District Level Variation in Hypertension Epidemiology in India and

2 Influence of Social Determinants: National Family Health Survey-5

3	Rajeev Gupta, ¹ Kiran Gaur, ² Suresh C Sharma, ³ Raghubir S Khedar, ¹ Rajinder K Dhamija ⁴
4	From: ¹ Department of Medicine, Eternal Heart Care Centre & Research Institute, Jaipur, India;
5	² Department of Statistics, Mathematics and Computer Science, Government SKN Agriculture
6	University, Jobner, Jaipur, India. ³ Population Research Centre, Ministry of Health & Family Welfare,
7	Institute of Economic Growth, Delhi University Enclave, New Delhi, India. ⁴ Department of Neurology,
8	Institute of Human Behavior and Allied Sciences, New Delhi, India.
9	Correspondence: Dr Rajeev Gupta, Department of Medicine, Eternal Heart Care Centre and Research
10	Institute, Jagatpura Road, Jawahar Circle, Jaipur 302017 India. Phones: +91-141-5174000; FAX: +91-
11	141-5174001; Email: rajeev.gupta@eternalheart.org ;
12	ABSTRACT
13	BACKGROUND: Enumeration of state and district-level variation in hypertension prevalence in India
14	and to evaluate the influence of social determinants.
15	METHODS: We used data from the Fifth National Family Health Survey (NFHS-5) from 707 districts
16	and 825,954 participants (women 724,115, men 101,839 men) on prevalence of hypertension
17	defined according to standard criteria. Data on multiple social determinants were also obtained from
18	NFHS-5 report.
19	RESULTS: Age-standardized prevalence of hypertension was 22.4% (women 21.3%, men 24.0%) with
20	the highest prevalence in women and men, respectively, in Sikkim (34.5 and 41.6%) and Punjab (31.2
21	and 37.7%) and lowest in Rajasthan (15.4 and 17.9%) and Ladakh (15.7 and 17.4%). Prevalence was
22	more in western and southern Indian districts. High prevalence of hypertension in the young (<30y)
23	was observed in northeastern and northern states. District-level hypertension prevalence correlated
24	negatively with multi-dimensional poverty index (R ² women 0.299, men 0.245) and positively with
25	female literacy (women 0.165, men 0.134). Among women, districts with the highest availability of
26	electricity, clean water, sanitation, clean cooking fuels, healthcare service delivery and better
27	nutrition were associated with more hypertension on univariate and multivariate analyses (p<0.05).
28	CONCLUSIONS: The study shows significant geographical variation in hypertension prevalence in
29	India. Hypertension is more in men with high prevalence of premature hypertension. Better district-
30	level development (less poverty, more literacy) and healthcare services are associated with greater
31	hypertension prevalence in women.

- 32 KEY WORDS: Hypertension; Raised blood pressure; Epidemiology; Non-communicable diseases;
- 33 Social determinants.
- 34 *Article Statistics*: Abstract 225 words; Text: 2818; References 36; Tables 4; Figures 4. Supplementary
- 35 Tables 35; Supplementary Figures 3.
- 36
- 37

38	SUMMARY TABLE
39	What is known about the topic:
40	• Significant state-level variation in hypertension prevalence in India has been reported but
41	district-level variation is not known.
42	• Social determinants are important in hypertension but not well studied, especially in
43	women.
44	What this study adds:
45	• The study shows a significant district-level variation with greater hypertension prevalence in
46	southern and western India.
47	• Hypertension among the young, <30 years, is more in less developed districts.
48	• Social determinants of hypertension in women are less poverty, more literacy and
49	availability of healthcare services.
50	

51	INTRODUCTION
52	World Health Organization (WHO) and others have reported that high blood pressure (BP) is
53	the most important risk factor for mortality and disease burden in both women and men, globally
54	and in India. ¹⁻⁴ Studies have reported significant inter-country variation in hypertension prevalence
55	with the highest prevalence rates in Eastern European, Central Asian and Eastern Asian
56	countries. ^{1,3,5,6} Within-country variation has also been reported from several large countries- China,
57	USA, Brazil, Indonesia, Pakistan, UK- and Europe. ⁷⁻¹³ A county (district) level variation has been
58	reported from the USA and UK. ^{14,15} Studies from USA, UK and China have reported greater
59	hypertension prevalence in less developed regions and counties. ^{7,8,12} Risk factors for hypertension
60	are social and biological. ¹⁶ Social determinants of hypertension include low-quality urban and rural
61	infrastructure, low socioeconomic status, social disorganization, unemployment, adverse work
62	environment, illiteracy, adverse early life events, subnormal maternal and child health, etc. ^{16,17} It has
63	been reported that macrolevel and micro-level variations in social, lifestyle and biological factors are
64	responsible for difference in hypertension prevalence. ¹⁶
65	Previous national studies in India- District Level Health Survey/Adult Health Survey (DLHS-
66	4/AHS-3) ¹⁸ and Fourth National Family Health Survey (NFHS-4) ¹⁹ have reported significant state-level
67	variation in hypertension prevalence. It has been reported that macro-level social factors such as
68	greater urbanization, better human development index, more literacy and raised body mass index
69	(BMI) are associated with this variation. ¹⁹ This contrasts with developed countries where
70	hypertension is more in lesser developed and deprived regions and communities. ^{12,15} India has
71	undergone rapid socio-economic progress in recent years. To correlate variation in hypertension
72	prevalence at the district (county) level with various social factors we performed the present study.
73	We used district-level data from Fifth National Family Health Survey (NFHS-5) ²⁰ on hypertension
74	prevalence and performed correlation with multiple social determinants of health.
75	METHODS

