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Abstract

Background
Dengue, Zika, and chikungunya, whose viruses are transmitted mainly by Aedes

aegypti, significantly impact human health worldwide. Despite the recent development
of promising vaccines against the dengue virus, controlling these arbovirus diseases still
depends on mosquito surveillance and control. Nonetheless, several studies have shown
that these measures are not sufficiently effective or ineffective. Identifying higher-risk
areas in a municipality and directing control efforts towards them could improve it. One
tool for this is the premise condition index (PCI); however, its measure requires visiting
all buildings. We propose a novel approach capable of predicting the PCI based on
facade street-level images, which we call PCINet.

Methodology
Our study was conducted in Campinas, a one million-inhabitant city in São Paulo,

Brazil. We surveyed 200 blocks, visited their buildings, and measured the three
traditional PCI components (building and backyard conditions and shading), the facade
conditions (taking pictures of them), and other characteristics. We trained a deep
neural network with the pictures taken, creating a computational model that can
predict buildings’ conditions based on the view of their facades. We evaluated PCINet
in a scenario emulating a real large-scale situation, where the model could be deployed
to automatically monitor four regions of Campinas to identify risk areas.

Principal findings
PCINet produced reasonable results in differentiating the facade condition into three

levels, and it is a scalable strategy to triage large areas. The entire process can be
automated through data collection from facade data sources and inferences through
PCINet. The facade conditions correlated highly with the building and backyard
conditions and reasonably well with shading and backyard conditions. The use of
street-level images and PCINet could help to optimize Ae. aegypti surveillance and
control, reducing the number of in-person visits necessary to identify buildings, blocks,
and neighborhoods at higher risk from mosquito and arbovirus diseases.

Key-words: Aedes aegypti, arbovirus, premise condition index, deep learning,
building facade

Author Summary

The strategies to control Ae. aegypti require intensive work and considerable financial
resources, are time-consuming, and are commonly affected by operational problems
requiring urgent improvement. The PCI is a good tool for identifying higher-risk areas;
however, its measure requires a high amount of human and material resources, and the
aforementioned issues remain. In this paper, we propose a novel approach capable of
predicting the PCI of buildings based on street-level images. This first work combines
deep learning-based methods with street-level data to predict facade conditions.
Considering the good results obtained with PCINet and the good correlations of facade
conditions with PCI components, we could use this methodology to classify building
conditions without visiting them physically. With this, we intend to overcome the high
cost of identifying high-risk areas. Although we have a long road ahead, our results show
that PCINet could help to optimize Ae. aegypti and arbovirus surveillance and control,
reducing the number of in-person visits necessary to identify buildings or areas at risk.
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1 Introduction 1

1.1 Mosquitoes, arboviruses, and higher-risk areas 2

A myriad of known viruses have arthropods as vectors, of which 30 are known to cause 3

disease in humans [1]. Even with this diversity, four viruses significantly impact human 4

health, causing yellow fever, dengue, Zika, and chikungunya. The commonality among 5

these diseases is that female Aedes mosquitoes transmit their viruses. Historically, the 6

most important is Aedes aegypti, which is linked to the spread of dengue epidemics [2] 7

and responsible for yellow fever epidemics in the past. Ae. aegypti is also involved in 8

the explosive epidemics of chikungunya (alphavirus) [3] and Zika (flavivirus) [4], which 9

reinforces its role as a vector of diseases with increasing importance in the Americas and 10

the entire world. During 2019, a dengue outbreak spread widely throughout the 11

Americas, causing more than 2.3 million infections in Brazil alone [5]. 12

Of these four arboviruses, we have an effective vaccine against the yellow fever virus. 13

A promising vaccine against the dengue virus, named Qdenga, has recently emerged, 14

which was approved for a broader audience and does not require prior exposure. It is 15

worth noting that this vaccine is initially available only through private laboratories [6]. 16

Considering this scenario, the prevention of infections transmitted by Ae. aegypti will 17

continue to rely on decreasing contact with it and developing control measures against 18

its immature (larvae and pupae) and adult forms, mainly the females, which feed almost 19

exclusively on human blood [7, 8]. 20

Ae. aegypti is quite prevalent in urban areas, where it uses artificial and natural 21

containers with water to reproduce. In urban environments, the large presence of 22

containers capable of accumulating water creates environments conducive to the 23

reproduction of mosquitoes, which is one of the reasons for the failure of many attempts 24

to control the diseases and their vector, Ae. aegypti [9, 10]. The strategies to control 25

Ae. aegypti require intensive work and large financial resources, are time-consuming, 26

and are commonly affected by operational problems. Moreover, several studies have 27

shown that strategies currently used in control programs are not sufficiently effective, or 28

even ineffective, and require urgent improvement [11–19]. 29

Different approaches have been used to guide policies to fight dengue, Zika, and 30

chikungunya in large cities. In endemic areas, notably Latin America, Southeast Asia, 31

and the Pacific, most surveillance relies on traditional methods, such as health service 32

reports and laboratory confirmation of a subset of cases to a central health agency [20]. 33

Although this approach has some accuracy, its effectiveness is hindered by the 34

significant time gap between case detection and notification to the system [21]. This 35

delay restricts the responsiveness of health authorities, impeding the implementation of 36

prompt and effective responses and resulting in severe consequences [20]. In addition to 37

this problem of case detection and notification, preventive surveillance and control for 38

Ae. aegypti, a crucial strategy at the level of public policies, also faces difficulties that 39

reduce its effectiveness. Ae. aegypti entomological surveillance and control involve great 40

effort for health services and high costs for developing house-to-house vector monitoring 41

[22–24]. It is also time-consuming to manually aggregate and validate all data [25]. 42

Because different places could have different Ae. aegypti infestation levels, one way 43

to improve arbovirus surveillance and control is to identify the buildings, blocks, or 44

neighborhoods with higher risks in a municipality. One of the tools that can be used to 45

direct Ae. aegypti surveillance and prevention efforts to higher-risk areas is the Premise 46

Condition Index (PCI) [26]. This was proposed by Tun-Lin et al. [26, 27] and considers 47

in its scope the place conditions, conservation, and shading, assigning a score on a scale 48

that indicates a greater propensity of a given building to become a breeding ground for 49

Ae. aegypti mosquitoes. Several studies have tested this relationship and have found 50

similar results. In a survey conducted in the city of Rio de Janeiro, it was observed that 51
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the number of Ae. aegypti eggs was higher as the PCI increased [28]. This same 52

association was observed in Botucatu, in the state of São Paulo [29] and in Campos dos 53

Goytacazes, in the state of Rio de Janeiro [28], Brazil. In Maŕılia in the state of São 54

Paulo, a positive relationship was observed between PCI and the presence of larvae and 55

pulps in the buildings evaluated [30]. A study conducted in Campinas in the state of 56

São Paulo, which also confirmed this relationship, proposed the adoption of an extended 57

