak timing was determined at the point when RSV activity reaches its 467 

maximum. The intensity of RSV was calculated as the fraction of positive tests before the 468 

epidemic peak timing, corresponding to the integral of the positive first derivative of the log-469 

transformed fitted p-spline curve.  470 

 471 

Dynamic time warping and hierarchical clustering 472 

 473 

We used a dynamic time warping (DTW) (see a review for details (53)) to calculate the 474 

pairwise non-linear alignment of the 12 RSV time-series (corresponding to the 12 seasons) in 475 

each region of the US (Fig. S2) and quantify dissimilarity between those time-series. The DTW 476 

algorithm computed the optimum warping path between two series under certain constraints, 477 

including monotonicity, continuity, warping window, and boundary (53). The R packages dtw 478 

and dtwclust facilitated the implementation of the algorithm and optimization (54).  479 

 480 

After calculating distances, a local cost matrix (lcm) was generated with dimensions of 𝑛	 × 𝑚, 481 

where 𝑛 and 𝑚 represent the lengths of the pairwise time series. Considering the input time 482 

series 𝑄 and 𝑆, for each element (𝑖, 𝑗) of the lcm, the distance between 𝑄* and 𝑅+ was computed, 483 

such that 𝑙𝑐𝑚(𝑖, 𝑗) = (∑ |𝑄* − 𝑅+|,	
	 )1/,. The DTW algorithm thereby identifies the path that 484 

minimizes the alignment between pairwise time-series 𝑄 and 𝑅 by iteratively stepping through 485 

the lcm, starting at lcm(1,1) and finishing at lcm(𝑛,𝑚), while aggregating the cost. At each 486 

step, the algorithm determines the direction in which the cost increases the least under the given 487 

constraints. 488 

 489 
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To limit the area of the lcm that the DTW algorithm must traverse, we implemented the Sakoe-490 

Chiba window as a global constraint (54). This constraint confines the allowed region along 491 

the diagonal of the lcm. To select an optimal window size for hierarchical clustering, we 492 

evaluated clustering using the modified Davies-Bouldin (DB) internal cluster validity index 493 

(CVI), iterating across different values of window size from 1 to 52, corresponding to 1 to 52 494 

weeks, while keeping cluster size as 3. For each window size, the DB CVI calculated distances 495 

from computed cluster centroids  496 

 497 

We subsequently performed hierarchical clustering on the distances of aligned time-series 498 

using DTW. We utilized the Ward D2 clustering method, which minimizes the sum of squared 499 

differences from the centroid during the merging of clusters. This hierarchical clustering of the 500 

12 RSV epidemics in each region created a hierarchy of groups. As the level in the hierarchy 501 

increased, clusters were formed by merging clusters from the next lower level, resulting in an 502 

ordered sequence of groupings. 503 

   504 

Transmission dynamic models 505 

 506 

We used an age-stratified Susceptible-Infected-Susceptible (SIS) model, taking into account 507 

repeat infections, to describe the transmission dynamics of RSV. The model was initially 508 

proposed by Pitzer et al. (29) to study the environmental drivers of the spatiotemporal dynamics 509 

of RSV in the US. The model assumed individuals were born with protective maternal 510 

immunity, which waned exponentially, leaving the infants susceptible to infection. We 511 

assumed a progressive build-up of immunity following up to four previous infections. 512 

Following infection with RSV, individuals developed partial immunity, reducing the rate of 513 

subsequent infection and relative infectiousness of the following infections. We also assumed 514 
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subsequent infections had a shortened recovery time compared to primary infections. 515 

Transmission-relevant contact patterns were assumed to be frequency-dependent and were 516 

consistent with the previous work (29). The model was able to reproduce the seasonal annual 517 

or biennial patterns of RSV transmission in different regions of the US. To model influenza 518 

transmission dynamics, we used a Susceptible-Infected-Recovered-Susceptible (SIRS) model. 519 

We assumed waning immunity for recovered individuals, allowing influenza infection to recur 520 

following the influenza pandemic in the 2009/10 and 2010/11 seasons. 521 

 522 

The RSV and influenza transmission models were coupled through three hypothetical viral 523 

interference mechanisms. The first mechanism assumed influenza infection reduced the host's 524 

susceptibility to subsequent RSV coinfections, modulating the infection rate of susceptible 525 

individuals (Fig. S6A), captured by a parameter 𝜃,  i.e. 𝑑𝑋!*/𝑑𝑡 = −𝜃𝜆1𝑋!* + 𝜆2𝑋!! − 𝛾2𝑋!* 526 

(Eq. (10) in Supplementary Materials). The second mechanism assumed influenza infection 527 

reduced the infectious period (i.e. increased the rate of recovery) of subsequent RSV 528 

coinfections (Fig. S6B), captured by a parameter 𝜂, i.e. 𝑑𝑋*1*/𝑑𝑡 = −𝜂𝛾1𝑋** + 𝜆1𝑋!* +529 