METHODS

76	Data from NFHS-5 are available at the National Family Health Survey website at
77	http://rchiips.org/nfhs/factsheet NFHS-5.shtml. ²⁰ NFHS is a large-scale, multi-round survey
78	conducted in a representative sample of households throughout India. Multiple rounds of the survey
79	have been conducted since the first survey in 1992-93. The survey provides state and national
80	information for India on fertility, infant and child mortality, the practice of family planning, maternal
81	and child health, reproductive health, nutrition, anemia, utilization and quality of health and family
82	planning services. Each successive round of the NFHS has had two specific goals: a) to provide
83	essential data on health and family welfare needed by the Ministry of Health and Family Welfare and
84	other agencies for policy and program purposes, and b) to provide information on important
85	emerging health and family welfare issues. Ethics clearance has been obtained by the Institutional
86	Ethics Committee of Indian Institute of Population Sciences, Mumbai, India. Technical assistance for
87	the NFHS has been provided by ICF International (Virginia, USA) and other organizations on specific
88	issues. The funding for different rounds of NFHS has been provided by USAID, DFID, the Bill and
89	Melinda Gates Foundation, UNICEF, UNFPA, and Ministry of Health and Family Welfare, Government
90	of India. In NFHS-5, similar to the previous iterations, the sample was designed to provide data of all
91	key indicators at the national and state levels as well as estimates for most key indicators at the
92	district level for almost all the districts of the country. ²⁰

93 The total sample size in NFHS-5 was 610,000 households in India. This was estimated to 94 produce reliable data for each district of the country. The sample selection process was similar to 95 the previous NFHS studies. The rural sample was selected through a 2-stage sampling with villages as 96 the primary sampling unit (PSU) at the first stage selected with probability proportional to size, 97 followed by a random selection of 22 households in each PSU at the second stage. In urban areas, 98 there was also a 2-stage sampling design with Census Enumeration Blocks (CEB) selected at the first 99 stage and a random selection of 22 households in each CEB at the second stage. In the second stage 100 in both rural and urban areas, households were selected after conducting a complete mapping and 101 household listing operation in the selected first-stage units. NFHS-5 fieldwork for India was

102	conducted in two phases, phase one from 17 June 2019 to 30 January 2020 and phase two from 2
103	January 2020 to 30 April 2021 by 17 Field Agencies and gathered information from 636,699
104	households, 724,115 women, and 101,839 men in 705 districts of the country.
105	The biomarker questionnaire included measurements of height, weight, waist and hip
106	circumference, hemoglobin levels and finger-stick blood for additional testing in a laboratory for
107	women aged 15-49 years and men aged 15-54 years. Blood pressure and random blood glucose
108	were measured in all women and men aged 15 years and more in contrast to NFHS-4. ¹⁹
109	Questionnaire information and biomarkers were collected after informed consent from each
110	participant. In the NFHS-5 the BP of eligible respondents was measured using an OMRON Blood
111	Pressure Monitor to determine the prevalence of hypertension. BP measurements for each
112	respondent were taken on three separate occasions and the readings were recorded in the
113	Biomarker Questionnaire with an interval of 5 minutes between readings. Respondents whose
114	systolic BP was >130 mm Hg or diastolic BP > 85 mm Hg were considered to have elevated blood
115	pressure readings and were encouraged to see a doctor for a full evaluation. Hypertension was
116	diagnosed when systolic BP was ≥140 mmHg and/or diastolic BP ≥90 mmHg or when the participant
117	was taking medicine to control BP and reported in per cent (%).
118	Statistical analyses:

119 Data sheets were downloaded from the NFHS-5 website. Additional data were obtained 120 from the Population Research Centre, Institute of Economic Growth, Delhi University, New Delhi, 121 India. Data were transferred to MS Excel sheets and descriptive analyses were performed using this 122 program. Hypertension prevalence rates are reported separately for women and men and have been age-adjusted to the population of India. A χ^2 test was used to determine the significance of women-123 124 men differences. Hypertension prevalence rates for various districts of the country (n=705) were 125 also obtained from the NFHS-5 website and reported separately for women and men. State-level 126 mean, medians and 25-75 interquartile intervals (IQR) for hypertension were calculated. Univariate

127 correlation of district hypertension prevalence with social determinants (Supplementary Table 1)

- 128 was performed using polynomial regression and graphs were computed in MS Excel. For multivariate
- 129 correlation, we used SPSS statistical package.

130 Role of funding sources:

- No direct funding was obtained for writing this report. National Family Health Surveys are
 funded by various grants from the Government of India.
- 133

RESULTS

134 NFHS-5 enrolled 724,115 women and 101,839 men >15 years of age (total of 825,954) with response rates more than 90%.²⁰ Data for multiple socioeconomic, lifestyle and clinical variables 135 136 were obtained and recorded. National age-adjusted prevalence (%) of hypertension among women 137 was 21.3% and men 24.0% (overall 22.4%). Age-adjusted prevalence (%) of hypertension among 138 women and men in different states of India is in Table 1. There is significant state-level variation in 139 hypertension prevalence. In women the highest prevalence is in Sikkim (34.5%), Punjab (31.2%) and 140 Goa (27.5%) and the lowest in Rajasthan (15.4%), Ladakh (15.7%) and Bihar (15.9%). In men the 141 highest prevalence is in Sikkim (41.6%), Punjab (37.7%) and Manipur (33.2%) while the lowest is in 142 Ladakh (17.4%), Rajasthan (17.9%) and Bihar (18.4%) (Figure 1). Hypertension prevalence in various 143 states and districts of India in women and men is shown as a heat map (Figure 2). High prevalence is 144 observed in southern and eastern Indian states. There is a significant district-level variation with 145 greater prevalence in most western and southern districts in women and western, southern and 146 eastern districts in men. Absolute prevalence rates for each district among women and men are in 147 Supplementary Tables 2-34. We also calculated median (IQR) hypertension prevalence in each state 148 according to the district-level prevalence and prevalence rates for women and men shown in 149 Supplementary Figure 1.

Age-group stratified hypertension prevalence among women and men for the whole country
 and all the states are in Table 2. There is a significant age-associated escalation in its prevalence in all

the states of the country (Mantel-Haenszel χ² for trend, p <0.001). Higher prevalence of
hypertension in the young (<30 years) is observed among men and women in most North-Eastern
Indian states (Arunachal Pradesh, Assam, Meghalaya, Nagaland, Sikkim and West Bengal), Jammu &
Kashmir, Ladakh and Goa (Supplementary Figure 2). On the other hand, high prevalence of
hypertension among the elderly (≥60yr) is observed in Delhi, Goa, Karnataka, Kerala, Punjab, Sikkim
and Telangana.