PCI considering other variables such as backyard paving, the existence of Ae. aegypti 58

potential breeding sites, and the presence of animals in the buildings [31]. 59

The issues with applying PCI to identify risk areas are the same as those of other 60

strategies, that is, intensive work and high costs, and it is time-consuming. In this 61

study, we hypothesized that using facade street-level images and artificial intelligence 62

(AI), we could predict the PCI of buildings without developing house-to-house 63

monitoring. Adopting computational methods and utilizing AI could address the 64

presented challenges, offer a substantial and cost-effective advancement to inform public 65

policies, and enhance the effectiveness of Ae. aegypti -related disease monitoring and 66

prevention [32,33]. 67

1.2 Artificial intelligence applied to the problem 68

The preventive initiatives currently carried out in the fight against arboviruses mainly 69

focus on mapping and preventing the spread of disease vectors. There are many ways 70

one can leverage AI, specifically machine learning, in this scenario, both from the 71

perspective of which data to gather (i.e., the input) and which measures to estimate 72

(i.e., the output). 73

From a data perspective and considering that some studies have shown that 74

vulnerable urban areas have higher Ae. aegypti infestation levels [34–37], it is common 75

to use field survey data related to socioeconomic status [38,39], such as income, 76

education, and crowding. There are also instances of leveraging environmental 77

information, such as temperature [40,41], humidity, or precipitation [42]. We are 78

especially interested, however, in the domain of images, which has received growing 79

attention from the research community. At the same time, Lorenz et al. [43] showed 80

that information extracted from aerial images can be positively correlated with 81

mosquito infestation, with many studies following the same data path [44–46]; however 82

little attention has been given to the abundance of information one can extract from 83

facade images, which is the main focus of the present work. 84

Regarding target inferences, directly predicting mosquito infestation has a significant 85

drawback: data collection is highly cumbersome as it depends on house-to-house visits 86

and/or physically installing and monitoring traps. Machine learning approaches can 87

benefit from large volumes of data; thus, it is possible to find works resorting to proxy 88

tasks that allow faster and/or cheaper data gathering, which can better scale to broader 89

geographical regions. The review presented by Joshi and Miller [47] shows that one of 90

the most prominent proxy tasks is locating common mosquito breeding grounds, such as 91

tires, buckets, and water tanks, to name a few, reframing the problem as an object 92

detection task. Works such as that of Cunha et al. [45], who detected swimming pools 93

and water tanks, also mention the correlation of such breeding sites with socioeconomic 94

status. 95

Looking at the problem from a novel perspective, the work of Zou et al. [48] is worth 96

mentioning. Although it was not directly applied to disease control, the authors showed 97

that signs of building abandonment can be better derived from facade images since an 98

aerial view will always be limited to the building’s roof and surrounding area. Building 99

abandonment, or lack of maintenance, has many similarities to PCI, as they are both 100

interested in visual cues, such as overgrown vegetation, and wall deterioration. We 101

could not find any work directly inferring PCI from facade images in the literature. 102
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Thus, we provide novel contributions to the literature by applying a state-of-the-art 103

deep learning-based method to this task. 104

1.3 Objectives 105

In this work, we propose a novel approach capable of predicting the PCI of buildings 106

based on street-level images. This is the first work combining deep learning-based 107

methods with street-level data to predict PCI, an essential indicator of Ae. aegypti 108

infestation. This study is part of the project granted by the São Paulo Research 109

Foundation (FAPESP - process 2020/01596-8), entitled ”Use of remote sensing and 110

artificial intelligence to predict high-risk areas for Aedes aegypti infestation and 111

arbovirus”, named here as our entire project. 112

2 Related work 113

Due to its social and health-related relevance, several different techniques [43–46,49–51] 114

have been proposed to combine AI with image processing toward the mapping of Ae. 115

aegypti risk areas. Albrieu et al. [44] classified 32 neighborhoods into 17 environmental 116

classes extracted from SPOT 5 satellite data. Then, they correlated such classification 117

with data from entomological surveys and analyzed which characteristics are most 118

related to the proliferation of Ae. aegypti. Kim et al. [51] combined Normalized 119

Difference Water Index with the rectangular fit space metric [52] to detect Culex 120

mosquito breeding sites (such as swimming pools) in satellite imagery and consequently 121

helped to control the population of this West Nile virus vector. Andersson et al. [49] 122

proposed new deep learning-based networks capable of predicting dengue fever and 123

dengue hemorrhagic fever rates in a certain area based on street-level imagery 124

surrounding that region. Lorenz et al. [43] exploited machine learning techniques to 125

perform pixel-wise land-cover classification using satellite images of one specific study 126

area. After classifying pixels into ten possible classes (such as asphalt, asbestos roof, 127

exposed soil, and water), they conducted an analysis correlating this information with 128

mosquito data collected using traps to identify the physical characteristics of a 129

landscape that most influence the distribution of Ae. aegypti adult mosquitoes. 130

More recently, Andersson et al. [50] proposed a new network that fuses information 131

extracted from aerial data and street-level images to identify environmental factors 132

linked to Ae. aegypti mosquitoes and, consequently, predict dengue fever rate in urban 133

scenarios. Haddawy et al. [53] explored a detection network to identify dengue vector 134

breeding sites (such as buckets, old tires, and potted plants) in street view images. To 135

allow better observation and understanding of the region, they used several images to 136

cover the entire surroundings of the area. Lee et al. [54] combined entomological and 137

health-related data with information extracted from Unmanned Aerial Vehicle images 138

(such as water containers, and green-red vegetation index) to identify high-risk rural 139

areas of mosquito infestation. Liu et al. [55] compared and combined environmental 140

features extracted from street-level images using pre-trained networks with standard 141

features (such as epidemical, meteorological, and sociodemographic variables) to create 142

a machine learning model capable of performing weekly dengue forecasting. They 143

concluded that incorporating environmental data from street view images makes the 144

model more effective for predicting urban dengue. Cunha et al. [45] employed a deep 145

learning model to detect water tanks and swimming pools in aerial data. Based on this 146

detection, they conducted an analysis correlating the number of water tanks and 147

swimming pools with the socioeconomic levels of the different regions, finding that areas 148

with low socioeconomic status had more exposed water tanks, while regions with high 149

socioeconomic levels had more exposed pools. They argued that these results could help 150
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to identify Ae. aegypti higher-risk areas as there is a positive relationship between 151

infestation and vulnerable areas [34–37]. Passos et al. [46] combined convolutional 152

network-based models with the spatiotemporal tube concept [56] to integrate spatial 153

and temporal data, thus allowing the detection of water tanks and tires (the most 154

reproductive containers for Ae. aegypti species [47]) in aerial videos. 155

3 Materials and methods 156

3.1 Description of the study area 157

The city of Campinas (22°53’03” S and 47°02’39” W) has the third largest population in 158

the state of São Paulo, with just over one million inhabitants living in an area of 159