𝜆2𝑋*! − 𝛾2𝑋** (Eq. (11) in Supplementary Materials). The third mechanism assumed 530 

influenza infection reduced the force of infection of RSV (Fig. S6C), captured by a parameter 531 

𝜉, i.e. 𝜆1 = 𝜉𝛽1(𝑡)𝑋.*, where 𝑋.*,			.	/	{*1,*2,*3,*4} represents coinfection terms. The model was 532 

described by a system of ordinary differential equations (ODEs); see Supplementary 533 

Materials for details.   534 

 535 

Model calibration 536 

To calibrate the model parameters, we first fit the RSV dynamic model to the laboratory reports 537 

of positive RSV specimens from 2007 to 2019. We estimated the seasonal amplitude (𝛼1), 538 
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seasonal offset (𝜙1) and reporting fraction (𝑓) for each region, respectively, using maximum 539 

likelihood estimation. The likelihood of the data given the model was calculated by assuming 540 

the number of positive cases in each week was Poisson-distributed with a mean equal to the 541 

model-predicted cases times the reporting fraction. Other parameter values for the model were 542 

adopted from (29), and are provided in Table 1 in the Supplementary Materials. For the 543 

influenza model, we assumed the mean infectious period for primary and secondary influenza 544 

infections is 8 days (55), the duration of waning immunity is 40 weeks, and the seasonal 545 

amplitude is equal to that estimated for RSV. We started by simulating only the RSV epidemic 546 

model, seeding the model with one RSV-infected individual in each age group except the <1 547 

year-old age group. We used a burn-in period of 60 or 61 years, depending upon the region that 548 

exhibits either an annual or biennial RSV pattern, to ensure the RSV model reached an 549 

equilibrium quasi-steady state. Influenza infection was introduced to the population after the 550 

model reached the equilibrium quasi-steady state. 551 

 552 

To probe the effects of viral interference from pdmH1N1 infection on shaping RSV epidemics, 553 

we applied Latin Hypercube Sampling (LHS) to generate representative samples from a wide 554 

range of values for the parameter space 𝛷 = (𝛩,𝛽2, 𝜙2, 𝜏), where 𝛩 = (𝜃, 𝜉, 𝜂) represents 555 

interference parameters; 𝛽2 is the transmission rate of the pdmH1N1 virus; 𝜙2 is the seasonal 556 

phase offset of influenza dynamics, and 𝜏 is the time point when influenza infection is seeded 557 

in the population. We generated 100,000 samples from a uniform distribution 𝑈(0,1) for the 558 

parameter 𝜃 and 𝜉, respectively, and from a uniform distribution 𝑈(1,3) for the parameter 𝜂. 559 

We also sampled 100,000 values from a uniform distribution 𝑈(100,110) for the parameter 𝜏, 560 

mimicking the onset time of the second H1N1 pandemic wave during the winter of 2009. 561 

Additionally, 100,000 samples were obtained from a uniform distribution 𝑈(2,3) for the 562 
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parameter 𝛽2, based on the estimates of the basic reproduction number of the H1N1 pandemic 563 

virus in the United States (56). 100,000 values of seasonal offset of influenza 𝜙2 were sampled 564 

from a uniform distribution 𝑈(– 1,1).  565 

 566 

Next, we explored the parameter space for each viral interference mechanism separately. We 567 

generated forward simulations using the sampled 100,000 parameter sets and calculated the 568 

likelihood to evaluate the “goodness-of-fit” of the model. The data that we used was the weekly 569 

RSV positive tests in the 2009/10 season in Region 1 (CT: Connecticut, ME: Maine, MA: 570 

Massachusetts, NH: New Hampshire, RI: Rhode Island, and VT: Vermont), Region 4 (AL: 571 

Alabama, FL: Florida, GA: Georgia, KY: Kentucky, MS: Mississippi, NC: North Carolina, SC: 572 

South Carolina, and TN: Tennessee) or Region 10 (AK: Alaska, ID: Idaho, OR: Oregon, and 573 

WA: Washington), respectively. We focused on the 2009/10 season data because that was the 574 

season when only the pdmH1N1 virus circulated in the population. We used the following 575 

2010/11 season for model validation. For each set of parameters, the likelihood of the data 576 

given the model was calculated by assuming the number of positive cases in each week was 577 

Poisson-distributed with a mean equal to the model-predicted cases divided by corresponding 578 

weekly scaling factors. We ranked the negative likelihood in an ascending order and 579 

determined the distributions of parameter values (𝜃, 𝜉, 𝜂) based on the top 2% (i.e., the first 580 

2000) models.  581 

 582 

List of Supplementary Materials 583 
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Figures  
 