158 Data on multiple social determinants were obtained from various government databases, NFHS-5 and others.^{19,20} District-level multidimensional poverty index is negatively associated with 159 160 the prevalence of hypertension in both women and men with polynomial R^2 of 0.299 and 0.245. 161 respectively (Figure 3a). Hypertension prevalence is positively associated with district-level female literacy levels in both women and men with polynomial R^2 of 0.165 and 0.134, respectively (Figure 162 163 3b). Data on social determinants in NFHS-5 have been primarily obtained for women, therefore, we 164 determined variation of hypertension prevalence in women according to them. Correlation of 165 district-level hypertension prevalence among women with various social, healthcare delivery and 166 clinical determinants are in Figure 4. Increasing hypertension prevalence among women correlates 167 significantly with declining poverty, better literacy, sanitation, and electricity, and availability of 168 clean fuel for cooking (Figure 4a). Greater hypertension prevalence is also observed in district with 169 lower childhood marriages and teenage pregnancies and greater vaccination coverage, modern 170 contraceptive usage and availability of skilled delivery services (Figure 4b). Presence of childhood 171 overweight, adult overweight (BMI >25) and adult hyperglycemia is also associated with greater 172 hypertension prevalence (Figure 4c).

To identify important social determinants among women we classified various socioeconomic-, environmental-, healthcare service-, womankind specific-, and nutritional variables into tertiles and determined hypertension prevalence in each of them (Table 3). Analyses of social determinants show that in districts with lower poverty and illiteracy and the highest prevalence of availability of electricity, clean water, sanitation and clean cooking fuels, the prevalence of

178	hypertension is the highest. Availability of better healthcare service delivery (higher availability of
179	skilled childbirth, use of modern contraception and full vaccination) and better nutrition (lower
180	anemia, childhood stunting or wasting, overweight in children and adults) is also associated with
181	greater prevalence of hypertension. We also calculated univariate and multivariate regression
182	coefficients to identify important variables (Table 4). On univariate analysis. There are multiple
183	factors associated with district level hypertension prevalence including socioeconomic and
184	environmental variables (multidimensional poverty index, illiteracy, access to electricity, clean
185	drinking water and sanitation, tobacco use), healthcare service delivery parameters and nutritional
186	factors. However, on multivariate analyses risk factors that continue to be significant are low female
187	illiteracy (standardized b -0.12), improved drinking water (0.11), sanitation (0.19), modern
188	contraceptive use (0.20) and overweight or obesity in women (0.44) (p<0.05).
189	DISCUSSION
190	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive
190 191	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in
190 191 192	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is
190 191 192 193	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is more in better-developed states and districts. Hypertension in the young (<30 y) is more in the
190 191 192 193 194	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensivehypertension epidemiology study in India. The study shows that there is substantial variation inhypertension prevalence across states and districts of the country. The prevalence of hypertension ismore in better-developed states and districts. Hypertension in the young (<30 y) is more in the
190 191 192 193 194 195	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensivehypertension epidemiology study in India. The study shows that there is substantial variation inhypertension prevalence across states and districts of the country. The prevalence of hypertension ismore in better-developed states and districts. Hypertension in the young (<30 y) is more in the
190 191 192 193 194 195 196	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is more in better-developed states and districts. Hypertension in the young (<30 y) is more in the northeastern and northern states of the country. Greater hypertension prevalence in more developed districts (lower multidimensional poverty, and better literacy, healthcare services and nutritional status) in India, contrasts with developed countries where hypertension is more in lesser
190 191 192 193 194 195 196 197	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is more in better-developed states and districts. Hypertension in the young (<30 y) is more in the northeastern and northern states of the country. Greater hypertension prevalence in more developed districts (lower multidimensional poverty, and better literacy, healthcare services and nutritional status) in India, contrasts with developed countries where hypertension is more in lesser developed locations and states. These findings suggest that macrolevel cardiovascular disease risk
190 191 192 193 194 195 196 197 198	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is more in better-developed states and districts. Hypertension in the young (<30 y) is more in the northeastern and northern states of the country. Greater hypertension prevalence in more developed districts (lower multidimensional poverty, and better literacy, healthcare services and nutritional status) in India, contrasts with developed countries where hypertension is more in lesser developed locations and states. These findings suggest that macrolevel cardiovascular disease risk factor transition associated with demographic and epidemiological shifts is still evolving in India.
190 191 192 193 194 195 196 197 198	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is more in better-developed states and districts. Hypertension in the young (<30 y) is more in the northeastern and northern states of the country. Greater hypertension prevalence in more developed districts (lower multidimensional poverty, and better literacy, healthcare services and nutritional status) in India, contrasts with developed countries where hypertension is more in lesser developed locations and states. These findings suggest that macrolevel cardiovascular disease risk factor transition associated with demographic and epidemiological shifts is still evolving in India. Geographic variation in hypertension prevalence has been reported from all the large
190 191 192 193 194 195 196 197 198 199 200	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is more in better-developed states and districts. Hypertension in the young (<30 y) is more in the northeastern and northern states of the country. Greater hypertension prevalence in more developed districts (lower multidimensional poverty, and better literacy, healthcare services and nutritional status) in India, contrasts with developed countries where hypertension is more in lesser developed locations and states. These findings suggest that macrolevel cardiovascular disease risk factor transition associated with demographic and epidemiological shifts is still evolving in India. Geographic variation in hypertension prevalence has been reported from all the large countries of the world. ⁷⁻¹⁵ There are significant difference in prevalence rates at state and district-
190 191 192 193 194 195 196 197 198 199 200 201	Fifth National Family Health Survey (NFHS-5) is the most representative and comprehensive hypertension epidemiology study in India. The study shows that there is substantial variation in hypertension prevalence across states and districts of the country. The prevalence of hypertension is more in better-developed states and districts. Hypertension in the young (<30 y) is more in the northeastern and northern states of the country. Greater hypertension prevalence in more developed districts (lower multidimensional poverty, and better literacy, healthcare services and nutritional status) in India, contrasts with developed countries where hypertension is more in lesser developed locations and states. These findings suggest that macrolevel cardiovascular disease risk factor transition associated with demographic and epidemiological shifts is still evolving in India. Geographic variation in hypertension prevalence has been reported from all the large countries of the world. ⁷⁻¹⁵ There are significant difference in prevalence rates at state and district- levels. In China, greater hypertension prevalence has been reported from less developed western