794, 571km2, with a good index of human development (0.805). Its area was divided by 160

the Brazilian Institute of Geography and Statistics (IBGE) into 1695 urban and 54 rural 161

census tracts for conducting the 2010 demographic census (Figure 1). Campinas is 162

located in a metropolitan region with approximately 3.3 million inhabitants. It has a 163

hot and temperate climate, characterized by an average annual temperature of 19.3◦C 164

and an average annual rainfall of 1, 315mm. The city has been infested with Ae. aegypti 165

since 1991, and dengue transmission has been observed in the municipality since 1996. 166

Since then, there has been an expansion of transmission areas and an increase in 167

reported cases, with approximately 175 thousand dengue cases reported from 2010 to 168

2023. The Ministry of Health classifies the municipality as a priority due to its 169

incidence of infection and geographic location. It is connected by several roads with an 170

intense flow of vehicles, has an international airport, and an intense flow and movement 171

of people, increasing the possibility of arbovirus transmission and spreading to other 172

areas of the state and country. These factors, together with its vast territorial expanse 173

and heterogeneity in infrastructure, land use, and lifestyle habits, contribute to the 174

municipality’s vulnerability to arboviruses. Campinas experienced two major dengue 175

epidemics in 2014 and 2015, with 42,109 and 65,209 cases recorded, respectively. The 176

first autochthonous Zika cases were reported in the city in 2016 [57]. The Department 177

of Health Surveillance of the Municipality Health Department of Campinas reported 178

11,268 cases of dengue in 2022, equivalent to an incidence rate of 923.6 per 100,000 179

residents, with the highest cases occurring in March and May, and 19 confirmed cases of 180

Chikungunya [58]. For our entire project, we considered that the study area was 181

composed of 1293 Campinas urban census tracts (Figure 1) covered totally or partially 182

by the high-resolution satellite image granted by FAPESP. 183

3.2 Data collection and database structuring 184

3.2.1 Sampling of sectors and blocks 185

We used the following criteria to consider an urban census tract eligible for conducting 186

the field measurement of PCI: a census tract with more than 90% of their area 187

contained within the study area; with the São Paulo Social Vulnerability Index (IPVS) 188

classification, developed by the State Data Analysis System Foundation (SEADE); and 189

with 20 or more households. With these criteria, we obtained 1054 census tracts, and 190

the sampling was conducted through a systematic random draw. For this, initially, a 191

database containing the codes list of the study area census tracts was created, ordered 192

by the socioeconomic and demographic factor values of IPVS; the proportion of houses 193

among buildings; and average temperatures. IPVS measures social inequality within 194

municipalities and serves as a parameter for the development of specific public policies. 195

These variables were chosen due to the known positive relationship between Ae. aegypti 196

and arbovirus diseases, and higher average temperature [34–37,59–62]. Temperature 197
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Fig 1. (A) Map of Campinas, state of São Paulo, Brazil, South America; (B) Campinas
municipality: total, urban and study areas; (C) Study area, with the localization of 200
surveyed blocks and the four areas used to predict the PCI facade.

data were collected from the Moderate-Resolution Imaging Spectroradiometer (MODIS) 198

satellite image dataset [63]. The factors of the IPVS were obtained from SEADE. The 199

proportion of houses among buildings and the list of sector codes were taken from 200

IBGE [64]. Then, we systematically selected a sample with 200 census tracts, using a 201

ratio of 5.27 (1054/200). 202

Of these 200 chosen final census tracts, two groups of 100 were allocated, alternately, 203

for the first and second moments of fieldwork, as detailed below. Regarding the 204

representative blocks, for each census tract, one that was considered adequate was 205

selected. For this choice, we aimed to measure the PCI at least in 10 buildings, taking 206

into account that, in Campinas, according to vector control agents, there is a refusal 207

rate of approximately 40 to 50% visits. 208

3.2.2 Field data collection and database 209

To evaluate the PCI, the model by Tun-Lin et al. [26] and the extended model by 210

Barbosa et al. [31] were used, adding other variables to improve the classification of the 211

building and expanding the score (1 to 5, instead of 1 to 3). We used the following 212

characteristics: building type, facade, building and backyard conditions, shading, 213

backyard paving, roofing, and potential breeding sites. Contrary to these studies, where 214

level 1 indicated the best and 3 the worst condition, we considered level 1 to indicate the 215

worst condition and 5 the best, seeking less subjectivity in the classification, as follows: 216

Building Type: 1-House; 2-Commerce; 3-Industry; 4-Apartment building; 5-Others 217

(church, school, etc.). 218

Facade or Building condition: 1-Facade or building built in wood or a material 219

other than masonry, lack of internal paving, and restricted access to basic sanitation; 220

2-Facade or building built in masonry and without plaster, or finished facade or 221

building with at least five signs of lack of maintenance, with little or no access to basic 222

sanitation; 3-Facade or building built in masonry with only plaster, with access to basic 223

sanitation, or finished facade or building with two signs of lack of maintenance; 224
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4-Finished facade or building, but with some sign of lack of maintenance; 5-Finished 225

facade or building with no signs of lack of maintenance. 226

Signs of lack of maintenance: Old, peeling paint; Mold and mildew spots on the 227

walls; Vegetation with disordered growth; Dry vegetation; Rust on gates and/or window; 228

Broken windows; Old mail in mailboxes or gates; Cracked and/or broken walls; Presence 229

of useless items, garbage, or advertisements; Rusty padlocks and chains; Graffiti; 230

Broken or cracked pavement. 231

Backyard Condition: 1-Very poorly maintained (with garbage, fallen leaves, 232

animal waste - disorganized); 2-With little care (with garbage, fallen leaves and/or 233

animal waste - poorly organized, in an intermediate situation between 1 and 3); 3-With 234

average care (little garbage, fallen leaves and/or animal waste - poorly organized); 235

4-Reasonably well maintained (very little litter, fallen leaves and/or animal waste - 236

reasonably organized and in an intermediate situation between 3 and 5); 5-Very well 237

maintained (no garbage, no fallen leaves and no animal waste, organized). 238

Shading: 1-Fully shaded backyard (shade from trees and plants, neighboring 239

buildings, walls, etc.); 2- Backyard 2/3 shaded (shade from trees and plants, 240

neighboring buildings, walls, etc.); 3-Backyard 1/3 shaded (shade from trees and plants, 241

neighboring buildings, walls, etc.); 4- Backyard without shading (shade from trees and 242

plants, neighboring buildings, walls, etc.); 5-Land fully built. 243

Backyard paving: 1-Backyard without paving; 2-Backyard 25% paved; 3-Backyard 244

50% paved; 4-Backyard 75% paved; 5-Fully built land (no backyard) or fully paved 245

backyard. 246

Roofing: 1-Without tiles or other coverage (canvas, plastic, plywood, etc.); 247

2-Asbestos/Zinc tile or slab; 3-Clay tile, cement or building covering. 248

Potential breeding cites: Presence or not of containers that are potential 249

breeding grounds for Ae. aegypti. 250

Fieldwork was conducted in two stages: 100 blocks from September to November 251

2021, and 100 blocks from March to May 2022. Between these two periods, we 252

developed other fieldwork to achieve all project objectives, such as mosquito collections 253

with adult traps. 254

For data collection in the field with the aim of measuring PCI, an app was developed 255

for the Android operating system and installed on a 9-inch tablet. This system was 256

conceived to facilitate the digital collection of data and automatically obtain the 257

coordinates of each building visited and allow taking pictures of the facades of the 258

buildings. Before the start of activities, the field team was trained to classify the 259

buildings into the PCI characteristics and to use the equipment. The data collected in 260

the field were stored offline on the tablet and later downloaded via a Wi-Fi connection 261

to a PostgreSQL database, not requiring a data package. The data were later exported 262

in CSV format, along with the images for analysis. 263

3.2.3 Database merging and treatment 264

By merging the data acquired from the two field collection procedures, we produced a 265