 
Fig. 1. Laboratory-confirmed positive tests for pdmH1N1 virus and RSV following the 
pandemic.  
(A) Positive laboratory tests for pdmH1N1 virus (red) and RSV (black) before (dashed line), 

during (shaded area) and following the 2009 influenza pandemic in Region 1 (CT: Connecticut, 

ME: Maine, MA: Massachusetts, NH: New Hampshire, RI: Rhode Island, VT: Vermont), 

Region 4 (AL: Alabama, FL: Florida, GA: Georgia, KY: Kentucky, MS: Mississippi, NC: 

North Carolina, SC: South Carolina, TN: Tennessee) Region 8 (CO: Colorado, MT: Montana, 

ND: North Dakota, SD: South Dakota, UT: Utah, WY: Wyoming) and Region 10 (AK: Alaska, 

ID: Idaho, OR: Oregon, WA: Washington) of the US. Dashed gray lines indicate the 1st of 

January each year. (B) Heatmap of RSV activity by epidemic season for the four selected 

regions. Epidemic seasons are defined as starting in July and ending in June of the following 

year. RSV activity was calculated as the fraction of positive tests among the total number of 

tests for each season. The resulting fraction was then normalized to a range between 0 and 1, 
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with red indicating high activity and blue indicating low activity. RSV activity during the 

pandemic 2009/10 season is highlighted in the black box. 

 

 

Fig. 2. Hierarchical clusters and RSV time-series in the four selected regions.  
An agglomerative clustering algorithm with a Ward variance method was used to group the 12 

RSV epidemic seasons in each region based on the alignment paths (Fig. S2). The dendrograms 

(in the  dashed box) give the clustering results based on the optimal alignments between time-

series computed by DTW. (A)-(D) show the dendrogram and corresponding RSV time-series 

in Regions 1, 4, 8 and 10, respectively. RSV time-series following the pandemic seasons are 

highlighted in blue (2009/10) and red (2010/11). The clustering results for other regions are 

given in Fig. S3. 
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Fig. 3. The changes in RSV intensity and the center of gravity of RSV activity following 
the pandemic.  
RSV intensity and the center of gravity of RSV activity were calculated for each epidemic 

season in each region of the US individually. For each region, the changes in the intensity of 

RSV activity in either the 2009/10 or 2010/11 season (i.e., query) were compared to the median 

values of all other seasons (i.e., reference), such that intensity changes = (query – reference) / 

reference × 100%. The changes in the center of gravity were given by the difference between 

the RSV-weighted weekly average for the query and the reference. 
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Fig. 4. Correlations between RSV intensity and pdmH1N1 virus intensity.  
(A) The correlation between the intensity of RSV in the 2009/10 season and the intensity of 

pdmH1N1 virus during the pandemic period (𝜌 =–0.38), and (B) the correlation between the 

intensity of RSV in the 2010/11 season and the intensity of pdmH1N1 virus during the 

pandemic period (𝜌 = 0). The colors indicate the drop (brown) or rise (green) of RSV intensity 

in certain regions, corresponding to the US map in Fig. 3. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.25.24303336doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.25.24303336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 5. Results of model fits for laboratory-confirmed RSV-positive tests in the 2009/10 
and 2010/11 seasons in Region 1.  
The observed number of RSV-positive tests in Region 1 is shown by the black line, while the 

top 2% of best-fitting models (based on 100,000 models generated from  Latin Hypercube 

Sampling) is shown by the gray shaded region for (A) Model I—pdmH1N1 infection reduces 

susceptibility of RSV infection, (B) Model II—pdmH1N1 infection reduces RSV infectious 

period, and (C) Model III—pdmH1N1 infection reduces RSV infectivity. The median 

prediction, given by the median estimates of the viral interference parameter and associated 

other parameters, is indicated by the red curve. The green curve shows the scenario of no viral 

interference. Note that the models were only fitted to the RSV incidence data in the 2009/10 

season, and the data from the 2010/11 season were used for model validation.  
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Fig. 6. Identified parameter space for viral interference parameters.  
Histograms show the frequency of the values of viral interference parameters for the top 2% 

best-fitting models (2000 samples). The cumulative density functions (CDFs) are given by the 

solid lines, and the dashed red lines indicate the median estimates. (A, D, G) show the identified 

parameter distribution for the viral interference mechanism that reduces the host's susceptibility 

to RSV infection, 𝜃 (Model I), in Region 1, 10 and 4, respectively. (B, E, H) show the identified 

parameter distribution for the viral interference mechanism that shortens RSV infectious 

period, 𝜂 (Model II), in Region 1, 10 and 4, respectively. (C, F, I) show the identified parameter 

distribution for the viral interference mechanism that reduces RSV infectivity, 𝜉 (Model III), 

in Region 1, 10 and 4, respectively.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.25.24303336doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.25.24303336
http://creativecommons.org/licenses/by-nc-nd/4.0/