203	eastern states and less developed counties; ⁸ and in the UK hypertension is more in deprived
204	counties of northern region. ¹² Global Burden of Disease (GBD) Study sub-national collaborators have
205	reported greater hypertension related mortality in deprived regions of Brazil. ⁹ On the other hand, in
206	lower middle income countries such as India, Indonesia and Pakistan, greater hypertension
207	prevalence and hypertension related cardiovascular mortality have been reported from better
208	developed states and locations. ^{10,11,19} Country-level differences also exist in hypertension In Europe
209	and Asia. In Europe hypertension prevalence is significantly greater in less developed countries of
210	Central and Eastern Europe, ¹³ while in Asia the prevalence of hypertension is significantly lower in
211	high income countries of Eastern Asia and high in Central and Southern Asian countries. ²¹ Positive
212	association of hypertension in India with better development suggests that the risk factor transition
213	that happens with social development has not yet occurred in India. ²³ There is, on the other hand,
214	evidence that at an individual level, hypertension may be more among illiterate rural and slum-
215	dwelling populations, ^{23,24} and there is a significant association of low socioeconomic and educational
216	status with greater cardiovascular mortality. ^{25,26} In the present study we have shown a positive
217	association of human development with hypertension in India and more studies are needed to
218	identify the importance of individual and macrolevel social determinants.
219	An important finding in the present study is a high prevalence of premature hypertension,
220	especially in lesser developed states of northeastern and northern India. Higher prevalence of
221	hypertension at young age in India, compared to countries of North and South America and Europe
222	has been previously reported in the DLHS-4/AHS study. 18 Northeastern Indian states have a very
223	proportion of tribal population and a high prevalence of hypertension among these populations has
224	also been reported. ²⁷ Hypertension in the young is an important problem among less developed
225	societies in Africa and among African Americans in USA. ²⁸ There is a significant association of
226	premature hypertension with stroke in these communities. Million Death Study in India reported a

significantly greater stroke burden and mortality in the eastern and north-eastern states of the 227

country.²⁹ This corresponds to the presence of premature hypertension in these regions. More 228

studies are required to elucidate reasons for greater hypertension and stroke burden among the
Sub-Himalayan regions of India.

231 The study has several strengths- this is the one of the first studies that has evaluated 232 hypertension prevalence in each district of the country. The DLHS-4/AHS study also evaluated hypertension in multiple districts but two important states were missing.¹⁸ IN NFHS-4 the sample 233 234 size was restricted to the young and middle aged and did not provide data on elderly which have greater hypertension.³⁰ The ICMR-INDIAB study also obtained data on hypertension in multiple 235 states but sampling was based on state-level data and not at the district level.³¹ We have also 236 237 identified districts with greater hypertension prevalence. This is important for policy-making as these 238 districts should be the initial focus for hypertension control initiatives.³² Identification of districts 239 with premature hypertension is also important as deployment of primary prevention strategies in 240 these regions (salt, alcohol and tobacco control, healthy foods). Limitations of the study include a 241 skewed female-male ratio in the recruitment of the sample (NFHS reports are focused on women's 242 health factors), single-day measurement of BP which is not recommended to confirm the diagnosis 243 of hypertension, use of older definition of hypertension (SBP \ge 140 and/or DBP \ge 90 mmHg) instead of 244 more recently suggested criteria (SBP >130 and/or DBP >80 mmHg). In the present study we do not 245 yet have data on hypertension awareness, awareness and control status and this is also a limitation. 246 Data on pre-hypertension, which is more prevalent than hypertension in India, and should be the 247 focus of prevention strategies, are not yet available. There is a need for more primary data on 248 hypertension determinants to explain regional variations including social and cultural determinants 249 of physical activity and diet. Data on district-level availability and access to healthcare and 250 availability of drug-therapies to individuals, especially women, with hypertension are not available. 251 Finally, all these data need replication for external validation using data from concurrent studies 252 including the ICMR-INDIAB and other national surveys.

253 Conclusions:

254	It has been argued that phase transition in the human progress has been brought about by
255	tectonic shifts in development with technological progress in every corner of the globe. This has
256	lifted most societies out of Malthusian trap but aspects of local geography, culture and institutions
257	are also important in this transition. ³³ Our study shows that the escape from poverty and illiteracy
258	among women is associated with greater hypertension prevalence in India and forecasts a short-
259	term scenario with more hypertension with better social development. We hope that a
260	socioeconomic tipping point shall arrive soon where hypertension is more in lower socioeconomic
261	status individuals. ³⁴ India and most low-middle income and low-income countries have significantly
262	higher adverse cardiovascular events and mortality from hypertension. ³⁵ Reversal of this trend is
263	possible using well-tried evidence-based interventions at the level of population and individuals
264	cross the life course. The creation of an egalitarian society with a focus on various components of
265	inequality, ³⁴ availability of non-communicable disease-focused healthcare, ³⁶ and population
266	empowerment, ³⁶ would lead to lower hypertension among the more developed communities and
267	regions of the country.

269 CONTRIBUTORS

- 270 RG and KG conceptualized the study. Data analyses and estimate generation were done by KG and
- 271 SS. Maps were generated by KG. RG drafted the first iteration of the manuscript. RG, KG, SS and RKD
- 272 made substantial contributions to critical review, editing and revision of the manuscript. All the
- authors approved the final version of the manuscript. RG, KG and SS accessed and verified the data
- 274 underlying the study. All authors had full access to all the data in the study and had final
- 275 responsibility for the decision to submit for publication.
- 276

277 DECLARATION OF INTERESTS:

- 278 All the authors declare no competing interests. KG is an employee of Government of Rajasthan and
- 279 SS and RKD are employed by Government of India.
- 280

281 DATA SHARING:

- All the data used for the manuscript are freely available at the National Family Health Survey
- 283 website at http://rchiips.org/nfhs/.
- 284

285 **ACKNOWLEDGEMENTS**:

286 No specific funding was available for this article.

287	LEGENDS TO TABLES
288	Table 1: Hypertension prevalence in Indian states in NFHS-5 in women and men >15 years. Criteria
289	for diagnosis of hypertension were systolic BP ≥140 mmHg and/or diastolic BP ≥90 mmHg or on
290	medical treatment.
291	Table 2: Age-group specific hypertension prevalence in Indian states in women and men.
292	Table 3: Hypertension prevalence (%, 95% CI) in women according to tertiles of various social
293	indicators.
294	Table 4: Univariate and multivariate regression analysis (standardized b) of district-level
295	hypertension prevalence (women) with various socioeconomic and other factors.