CSV file containing 5329 lines and a total of 7785 images. However, this data contained 266

errors due to collection problems (such as corrupted image files) or errors later acquired 267

during the initial data processing. For this reason, we performed additional filtering on 268

this data with the objective of leaving the final dataset with less noise or undesirable 269

conditions. This process was conducted in four steps, as follows: 270

1. First, we removed duplicate images. From the set of 7785 initial images, we 271

noticed that some were duplicates, i.e., they presented the same pixels but in 272

different files. We ran a script to compare all pairs of images, leaving just one 273
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from each set of repeated images. After this procedure, 3469 images were 274

discarded, remaining 4316. 275

2. The second step involved deleting corresponding lines from the CSV that pointed 276

to images discarded in step 1, as each visit should be paired with a unique image. 277

After this procedure, the 5329 initial lines were reduced to 4190, as some removed 278

images had no corresponding line in the CSV. 279

3. We also noticed that some lines from the CSV pointed to the same geographical 280

coordinates. To avoid duplicates or buildings with varying PCI scores in the same 281

dataset, we also removed all but one (for each case) of the lines that pointed to 282

repeating coordinates. This reduced the number of lines in the CSV from 4190 to 283

4172. 284

4. Finally, we matched the remaining lines of the CSV with their corresponding 285

images from the set that remained after the first step. Thus, we discarded the 286

images that did not have a corresponding line in the CSV pointing to them. This 287

left the final dataset with 4168 valid pairs of images and lines in the CSV. 288

3.2.4 PCI dataset descriptive analysis 289

For an overview of the collected dataset, Section 4.1 presents the characteristics of 290

surveyed buildings in terms of each PCI attribute with its correspondent distribution 291

and correlation with the target label. Distributions are presented as relative 292

percentages, while correlation is calculate with the Spearman correlation metric. 293

3.2.5 Street View data collection 294

Although photographs from the building facades can be taken through fieldwork, this 295

process requires human work and takes time, making it difficult to escalate to more 296

extensive regions. Ideally, an automatic way of quickly gathering images for the 297

buildings’ facades should be employed, allowing for the processing of many 298

neighborhoods or even cities in a short time. Google Street View is a good alternative 299

in the presented context, as its API allows for the collection of images from urban 300

environments around different parts of the world, making it possible to aim their views 301

towards building facades. 302

There is a natural difference between images acquired from human fieldwork and 303

large-scale sources, such as the aforementioned Google Street View, because the type of 304

sensor or camera used can change the characteristics of the data. This can be enough to 305

make a computational model trained on one type of imagery unable to work with the 306

other type correctly. Thus, to validate our models and test their capabilities to work 307

with high-scale sources, we collected data from Google Street View. 308

We collected Street View images with the use of Google’s Street View Static API. 309

For this, we required the coordinates of each building of interest. In this work, the 310

coordinates were manually (in person) taken from four regions of Campinas with varying 311

socioeconomic characteristics (Figure 1). Area 1 (with a higher socioeconomic level), 312

according to the 2010 census of IBGE, had an average income of 1807.00 Reais (the 313

Brazilian currency) and 3.0 inhabitants per household; areas 2 and 3 (with intermediate 314

socioeconomic level) had average incomes of 1285.00 and 1138.00 Reais, with 3.2 and 3.4 315

inhabitants per household, respectively; and area 4 (with lower socioeconomic level) had 316

an average income of 755.00 Reais and 3.5 inhabitants per household [45,65]. 317

From the set of collected coordinates, we used Google’s API to retrieve the 318

corresponding images from their database. The API automatically returns the best 319

image aimed at the desired coordinate. We excluded any image captured from a 320
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distance greater than 25 meters in relation to the desired coordinate to avoid the 321

presence of wrongly selected building facades. This can happen, for example, if the 322

respective street was not visited by Google’s camera, but another street close to the 323

desired one was. In these situations, the API would return a photo from another street, 324

aiming in the direction of the desired building further away. We also manually excluded 325

images that would not clearly show the building facade, such as images with trucks or 326

buses covering the front of the building or photos pointing to wrong directions or 327

undesirable places due to displacements by the GPS. 328

After this process, a total of 2433 images were available for evaluation. As a ground 329

truth is required to validate the computational models’ predictions, the same experts 330

involved in the conduction of the fieldwork described in Section 3.2.2 manually classified 331

each image (building facade) according to one of the five scores representing the PCI. 332

3.3 PCINet 333

Our goal is to leverage the power of deep neural networks to recognize visual patterns 334

from images of facades such that they can accurately approximate the PCI. In other 335

words, we train a deep learning-based model for classification, receiving a facade image 336

as input and outputting a vector of probabilities for all possible PCIs. We adopt a 337

common strategy from deep learning: fine-tuning a pre-trained convolutional network 338

model. The main idea is to transfer knowledge previously learned from a large-scale 339

database, which allows specialized pretraining of the model on a target domain with 340

much less data and training time required [66]. 341

To choose an architecture from the available set of pre-trained models in the 342

literature, we consider the PyTorch framework [67]. This provides an extensive library 343

of model weights trained on ImageNet1k, a large-scale database commonly used as 344

source training, with 1000 object classes from a large variety of categories (e.g., animals, 345

vehicles, and appliances), with some instances of facades for classes such as bakery or 346

boathouse. Fig. 2 is a comparison of accuracy (on ImageNet1k) versus the number of 347

parameters for all available models. The number of parameters has a direct impact in 348

computational performance, with more parameters requiring more infrastructure to run. 349

We chose the smallest version of EfficientNetV2, marked in red in the figure, which 350

offers a good trade-off between both measures, achieving over 84% accuracy with a little 351

more than 20 million trainable parameters. Our final model, leveraging EfficientNetV2’s 352

architecture pre-trained on ImageNet1k and fine-tuned on our collected dataset, is 353

hereby named PCINet. 354

Because our database is highly unbalanced between classes, another concern is 355

mitigating the bias it can impose during training, skewing the inferences towards more 356

common classes. We adopt two strategies. First, our model is optimized based on the 357

Focal Loss [68], an optimization metric designed to handle class imbalance and 358

information asymmetry, meaning it can focus on harder inferences, whether the 359

difficulty arises from the lower number of samples from a given class, or on how they 360

differ from the remaining data distribution. Second, we adopt a resampling strategy 361

such that we slightly undersample the most common classes for each epoch. It is worth 362

highlighting that because the training of neural networks takes place over several 363

epochs, i.e., optimization over the entire training set, in each epoch, we randomly load a 364

distinct undersampled subset. 365

3.4 Ethics 366

The present study was approved by the Research Ethics Committee of the School of 367

Public Health at the University of São Paulo, in the Plataforma Brasil system, Ministry 368

of Health, number CAAE: 46655121.0.0000.5421; May 21, 2021. 369
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Fig 2. Scatterplot with the trade-off between accuracy and number of parameters for
all pre-trained models for image classification available in PyTorch. Marked in red is the
smallest version of EfficientNetV2.

Table 1. Distribution of categories of PCI characteristics collected in the field.

Target Distribution of categories

Building Type
House Commerce Industry Apartment building Others
84.00% 10.00% 0.40% 1.40% 4.20%

Facade condition)
1 2 3 4 5

3.60% 16.60% 31.70% 34.60% 13.50%

Building condition
1 2 3 4 5

2.30% 11.90% 28.50% 37.70% 19.60%

Backyard condition
1 2 3 4 5

3.30% 11.20% 28.70% 37.60% 19.20%

Backyard paving
1 2 3 4 5

3.30% 6.50% 12.70% 26.60% 50.90%

Shading
1 2 3 4 5

3.10% 13.50% 49.80% 24.30% 9.30%

Roofing
1 2 3

2.30% 23.40% 74.30%

Recipients
Present Absent
48.80% 51.20%

4 Results 370

4.1 Descriptive results 371

After the process described in Section 3.2.3, our database contained a set of 4171 372

sampled buildings. The relative frequencies of the type of buildings and PCI 373

characteristics obtained are presented in Table 1. 374

It was verified from the collected data that Campinas predominantly belonged in 375

intermediate and good building conditions, being predominantly in category 4 (37.7%), 376

followed by categories 3 (28.5%) and 5 (19.6%). Only 14.2% of the sampled buildings 377

fell within categories 1 and 2, representing more precariously constructed conditions. 378

We also found that the majority of buildings had completely paved backyards (50.9%). 379

As for the facade conditions, we observed a distribution similar to that collected from 380

the building conditions: a greater frequency in the good and intermediate categories (3, 381

4, and 5), corresponding to 79.8% of buildings compared to 20.2% in categories 1 and 2, 382

which indicated a worse conservation situation. Most buildings had a partial shading of 383

one-third of the backyard (49.8%) and clay roofs (74.3%). Containers that can be used 384

as breeding sites for mosquitoes were observed in approximately half of the buildings 385
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Table 2. Correlation of each PCI characteristic with facade condition.

Target Spearman correlation

Building condition 0.8475269, p− value < 0.0001
Backyard Condition 0.7168006, p− value < 0.0001
Backyard paving 0.3813468, p− value < 0.0001
Shading 0.3177191, p− value < 0.0001
Roofing 0.3060127, p− value < 0.0001
Recipient 0.1748162, p− value < 0.0001

visited (51.2%). Almost all buildings surveyed were houses (84,0%) or for commerce 386

(10.0%). Taking the facade condition as a parameter, we verified how it statistically 387

relates to the other variables measured. We observed that it strongly correlated with 388

building and backyard conditions and had a good correlation with backyard paving and 389

shading (Table 2). 390

4.2 Deep Learning-related results 391

To assess the quality of PCINet, we performed a robust protocol entitled K-fold 392

cross-validation. This consists of splitting the available data into k equal-sized random 393

sets, using k − 1 sets for training, and leaving one out for testing, thus training and 394

evaluating k different models. This protocol is more reliable as it allows the assessment 395

of the expected variance in model behavior and avoids skewed metrics due to 396

specificities that might exist in a single random selection of test data. We work with 397

k = 5 folds in the following experiments. 398

The following are the training details necessary for reproducibility. We replace 399

EfficientNetV2’s classification head, originally designed for 1000 classes, with a linear 400

layer containing 5 neurons, followed by a softmax activation to produce a vector of 401

probabilities for all five possible facade conditions. Optimization is performed using the 402

ADAM algorithm [69] with a fixed weight decay set to 5e−5 along with a learning rate 403

scheduling strategy. It consisted of an initialized learning rate of 1e−5, decreasing this 404

value by a multiplying factor of 0.5 every 10 epochs. We trained each model for a total 405

of 50 epochs. These hyperparameters were empirically tuned to ensure a smooth 406

convergence and avoid overfitting on the training set. Finally, to set the weight for each 407

class required to guide the focal loss, we approximated values inversely proportional to 408

the number of available samples for each facade PCI value, precisely as follows: 409

{4.5, 1.0, 0.5, 0.5, 1.2}. This represents that, for instance, there were nearly ten times 410

more facades where the facade condition was set to 4 relative to 1. 411

We can derive the prediction from our model’s vector of probabilities output by 412

selecting the facade condition with the highest probability. Based on this, Fig. 3 shows 413

the confusion matrices for all evaluated folds. Most noticeably, the matrices always 414

show a thick diagonal, meaning nearby classes are often confused amongst themselves. 415

This is consistent with the fact that classes are strongly related to a 5-point scale of 416

housing conditions from worst to best. This reflects that neighboring classes have 417

similar characteristics, enough to confuse the model, which brings about the question of 418

whether human agents face the same issues when assigning labels. However, these errors 419

are not sufficient to compromise the risk assessment of large areas. This can be 420

considered a positive behavior since classes are strongly related to a 5-point scale of 421

building conditions from worst to best. In other words, mistakenly predicting a building 422

condition by a distance of 1 on the scale has a low impact on risk assessment. 423

Considering the labels as a 5-point scale of intensities, we can derive two metrics to 424

understand our model’s behavior better. First, a straightforward classification accuracy 425
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(a) Fold 1. (b) Fold 2. (c) Fold 3.

(d) Fold 4. (e) Fold 5.

Fig 3. Classification results from PCINet for all evaluated folds.

is defined as the proportion of correctly classified samples. Additionally, we can derive 426

the Mean Absolute Error (MAE) to measure the average difference between predicted 427

classes and true facade conditions. The latter aids us in understanding how wrong a 428

given prediction may be on average. Table 3 presents these metrics divided per class. 429

Although average accuracy per class may seem low, below 50%, with a high standard 430

deviation (around 6%), the absolute error of predictions is also low, meaning wrongly 431

predicted facade conditions lie within an acceptable error margin. Finally, despite our 432

efforts to handle class imbalance, classes 4 and 1 are the best and worst performing 433

ones, respectively; not coincidentally, they are the most and least common of classes. 434

True face condition
PCINet metrics

Accuracy MAE

1 0.42 (+/- 0.06) 1.13 (+/- 1.23)
2 0.42 (+/- 0.08) 0.72 (+/- 0.71)
3 0.45 (+/- 0.04) 0.64 (+/- 0.65)
4 0.49 (+/- 0.06) 0.58 (+/- 0.65)
5 0.42 (+/- 0.06) 0.80 (+/- 0.81)

Table 3. PCINet metrics divided per class. Reports are averages over all folds
accompanied by the standard deviation in parentheses.