296	LEGENDS TO FIGURES
250	

- 297 Figure 1: Hypertension prevalence among women and men in various states of India in NFHS-5.
- 298 Figure 2: Heat map showing state-level prevalence (Figure 2a) and district-level prevalence (Figure
- 299 **2b)** of hypertension among women and men in NFHS-5.
- 300 Figure 3: Inverse correlation of district-level hypertension prevalence in women and men with
- 301 increasing multidimensional poverty index (Figure 3a) and positive correlation of district-level
- 302 hypertension prevalence in women and men with increasing literacy (Figure 3b).
- 303 Figure 4 (a-c): Correlation of district-level hypertension prevalence in women with various (a)
- 304 social, (b) healthcare delivery, and (c) clinical determinants.

305		REFERENCES
306	1.	World Health Organization. Invisible numbers: the true extent of non-communicable diseases
307		and what to do about them. Geneva. World Health Organization. 2022.
308	2.	Global Burden of Disease Study 2019 Risk Factor Collaborators. Global burden of 87 risk factors
309		in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of
310		Disease Study 2019. Lancet. 2020; 396:1223-1250.
311	3.	Global Burden of Diseases CVD Collaborators. Global burden of cardiovascular diseases and risk
312		factors, 1990-2019: Update from the Global Burden of Disease 2019 Study. J Am Coll Cardiol.
313		2020; 76:2982-3021.
314	4.	Gupta R, Xavier D. Hypertension: the most important non-communicable disease risk factor in
315		India. <i>Indian Heart J.</i> 2018; 70:565-572.
316	5.	NCD Risk Factor Collaboration (NCD-RiSC). Worldwide trends in blood pressure from 1975 to
317		2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million
318		participants. <i>Lancet</i> . 2017; 389:37-55.
319	6.	NCD Risk Factor Collaboration. Worldwide trends in hypertension prevalence and progress in
320		treatment and control from 1990 to 2019: A pooled analysis of 1173 population-representative
321		studies with 104 million participants. Lancet. 2021; 398:957-980.
322	7.	Li Y, Wang L. Feng X, Zhang M, Huang Z, Deng Q, Zhou M, Astell-Burt T, Wang L. Geographical
323		variations in hypertension prevalence, awareness, treatment and control in China: Findings from
324		a nationwide and provincially representative survey. <i>J Hypertens</i> . 2018; 36:178-187.
325	8.	Centres for Disease Control and Prevention. Hypertension maps and data sources: prevalence of
326		hypertension, 2017. Available at: <u>https://www.cdc.gov/bloodpressure/maps_data.htm</u> . Accessed
327		7 March 2023.

328	9.	Nascimento BR, Brant LCC, Yadgir S, Oliveira GMM, Roth G, Glenn SD, Mooney M, Naghavi M,
329		Passos VMA, Duncan BB, Silva DAS, Malta DC, Ribeiro ALP. Trends in prevalence, mortality and
330		morbidity associated with high systolic blood pressure in Brazil from 1990 to 2017: estimates
331		from the Global Burden of Disease 2017 (GBD 2017) study. <i>Pop Health Metrics</i> . 2020; 18:e17.
332	10.	GBD 2019 Indonesia Subnational Collaborators. The state of health in Indonesia's provinces,
333		1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Glob
334		Health. 2022; 10:e1632-1645.
335	11.	GBD 2019 Pakistan Collaborators. The state of health in Pakistan and its provinces and
336		territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet
337		Glob Health. 2023; 11:e229-243.
338	12.	British Heart Foundation. Heart and circulatory disease statistics 2022. Available at:
339		https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/heart-statistics-
340		publications/cardiovascular-disease-statistics-2022. Accessed 7 March 2023.
341	13.	Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, Mossialo EA, Maggioni AP,
342		Kazakiewicz D, May HT, Smedt DD, Flather M, Zuhlke L, Beltrame JF, Huculeci R, Tavazzi L,
343		Hindricks G, Bax J, Casedei B, Achenbach S, Wright L, Vardas P. European Society of Cardiology:
344		cardiovascular disease statistics 2019. Eur Heart J. 2020; 40:12-85.
345	14.	Vaughan AS, Coronado F, Casper M, Loustalot F, Wright JS. County level trends in hypertension
346		related cardiovascular mortality: United States, 2000 to 2019. J Am Heart Assoc. 2022;

- 347 11:e024785.
- 348 15. Hughes A. Hypertension prevalence estimates in England, 2017: Estimated from the Health
- 349 Survey for England. London. Public Health England. 2020.

- 16. Hall ME, Hall JE, Whelton PK. Epidemiology, pathophysiology and treatment of hypertension. In:
- 351 Fuster V, Narula J, Vaishnava P, et al. Editors. Fuster & Hurst's: The Heart, 15th Ed. New York:
- 352 McGraw-Hill. 2022;189-232.
- 353 17. Marmot M, Wilkinson R. Social Determinants of Health, 2nd Ed. Oxford. Oxford University Press.
- 354 2006.
- 18. Geldsetzer P, Manne-Goehler J, Theilmann M, Davies JI, Awasthi A, Vollmer S, Jaacks LM,
- 356 Barnighausen T, Atun R. Diabetes and hypertension in India: a nationally representative study of
- 357 1.3 million adults. *JAMA Intern Med.* 2018; 178:363-372.
- 358 19. Gupta R, Gaur K, Ram CVS. Emerging trends in hypertension epidemiology in India. J Hum
- 359 *Hypertens*. 2019. 33:575-587.
- 360 20. National Family Health Survey of India. Available at: http://rchiips.org/nfhs/. Accessed 7
- 361 March19023.
- 362 21. Gupta R, Gaur K. Hypertension epidemiology in India: Recent nationwide studies and comparison
- 363 with Asian countries. In: Ponde CK, Mohanan PP. Editors. *Cardiology 2022: Hypertension*.
- 364 Bengaluru. Microlabs Ltd. 2022. 235-244.
- 365 22. Subramanian S, Ambade M, Kumar A, Chi H, Joe W, Rajpal S, Kim R. Progress on Sustainable
- 366 Development Goal indicators in 707 districts of India: a quantitative mid-line assessment using
- the National Family Health Surveys, 2016 and 2021. *Lancet Reg Health SE Asia*. 2023;100155.
- 368 23. Gupta R, Gupta VP, Ahluwalia NS. Educational status, coronary heart disease and coronary risk
- factor prevalence in a rural population of India. *BMJ*. 1994; 309:1332-1336
- 370 24. Gupta R, Kaul V, Agrawal A, Guptha S, Gupta VP. Cardiovascular risk according to educational
 371 status in India. *Prev Med*. 2010; 51:408-411.
- 372 25. Rosengren A, Smyth A, Rangarajan S, Ramasundarahettige C, Bangdiwala SI, AlHabib KF, Avezum
- 373 A, Bengtsson Boström K, Chifamba J, Gulec S, Gupta R, Igumbor EU, Iqbal R, Ismail N, Joseph P,