To support further discussion on the model’s behavior and data-related improvement 435

opportunities, Fig. 4 presents a few samples from our dataset subdivided into three 436

columns. Columns refer to three model behavior types: correctly classified samples, 437

wrongly classified samples with absolute error equal to 1, and wrongly classified samples 438

with absolute error greater than 1. 439

It is worth mentioning that some samples depicted in Fig. 4 were rotated such that 440

all buildings were correctly oriented for better visualization. Additionally, we added 441
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white rectangles around regions where people or car plates were present. Although we 442

randomly sampled a small number of images from each type, such visualization surfaces 443

a few essential aspects. For instance, we can see varying image qualities, with samples 444

presenting distortions such as blur and extreme lighting conditions. Severely obstructed 445

facades can also be seen due to the presence of cars or electricity poles. These and other 446

characteristics constitute significant challenges for machine learning approaches. 447

Regarding PCINet’s ability to classify facades, we should not draw general 448

conclusions from such a small number of samples depicted in Fig. 4. Further 449

investigation in future works is required to assess whether labels are consistent 450

throughout the database. Although images were randomly sampled, we see instances 451

such as the top right image in Fig. 4a and the top right in Fig. 4e, labeled as opposite 452

extremes of the scale but depicting visually similar facades. We leave as open questions 453

if labels can be objectively and consistently inferred by human agents or whether they 454

are influenced by other aspects such as the neighborhood and remaining characteristics 455

of the building. Along with the aforementioned metrics, we can also discuss whether a 456

5-point scale is too fine-grained given that PCINet struggles to distinguish neighboring 457

classes. Perhaps this is a difficulty human agents also face in their work. 458
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(a) PCI label = 1.

(b) PCI label = 2.

(c) PCI label = 3.

November 30, 2023 15/29

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.23298876doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.30.23298876
http://creativecommons.org/licenses/by/4.0/


(d) PCI label = 4.

(e) PCI label = 5.

Fig 4. Random facade samples with different labels for facade conditions. Images are
divided into three columns according to PCINet’s ability to classify them, from left to
right: correctly classified samples, wrongly classified samples with absolute error (AE)
equal to 1, and wrongly classified samples with absolute error (AE) greater than 1.

Once we understand PCINet’s behavior, the following experiment emulates how the 459

model would be deployed in a real scenario, producing a geographic risk assessment over 460

entire neighborhoods. As PCINet’s inferences commonly lie below an error threshold of 461

+/− 1, we suggest a 3-point risk assessment, classifying facades as low (PCI< 3), 462

medium (PCI= 3), and high-risk (PCI> 3). For this experiment, we leverage the data 463

collected from Google Street View. This already constitutes a challenge for our model 464

because images differ in how they were collected, from photographs taken by humans 465

focusing on aspects of interest to an automatic collection from software. Additionally, 466

these facades were extracted from neighborhoods never seen in PCINet’s training, 467

strengthening our analysis of its ability to generalize to new data. 468
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(a) Area 1 (high socioeconomic level)

(b) Area 2 (intermediate socioeconomic level)

(c) Area 3 (intermediate socioeconomic level)

(d) Area 4 (low socioeconomic level)

Fig 5. Geographic distribution of labels and PCINet’s predictions on the database of
facades collected from Google Street View (best viewed in color).
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Fig. 5 presents a comparison between human-provided labels for facade conditions 469

with PCINet’s prediction. We leveraged all k = 5 trained models, producing a single 470

prediction for each data point through majority voting, i.e., the mode from candidate 471

inferences produced by all models. In Fig. 5, data points are divided into three types of 472

areas associated with general levels of risk for the respective region. This subdivision 473

allows us to visualize PCINet’s ability to grasp the general risk tendency for a given 474

region. For instance, Fig 5d shows area 4 (with lower socioeconomic level), where both 475

the labels and predictions overwhelmingly assign low PCI levels to facades. Fig. 5c 476

shows area 3 (with an intermediate socioeconomic level), which presents two aspects of 477

interest: (1) while human labels assign medium PCI to a substantial amount of facades, 478

our model tends to assign higher indices to the same regions, and (2) PCINet accurately 479

located clusters of high-risk samples, highlighted in red in the lower left and lower 480

middle parts of the images. 481

Despite its limitations, we argue that PCINet is a scalable strategy to triage large 482

areas. The entire process can be automated through data collection from Google Street 483

View and facade condition inferences with PCINet. Its ability to locate high-risk 484

clusters can expedite prioritizing areas for further human inspection. Notably, human 485

agents rely upon a broader set of attributes, such as social and environmental 486

characteristics of different regions; hence, they are better equipped to decide on practical 487

interventions for public health. PCINet is merely a tool to aid in the decision-making. 488

5 Discussion 489

5.1 Assumptions 490

The strong positive correlation and dependency relationship between the facade 491

conditions and building and backyard conditions, not found in other studies on the 492

topic, together with the positive correlation with backyard paving and shading, shows 493

that the higher the facade condition level, the higher the PCI value, considering its 494

original definition with three categories [26] and its extended version proposed by 495

Barbosa et al. [31]. With this, it is possible to say that from the facade PCI, we could 496

infer the general PCI of a building. 497

The great advantage of this finding is that we could infer the PCI relatively 498

accurately from a single variable, which is also the easiest to collect in field routines, as 499

it is available regardless of some adverse conditions, such as the owner not being at 500

home or not allowing health agents to inspect the building. The facade variable is also 501

one that can often be verified without the need for an agent to go to the field or be 502

verified quickly, allowing the collection of a more significant amount of data in a shorter 503

period, enabling a faster and more economical assessment of the risk of infestation. 504

Another important premise we assume is that deep neural networks can learn visual 505

patterns related to facade conditions. Our assumption also involved a more fine-grained 506

set of categories, labeling facades with a 5-point scale of indices. According to the 507

results, while neural networks can separate low-condition from high-condition facades 508

with sufficient accuracy for the purposes of risk mapping of neighborhoods, they do not 509

perform well with such granularity of indices. The reported confusion matrices showed 510

thick diagonals, indicating high confusion rates among neighboring classes, and a 511

measure of mean absolute error of inferences confirms that errors made by our model 512

are within a margin of +/− 1. 513

This aspect is worth a discussion regarding the source of such errors. While it can 514

indicate a limitation of our approach, it may also hint at biases during data collection 515

and labeling. Other factors, such as the overall characteristics of a neighborhood or 516

building condition cues other than the facade itself, may influence human agents in the 517
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field. This aspect can be assessed in future works by labeling the entire training set 518

with a strategy similar to that used for our Street View test set. If human agents have 519

nothing but the image of a facade to rely on, it may reduce these biases not included in 520

the inputs fed to the neural network. Additionally, the granularity of indices adopted in 521

our work may increase the subjective nature of the assessment. Although human agents 522

receive indications of what constitutes a low building condition (litter, cracks, etc.), 523

there is no objective set of calculations to obtain the final label. 524

As we have shown our methodology could identify buildings with a higher risk of 525