- 374 Kaur M, Khatib R, Kruger IM, Lamelas P, Lanas F, Lear SA, Li W, Wang C, Quiang D, Wang Y,
- 375 Lopez-Jaramillo P, Mohammadifard N, Mohan V, Mony PK, Poirier P, Srilatha S, Szuba A, Teo K,
- 376 Wielgosz A, Yeates KE, Yusoff K, Yusuf R, Yusufali AH, Attaei MW, McKee M, Yusuf S.
- 377 Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and
- 378 high-income countries: the Prospective Urban Rural Epidemiology (PURE) study. Lancet Glob
- 379 *Health.* 2019; 7:e748-760.
- 380 26. Joseph P, Kutty VR, Mohan V, Kumar R, Mony P, Vijayakumar K, Islam S, Iqbal R, Kazmi K, Rahman
- 381 O, Yusuf R, Anjana RM, Mohan I, Rangarajan S, Gupta R, Yusuf S. Cardiovascular disease,
- 382 mortality and their associations with modifiable risk factors in a multinational South Asia cohort:
- 383 A PURE substudy. *European Heart J.* 2022; 43:2831-2840.
- 384 27. Hazarika C, Babu BV. Prevalence of hypertension in Indian tribal population: a systematic review
- and meta-analysis. J Racial Ethn Health Disparities. 2023; EPub. doi: 10/1007/s40615-023-01532-
- 386 6.
- 387 28. Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective
- interventions for elevated blood pressure and hypertension. *Nature Rev Cardiol*. 2021; 18:785802.
- 390 29. Ke C, Gupta R, Xavier D, Prabhakaran D, Mathur P, Kalkonde YV, Kolpak P, Suraweera W, Jha P;
- 391 Million Death Study Collaborators.. Divergent trends in ischemic heart disease and stroke
- mortality in India from 2000 to 2015: A nationally representative mortality survey. *Lancet Global Health.* 2018; 6:e914-923.
- 30. Prenissl J, Manne-Goehler J, Jaacks LM, Prabhakaran D, Awasthi A, Bischops AC, Atun R,
- Bärnighausen T, Davies JI, Vollmer S, Geldsetzer P. Hypertension screening, awareness,
- 396 treatment and control in India: a nationally representative cross sectional study among
- individuals aged 15-49 years. *PLoS Med*. 2019; 16:e1002801.

- 398 31. Anjana RM, Unnikrishnan R, Deepa M, Pradeepa R, Tandon N, Das AK, Joshi S, Bajaj S, Jabbar PK,
- 399 Das HK, Kumar A, Dhandhania VK, Bhansali A, Rao PV, Desai A, Kalra S, Gupta A, Lakshmy R,
- 400 Madhu SV, Elangovan N, Chowdhury S, Venkatesan U, Subashini R, Kaur T, Dhaliwal RS, Mohan
- 401 V; ICMR-INDIAB Collaborative Study Group. Metabolic non-communicable disease health report
- 402 of India: the ICMR-INDIAB national cross-sectional study (ICMR-INDIAB 17). Lancet Diabetes
- 403 *Endocrinol*. 2023; 11:474-489.
- 404 32. Kaur P, Kunwar A, Sharma M, Durgad K, Gupta S; India Hypertension Control Initiative
- 405 collaboration; Bhargava B. The India Hypertension Control Initiative: early outcomes in 26
- 406 districts across 5 states of India, 2018-2020. J Hum Hypertens. 2023; 37:560-567.
- 407 33. Galor O. Metamorphosis. In: The Journey of Humanity: The Origins of Wealth and Inequality.
- 408 Dublin. Penguin Random House. 2022;85-100.
- 409 34. Piketty T. Toward a democratic, ecological and multicultural socialism. In: A Brief History of
- 410 Equality. Cambridge, MA. Harvard University Press. 2022; 226-244.
- 411 35. Walli-Attaei M, Rosengren A, Rangarajan S, Breet Y, Abdul-Razak S, Sharief WA, Alhabib KF,
- 412 Avezum A, Chifamba J, Diaz R, Gupta R, Hu B, Iqbal R, Ismail R, Kelishadi R, Khatib R, Lang X, Li S,
- 413 Lopez-Jaramillo P, Mohan V, Oguz A, Palileo-Villanueva LM, Poltyn-Zaradna K, R SP, Pinnaka LVM,
- 414 Serón P, Teo K, Verghese ST, Wielgosz A, Yeates K, Yusuf R, Anand SS, Yusuf S; PURE
- 415 investigators. Metabolic, behavioural, and psychosocial risk factors and cardiovascular disease in
- 416 women compared with men in 21 high-income, middle-income, and low-income countries: an
- 417 analysis of the PURE study. *Lancet* 2022; 400:811-821.
- 418 36. Gupta R, Wood DA. Primary prevention of ischemic heart disease: populations, individuals, and
- 419 healthcare professionals. *Lancet*. 2019; 394:685-696.

421 Table 1: Hypertension prevalence in Indian states in NFHS-5 in women and men >15 years. Criteria

for diagnosis of hypertension were systolic BP >140 mmHg and/or diastolic BP >90 mmHg or on

423

medical treatment.