Ae. aegypti infestation, it could be used to optimize the arbovirus disease control 526

program. Therefore, crucial issues are to improve our method and formulate protocols 527

for municipalities interested in applying it. First, we will have to answer whether or not 528

it is necessary to survey a sample of buildings conducting field visits by field control 529

agents to classify their facades. This step could be substituted for digital building 530

facades obtained from Google Street View, among other possibilities for some 531

municipalities. Second, in both cases, it will be necessary to define the sample sizes for 532

different types of municipalities. Moreover, it will be necessary to consider the diversity 533

of building types inside the city. Depending on the characteristics of each municipality 534

neighborhood, different areas, with varying degrees of variability, would require different 535

sampling efforts. We are certain that each situation will require a specific approach and 536

that the results obtained for a given situation cannot be automatically used in a 537

different situation. In trying to translate our results from one to another reality, our 538

models will require adjustment. Nonetheless, as a machine learning approach, our 539

algorithmic core will benefit from trying to represent new situations, allowing its 540

improvement, even though small surveys of buildings will be necessary to visit at the 541

field to validate the modeling in new situations. 542

5.2 Computational Modeling 543

Although neural networks are successful in image classification, their use to predict PCI 544

by exploiting facade conditions (extracted from ground images) is entirely new. 545

Remarkably, given all the specificities of the problem, its modeling, i.e., defining the 546

input data, output, etc., is as important as designing the network architecture as it 547

directly impacts the performance. 548

In general, our modeling and proposed method showed promising results, capable of 549

identifying risk areas using only ground images without needing to visit all the city’s 550

buildings. The conditions for this are related to the positive correlation we found 551

between the facade conditions and the traditional and extended PCI components [26,31] 552

as well as to the results of previous studies [28–31], showing a good relationship 553

between Ae. aegypti infestation and PCI. Supposing we infer the building facade 554

condition level using images from Google Street View or other sources, as our results 555

showed, we would have a reasonable approximation of the building infestation risk level. 556

With this result, we can classify the buildings in risk degrees and select the ones with 557

the highest degree to prioritize and develop vector control activities. The Brazilian 558

arbovirus disease control program establishes a minimum of six visits to all urban 559

buildings of a city during a year [70]. This is unfeasible in mid-sized cities and 560

impossible in large ones [22]. As studies have shown [71–73] that only a minute 561

proportion of the buildings of a city have conditions to support mosquitoes, prioritizing 562

the ones with the highest probability of being infested by Ae. aegypti will allow health 563

services to apply their resources better and achieve better results than those obtained 564

with the current control strategy [70]. 565

One issue to be discussed is better ways to aggregate the buildings by facade 566

conditions to achieve better vector control results. Small cities in Brazil, and probably 567

worldwide, are mixed, with buildings in different conditions occupying the same areas. 568
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Buildings in mid-sized and large cities in Brazil, and probably worldwide, are clustered 569

in term of socioeconomic level, type of construction and utility (houses, apartments, 570

commercial and industrial buildings, etc.), and cultural aspects, among other factors. 571

Vector control in small cities can be organized by buildings and developed in the ones 572

with the highest infestation risk level. Meanwhile, in mid-sized and large cities, the 573

control could be organized by block, census tracts, or neighborhood, using the facade 574

average values or proportion of the facade highest values of these areas to prioritize the 575

one to be considered at the highest infestation risk. 576

5.3 Feasibility of deployment 577

Prevention and control programs for Ae. aegypti incur high costs, partly due to their 578

reliance on control methods primarily based on building visits aimed at vector 579

elimination, often requiring extensive operational coverage. These routine control 580

methods involve reducing breeding sites and the use of larvicides and adulticides, 581

resulting in temporary and limited impact on arbovirus disease prevention, especially 582

when coverage is constrained and rarely extends to the entire municipality. Furthermore, 583

these programs are vertical in nature and often do not account for the heterogeneity and 584

diversity of Ae. aegypti ecology, including local transmission cycles [74]. 585

A study conducted in a mid-sized Brazilian city revealed that the required coverage 586

for routine control program activities should occur every two weeks [22], a significant 587

departure from the currently recommended schedule in Brazil, which is every two 588

months [70]. Implementing such a frequent schedule would result in an impractical 589

operational cost. In Brazil, a study estimated an investment of 1.5 billion in vector 590

control in 2016, along with an estimated medical cost of 374 million and indirect costs 591

of 431 million, totaling 2.3 billion [23]. 592

Regarding entomological surveillance for Ae. aegypti, the primary method relies on 593

larval inspections in domestic breeding sites, such as the Breteau Index and House 594

Index [75], and managers escalate control measures based on these indicators. However, 595

these indices face significant criticism due to their costly nature and dependence on the 596

motivation of field agents to effectively seek out larvae and breeding sites, including 597

those in hard-to-reach areas [76]. Another crucial point is that these indices do not take 598

into account the productivity of breeding sites, and they do not serve as a reliable 599

indicator of adult mosquito density, given that it is the adult female mosquitoes that 600

transmit the disease [14, 77, 78]. In a study conducted in Brazil, no significant variation 601

in the intensity of vector infestation was observed in the evaluated areas. Therefore, it 602

was not a determining factor in the incidence of dengue in the studied municipality [79]. 603

Based on a systematic review, studies have demonstrated the impact of larval 604

population interventions. However, these dengue control interventions, which reduce 605

vector populations, have not shown a clear correlation between this reduction and the 606

risk of disease transmission [80]. 607

Several studies have recognized the high cost of dengue and other arbovirus control 608

programs and their low effectiveness worldwide [23, 81, 82], as we have pointed out. The 609

methodology we developed depends on the availability of digital facade images. The 610

main issue is obtaining digital facade images for socioeconomically deprived regions with 611

higher Ae. aegypti infestation risk [34]. The acquisition of images in these areas and 612

others not covered could be done using cars with 3D cameras programmed to collect 613

facade images throughout the city. The image acquisition from sites or vehicles will 614

represent new costs for the municipalities. These costs would be much smaller than 615

visiting all buildings as this new approach will identify the highest-risk buildings to be 616

visited. 617

Given the high costs associated with Ae. aegypti control and the limited resources 618

in endemic countries, actions should be strategically directed to maximize both 619
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effectiveness and efficiency [14,24]. Consequently, focusing actions on priority areas will 620

lower costs for the Ae. aegypti control program [24]. In this study, the use of an AI 621

model to classify building facades using Street View images proved effective. It could be 622

applied to classify buildings and extrapolate this classification to larger areas, such as 623

blocks or neighborhoods. This approach may be valuable for categorizing areas with a 624

higher presence of vector breeding sites because previous studies using PCI have 625

demonstrated that elevated PCI values are associated with a higher likelihood of Ae. 626

aegypti breeding sites [31,83]. Based on the findings of this study, it is believed that 627

the employed methodology can be implemented into the routine of the vector control 628

program. Regarding the improvement of PCI, considering the feasibility of 629

implementing the model used in this study, one possibility would be to include other 630

variables, such as the type and size of existing breeding sites on the buildings and the 631

presence of animals. This implementation could increase the power of predicting risky 632

buildings, allowing this model to replace larval surveys, which, despite indicating the 633

infestation rate and identifying the main breeding sites, often fail to provide quick or 634

localized measurements of mosquito abundance and have a high cost. 635

Dengue, Zika, and chikungunya are urban diseases that could benefit from our 636

proposed methodology, as Ae. aegypti develops in urban breeding sites inside and 637

around buildings [9, 37,71]. Yellow fever in South America currently occurs in silvatic 638

areas [84]. However, there is a risk of its occurrence in urban areas because Ae. 639

aegypti is a vector of this virus in urban areas [85]. The areas identified as high risk for 640

Ae. aegypti infestation could be used to conduct vaccination campaigns to increase its 641

coverage. 642

5.4 Strengths and Limitations 643

One of the limitations of the present study was the classification of the facade of 644

buildings used to train the model to identify their characteristics. This classification 645

passed through the eyes of the field agent, who cannot always classify correctly, that is, 646

differentiate small characteristics that differentiate buildings. Considering the values 647

used from 1 to 5, the most significant difficulty lies in the intermediate classifications, 648

with a building that should be classified as 3 eventually being classified as 2 or 4. This 649

subjectivity, for the human eye, implies slight differences in the real classification of the 650

building. Greater investment is needed in this standardization and search for other 651

characteristics, such as comparison with the values of neighboring buildings, which can 652

complement this information so that the model can gain precision. 653

Meanwhile, this study presents several notable strengths and advantages. To begin 654

with, its multidisciplinary nature contributes to advancements across multiple fields of 655

science, including epidemiology and entomology. Furthermore, the proposed method, 656

which combines artificial intelligence with terrestrial images to predict PCI, presents 657

several specific benefits, including: (i) quicker monitoring, as all that is needed to 658

produce a prediction for a given building is a facade image, a much faster process than 659

sending a public health specialist to visit the building, and (ii) wide coverage, as all 660

buildings in an entire city could have their PCI predicted easily, without the need for 661

local visits. Finally, our study relies on meticulously gathered and highly representative 662

samples collected through exhaustive and rigorous fieldwork. 663

5.5 Opportunities for improvements 664

Google Street View is one the richest platforms in terms of the availability of 665

ground-level imagery. Still, it does not cover the whole world and often lacks data for 666

smaller cities. For the cases in which it does contain available data, the API allows for 667

collecting a few thousand images (usually up to 28, 500) per month for free because 668
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Google gifts 200 dollars monthly per account. For smaller cities or fewer regions, this 669

can be sufficient to employ the proposed approaches with no additional cost beyond the 670

computational resources necessary to run the models. For larger regions, the cost of 671

collecting the images from the platform should be taken in consideration. As for the 672

regions where Google Street View has not visited, it is possible to look for other 673

alternatives, such as KartaView and Mapillary, which serve similar purposes with 674

different sources for the available images. However, these other platforms are usually 675

more limited than Google; thus, it is improbable (at this time) that they would contain 676

data for desired regions not covered by Street View. Meanwhile, city governments or the 677

public health system can organize to implement data collection for the streets of their 678

respective cities, taking photos from buildings in a faster and cheaper way compared to 679

having agents working to visit each place to analyze their conditions, for example, using 680

cars with 3D cameras, as we have pointed out. This would remove the dependency on 681

external data sources, allowing them to adapt the data collection criteria according to 682

their necessities. 683

Our study relied on a proxy identifier for mosquito infestation through building 684

condition indices. While this can be beneficial from a broader perspective, incorporating 685

such indices into other socioeconomic-related public assessments, there are other 686

approaches more directly related to the target of our work. For instance, mosquito 687

infestation is strongly correlated with the presence of breeding sites. A growing trend in 688

the literature is to frame the problem as a detection task, leveraging remote sensing 689

techniques to locate potential water retention areas. This is commonly approached as 690

detecting a predefined set of object classes often associated with mosquito breeding 691

grounds in urban areas, such as tires, pools, and watertanks [46,86]. Still, it may also 692

be framed as a general water retention detection based on the physical behavior of 693

water in both natural and artificial environments [87]. 694

Our methodology could benefit and improve from using satellite images to evaluate 695

building shading and backyard paving levels and evaluate socioeconomic conditions. If 696

we had a better way to predict shading and backyard conditions, we could increase our 697

accuracy in predicting PCI. Housing maintenance is particularly challenging for 698

low-income homeowners [88]. Low-income homeowners often lack the resources to 699

properly maintain their homes, leading to greater health risks [89]. This lack of 700

maintenance by socioeconomically vulnerable people can lead to a building with 701

favorable conditions for the breeding and reproduction of Ae. aegypti. Different studies 702

correlate infestation rates with low-income urban agglomerations and vulnerable 703

socioeconomic conditions [36,37] and some studies point to a correlation with higher 704

rates of dengue infection [61,62]. Considering that lower socioeconomic conditions favor 705

the breeding of mosquitoes and arbovirus occurrence, the use of satellite images to 706

evaluate the socioeconomic conditions of a given area in real-time [45], along with PCI 707

prediction, could increase the health service skill to identify higher-risk areas and thus 708

optimize surveillance and control, directing efforts efficiently. 709

6 Conclusions 710

We found that the facade conditions were highly correlated with the building and 711

backyard conditions and reasonably well correlated with shading and backyard paving. 712

PCINet produced reasonable results in differentiating the facade condition into three 713

levels. Although we began trying to use five levels, the results we obtained are in 714

accordance with the traditional PCI definition, with only three levels. Despite its 715

limitations, PCINet is a scalable strategy to triage large areas. The entire process can 716

be automated through data collection from facade data sources and PCI inferences 717

through PCINet.Although further studies are required to confirm our results, we can 718
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hypothesize that using PCINet to classify the building facade conditions without 719

visiting them physically is possible. The good correlations of facade conditions with the 720

PCI components incentivize us to improve our methods to estimate the PCI without 721

conducting physical inspections. Although we have a long road ahead, our results 722

showed that PCINet could help to optimize Aedes aegypti and arbovirus surveillance 723

and control, reducing the number of in-person visits necessary to identify buildings or 724

areas at risk. 725
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66. Zhang A, Lipton ZC, Li M, Smola AJ. Dive into Deep Learning. arXiv preprint
arXiv:210611342. 2021;.

67. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Advances in
Neural Information Processing Systems 32. Curran Associates, Inc.; 2019. p.
8024–8035.

68. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer
vision; 2017. p. 2980–2988.

69. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:14126980. 2014;.

70. da Saude Fundacao Nacional de Saude M. Programa nacional de controle da
dengue; 2002.
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