	Sample size		Age-standardized hypertension prevalence (%)				
	Women	Men	Women	Men	Combined		
India	624115	101839	21.3	24.0	22.4		
Andaman Nicobar Islands	2397	367	25.3	30.2	26.0		
Andhra Pradesh	10975	1558	25.3	29	25.8		
Arunacha Pradesh	19765	2881	24.9	33.1	25.9		
Assam	34979	4973	19.1	20.3	19.2		
Bihar	42483	4897	15.9	18.4	16.2		
Chandigarh	746	104	25	30.6	25.7		
Chhattisgarh	28468	4174	23.6	27.7	24.1		
Delhi	11159	1700	24.1	32.8	25.3		
Goa	2030	313	27.5	26.8	27.4		
Gujarat	33343	5351	20.6	20.3	20.6		
Haryana	21909	3224	21	25.1	21.5		
Himachal Pradesh	10368	1477	22.2	24.4	22.5		
Jammu & Kashmir	23037	3087	20	18.9	19.9		
Jharkhand	26495	3414	17.8	22.6	18.3		
Karnataka	30455	4516	25	26.9	25.2		
Kerala	10969	1473	30.9	32.8	31.1		
Lakshadweep	1234	135	24.8	24.7	24.8		
Madhya Pradesh	48410	7025	20.6	22.7	20.9		
Maharashtra	33755	5497	23.1	24.4	23.3		
Manipur	8042	1162	23	33.2	24.3		
Meghalaya	13089	1824	18.7	21.4	19.0		
Mizoram	7279	1105	17.7	25.2	18.7		
Nagaland	9694	1456	22.4	28.7	23.2		
Odisha	27971	3865	22.4	25.6	22.8		
Puducherry	3669	534	23	30.1	23.9		
Punjab	21771	3296	31.2	37.7	32.1		
Rajasthan	42990	6353	15.4	17.9	15.7		
Sikkim	3271	469	34.5	41.6	35.4		
Tamil Nadu	25650	3372	24.8	30.2	25.4		
Telangana	27518	3863	26.1	31.4	26.8		
Tripura	7314	990	20.9	22.7	21.1		
Uttarakhand	13280	1586	22.9	31.8	23.8		
Uttar Pradesh	93124	12043	18.4	21.7	18.8		
West Bengal	21408	3021	20.5	20.1	20.5		

424

426

Table 2: Age-specific hypertension prevalence in Indian states in women and men.

	Women						Men					
Age-groups		<30	30- 39	40-49	50- 59	60+		<30	30- 39	40- 49	50- 59	60+
India	21.3	8.0	15.3	27.0	39.6	52.8	24.0	8.4	19.3	28.4	36.5	45.5
Andaman & Nicobar	25.3	6.3	19.5	33.2	41.8	55.9	30.2	11.1	25.8	35.4	45.5	54.4
Andhra Pradesh	25.3	4.8	13.4	28.3	44.1	59.5	29.0	9.1	24.1	33.4	43.5	49.1
Arunachal Pradesh	24.9	12.0	24.6	32.0	44.3	51.9	33.1	14.9	31.3	40.1	49.3	52.7
Assam	19.1	13.4	19.2	29.8	40.9	52.0	20.3	6.9	14.9	25.2	32.3	43.6
Bihar	15.9	5.0	10.8	20.3	29.7	40.9	18.4	6.2	13.6	20.9	28.1	35.7
Chandigarh	25.0	4.7	15.4	33.2	50.9	63.4	30.6	10.2	26.5	41.2	50.2	57.8
Chhattisgarh	23.6	7.5	17.6	29.6	43.2	55.1	27.7	11.2	24.6	35.8	42.6	49.8
Delhi	24.1	6.5	16.9	32.1	46.4	64.0	32.8	14.1	29.5	41.9	54.6	63.3
Goa	27.5	38.2	37.6	47.6	61.6	74.3	26.8	5.2	19.3	22.3	39.4	59.7
Gujarat	20.6	7.2	13.4	23.6	37.0	50.7	20.3	6.9	16.1	24.7	30.6	42.1
Haryana	21.0	6.2	14.1	24.82	38.2	48.8	25.1	9.4	22.2	31.8	41.5	46.8
Himachal Pradesh	22.2	3.9	11.0	23.0	34.3	51.1	24.4	9.1	16.4	25.9	33.3	43.8
Jammu & Kashmir	20.0	23.4	20.1	29.7	44.5	57.0	18.9	5.4	11.1	20.3	33.1	44.4
Jharkhand	17.8	5.2	11.4	20.0	34.5	48.7	22.6	7.6	17.3	27.2	35.3	46.1
Karnataka	25.0	14.3	20.6	34.6	49.2	63.0	26.9	8.1	20.9	31.9	40.4	50.5
Kerala	30.9	5.0	11.6	26.1	44.3	68.5	32.8	6.3	17.3	31.9	43.5	61.7
Ladakh	15.7	23.0	18.4	19.5	31.6	42.3	17.4	6.3	12.9	21.7	26.7	35.5
Lakshadweep	24.8	2.7	11.7	20.9	42.5	73.3	24.7	5.3	15.0	19.3	42.3	57.2
Madhya Pradesh	20.6	5.6	13.5	24.8	38.8	50.7	22.7	8.4	19.4	27.7	34.5	42.5
Maharashtra	23.1	8.0	14.7	26.4	41.3	52.9	24.4	8.5	19.8	29.0	35.7	46.2
Manipur	23.0	8.4	17.8	29.4	40.7	47.7	33.2	12.6	29.5	40.6	48.1	54.8
Meghalaya	18.7	13.4	21.7	28.7	37.9	48.7	21.4	9.8	20.2	30.7	40.4	43.6
Mizoram	17.7	8.3	13.3	20.6	25.6	35.2	25.2	13.3	20.6	29.8	35.0	43.4
Nagaland	22.4	17.6	22.7	37.5	50.0	55.3	28.7	7.8	22.4	33.3	44.1	55.0
Odisha	22.4	6.3	15.4	28.8	37.2	50.3	25.6	9.3	20.5	28.9	35.0	44.4
Punjab	31.2	7.7	20.5	39.41	51.6	65.3	37.7	14.4	32.0	46.9	57.6	64.7
Puducherry	23.0	5.6	8.5	20.4	42.5	51.5	30.1	8.2	26.0	36.1	46.5	51.1
Rajasthan	15.4	4.9	10.4	18.0	30.6	42.1	17.9	6.3	14.5	20.6	29.0	37.8
Sikkim	34.5	16.3	30.5	47.3	56.6	68.2	41.6	20.4	38.5	48.9	57.1	67.1
Tamil Nadu	24.8	4.6	12.5	25.0	40.4	55.1	30.2	10.3	24.5	34.7	43.3	48.9
Telangana	26.1	8.4	17.8	33.5	48.0	61.1	31.4	11.3	27.7	38.2	46.5	51.9
Tripura	20.9	6.8	15.1	27.0	34.4	49.5	22.7	9.4	17.3	25.7	34.2	40.9
Uttarakhand	22.9	6.3	16.3	29.4	38.7	52.6	31.8	13.3	28.3	41.2	45.3	52.1
Uttar Pradesh	18.4	7.0	15.3	24.2	35.0	46.7	21.7	8.8	19.7	26.4	34.1	40.9
West Bengal	20.5	16.8	22.9	35.3	45.2	58.1	20.1	6.5	13.1	22.2	30.9	44.6
χ^2 trend (p value <0.001 for all states)												

427

428

Variable	Hypertension prevalence (%)			F-ratio(p valu
	Low tertile	Middle tertile	High tertile	
Socioeconomic and environmental determinants				
Multidimensional poverty index	22.8(17.7-28.0)	18.6(14.6-22.6)	17.7(14.2-21.1)	66.72 (0.00)
llliteracy (women)	18.4(14.5-22.4)	20.4(15.8-25.1)	23.8(18.3-29.2)	52.77(0.00)
Health insurance status (any member)	21.2(15.7-26.6)	22.0(17.1-26.9)	20.7(15.6-25.8)	2.95(0.05)
Electricity access	18.8(14.5-23.2)	18.6(14.0-23.3)	21.6(16.4-26.8)	6.83(0.00)
Improved drinking water	18.0(15.1-21.0)	20.4(15.9-26.8)	24.8(21.0-26.8)	2.70(0.06)
Improved sanitation	167.4(14.0-20.9)	20.1(16.0-24.1)	23.8(18.1-29.4)	76.36(0.00)
Clean fuel for cooking	19.2(15.1-23.3)	20.7(15.5-25.9)	24.5(19.6-29.4)	78.03 (0.00)
Tobacco use (women)	21.5(16.2-26.8)	212(174-250)	19.0(13.8-24.1)	2.77(0.06)
Healthcare services and women-specific factors				
Skilled childbirth services	21.0(15.7-26.3)	18.4(14.5-22.3)	21.6(16.4-26.9)	9.3(0.00)
Modern contraception use	19.2(15.5-23.0)	20.7(15.3-26.0)	22.5(17.5-27.6)	15.55 (0.00
Full vaccination	20.3(15.6-25.0)	20.5(25.4-25.6)	22.3(17.2-27.4)	11.00(0.00
Child marriage	22.7(17.2-28.2)	20.6(16.0-25.1)	17.8(14.2-21.3)	35.16(0.00
Teenage pregnancy	21.716.3-27.1)	20.4(16.0-24.8)	19.0(15.3-22.8)	6.09(0.00)
Anemia (adult women)	24.5(18.1-31.1)	214(164-264)	19.0(15.1-22.8)	27.32(0.00
Nutritional and other factors				
Childhood stunting	23.8(18.3-29.3)	20.6(15-8-25.3)	18.3(14.6-22.0)	46.83 (0.00
Childhood wasting	22.2(16.8-27.7)	20.3(15.6-24.9)	20.5(15.8-25.2)	12.92 (0.00
Underweight children <5 years	23.6(18.1-29.1)	20.3(15.8-24.8)	18.8(14.1-23.4)	43.71(0.00
Overweight children <5 years	21.4(16.2-26.5)	21.0(16.2-25.9)	26.1(17.3-34.8)	4.28(0.014)
Overweight adult (women)	18.9(14.8-23.0)	22.2(17.6-26.9)	27.0(22.2-31.9)	137.38(0.00
Hyperglycemia (random glucose >140 mg/dl)	20.1(15.4-24.7)	23.3(18.1-28.4)	29.7(25.2-34.1)	63.93(0.00)

430Table 3: Hypertension prevalence (%, 95% CI) in women according to tertiles of various social431indicators

432

....

Table 4: Univariate and multivariate regression analysis (standardized b) of district-level hypertension prevalence (women) with various socioeconomic and other factors.

Variable	Univariate standardized beta coefficient (p-value)	Multivariate adjusted standardized beta					
Socioeconomic and environmental determinants							
Multidimensional poverty index	-0.21(0.00)	-0.04(0.73)					
Illiteracy (Women)	-0.17(0.00)	-0.12(0.00)					
Health insurance (any member)	0.00(0.99)	0.01(0.90)					
Electricity access	0.34(0.00)	-0.04(0.44)					
Improved drinking water	0.06 (0.01)	0.11(0.01)					
Improved sanitation	0.17(0.00)	0.19(0.00)					
Clean fuel for cooking	0.10(0.00)	-0.04(0.52)					
Tobacco use (women)	0.05(0.00)	0.07(0.15)					
Healthcare service delivery and female specific parameters							
Skilled delivery	0.15(0.00)	-0.09(0.10)					
Modern contraception use	0.09(0.00)	0.20(0.00)					
Full vaccination	0.08(0.00)	0.04(0.38)					
Child marriage	-0.14(0.00)	-0.12(0.09)					
Teenage pregnancy	-0.15(0.00)	0.06(0.33)					
Anemia (women)	- 0. 12 (0.00)	-0.11(0.07)					
Nutritional factors (female)							
Childhood stunting	-0.26(0.00)	-0.13(0.07)					
Childhood wasting	-0.18(0.00)	-0.09(0.22)					
Underweight children <5 years	-0.20(0.00)	0.21(0.06)					
Overweight children <5 years	0.18(0.00)	0.04(0.40)					
Overweight adult women	0.28(0.00)	0.44(0.00)					
Hyperglycemia women	0.47(0.00)	0.10(0.06)					