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ABSTRACT 
Kidney disease affects 50% of all diabetic patients; however, prediction of disease 
progression has been challenging due to inherent disease heterogeneity.  We use deep 
learning to identify novel genetic signatures prognostically associated with outcomes. 
Using autoencoders and unsupervised clustering of electronic health record data on 
1,372 diabetic kidney disease patients, we establish two clusters with differential 
prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant 
in ARHGEF18, a Rho guanine exchange factor specifically expressed in glomeruli. 
Overexpression of ARHGEF18 in human podocytes leads to impairments in focal 
adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. 
Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically 
increased protein levels. Our findings uncover the first known disease-causing genetic 
variant that affects protein stability of a cytoskeletal regulator through impaired 
degradation, a potentially novel class of expression quantitative trait loci that can be 
therapeutically targeted. 
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INTRODUCTION  
 Kidney disease is one of the most important complications associated with 
diabetes. Diabetic kidney disease (DKD), defined as microalbuminuria (urine albumin to 
creatinine ratio ≥30 mg/g) and decreased glomerular filtration rate (<60 mL/min/1.73 m2), 
affects approximately half of patients with type 2 diabetes1. Advancements in 
management of type 2 diabetes have led to a decrease in the proportion of individuals 
who develop DKD over the past three decades.  However, due to higher disease 
incidence2, the burden of DKD is still increasing. Thus, the identification of novel kidney-
specific drug targets remains critical.  
 The pathophysiology of DKD is multifaceted with several key signaling pathways 
implicated in its progression3,4. It is well known that starting with the early stages of the 
disease, maladaptive structural changes impact glomerular function and podocyte health. 
Cytoskeletal remodeling, starting with cellular de-differentiation and abnormal adhesivity 
of podocytes5–7, leads to foot process effacement and eventual podocyte loss. Clinically, 
reduced number of podocytes is associated with progression of DKD in diabetic 
patients8,9; however, the genomic basis of disease progression is poorly understood. 
 Despite the recent successes of major consortia on identifying new genetic 
associations with DKD10–12 very few cytoskeletal variants have been identified as 
protection or susceptibility genes against disease progression13. Lack of clear genetic 
guidance coupled with the inherent difficulty of subphenotyping the complex DKD cohort 
has made it difficult to develop novel precision therapeutics that target cytoskeletal 
remodeling. Recently, deep learning techniques have been applied to clinical and 
genomics datasets to uncover subphenotypes of Parkinson’s disease14, cancer15,16, 
autism spectrum disorder17, acute kidney injury18, and type 2 diabetes19,20. However, 
clustering of high dimensional electronic health record (EHR) data remains challenging 
due to the relative uniformity of distance measures between points in high dimensional 
spaces. To circumvent this “curve of dimensionality”, feature transformation techniques 
are often applied to decrease the number of collinear features. One such technique, 
autoencoders, are an unsupervised artificial neural network that compresses an input 
data matrix into a smaller dimension and then reconstruct the input layer21. The middle 
layer of this neural network is a representation of the input layer in a low dimensional 
feature space that may be used for downstream clustering algorithms.    
 Here, we train an autoencoder on a high dimensional dataset of DKD patients from 
an academic medical center with linked multimodal EHR and exome sequencing data. 
Using the low dimensional hidden layer from this autoencoder, we perform unsupervised 
clustering with a mixture of Gaussians model that accounts for population stratification22. 
Identifying the specific genetic variants associated with each resulting cluster, we find the 
variant rs117824875 in the ARHGEF18 gene at exome wide significance. ARHGEF18, 
which encodes the 114 kDa protein Rho-specific guanine nucleotide exchange factor 18  
(GEF18) or p114-RhoGEF, is one of the guanine nucleotide exchange factors responsible 
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for the activation of Rho-GTPases, RhoA and Rac123,24. It was also recently reported that 
FERM domain proteins, EPB41L5 and EPB41L4B may be interacting with or activating 
GEF18 at the focal adhesion (FA) complexes24,25. Single-cell RNA sequence analysis 
shows that ARHGEF18 expression is specific to podocytes in the glomerulus6, while 
NephroSeq database shows that its expression correlates with proteinuria in chronic 
kidney disease (CKD) patients. In this study, we explore the mechanistic role of 
ARHGEF18 genetic variation in podocyte morphology and function using a combination 
of integrated quantitative physiological assays. 
 
RESULTS 
Clinical clustering identifies distinct DKD subtypes 
 Clinical characteristics of the patients included are presented in Table 1.  We used 
mean vitals, mean laboratory values, and human phenotype ontology (HPO) terms 
extracted from clinical notes to identify DKD patient clusters using an unsupervised 
clustering strategy. DKD cases and controls were defined using phenotyping algorithms 
(Supplementary Note 1, 2). Applying a recently published clustering algorithm22, we 
adjusted for population stratification directly and identified two clusters (Figure 1A, 
Supplementary Figure 1). The silhouette score was maximal for k= 2 when applying K-
means clustering (Figure 1B). The clusters were labelled as M (mild) and S (severe). 
Cluster S included 390 individuals and cluster M included the remaining 972 individuals. 
As compared to cluster M, cluster S was characterized by significantly greater prevalence 
of end stage renal disease (ESRD) (15.6% vs. 5.1%; p <0.001), slightly higher baseline 
serum creatinine (1.2 vs. 1.1 mg/dL; p<0.001), greater proteinuria (urinary albumin to 
creatinine ratio, UACR: 25 vs 15 mg/g, Figure 1C), and lower BMI (30.0 vs. 31.8; 
p=0.001) (Table 1). Comparing laboratory values, cluster S had a significantly higher 
mean blood urea nitrogen and red distribution width and lower mean corpuscular 
hemoglobin concentration, plasma calcium, plasma sodium, hemoglobin, and low-density 
lipoprotein (Supplementary Table 1; FDR<0.05). Comparing HPO terms, cluster S had 
a greater frequency of terms related to hypervolemia, renal insufficiency, tricuspid 
regurgitation, vascular calcification, and pleural effusion and lower frequency of terms 
related to obesity, rhinitis, lower back pain, neck pain, and urinary incontinence. 
(Supplementary Table 2; FDR <0.001). Comparing vitals, cluster S had a significantly 
higher mean respiratory rate (18.4 vs 17.9; p<0.001) and lower mean weight (175 vs. 187 
lbs.; p <0.001) (Supplementary Table 3). 
 
GEF18 dysfunction leads to kidney disease in humans 
 To infer a genetic basis for the clinical differences observed between clusters, we 
then conducted an exome wide association study. Exome sequencing was performed on 
peripheral blood from all individuals as previously described26. We compared individuals 
in each DKD cluster with controls from our cohort defined as individuals without a 
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diagnosis of diabetic kidney disease. Comparing cluster M with controls, we found only 
two variants that met a nominal p-value threshold for significance of 5x10-6 

(Supplementary Table 4). However, when we compared cluster S with DKD controls, 
we found 26 associated with case/control status (P <5x10-6; Supplementary Table 5, 
Figure 1D). The most significant association was for rs117824875 at exome wide 
significance (OR = 7.7; p = 9.56x10-8), a nonsynonymous variant located in ARHGEF18, 
a guanine nucleotide exchange factor. Eight (2.1%) individuals in cluster S and 191 
(0.07%) DKD controls harbored a homozygous mutation (A/A) at this locus.  
 We validated the association of rs117824875 with DKD in the UK Biobank, a large 
population level biobank. Using diagnostic codes, we identified 14,660 individuals with 
type 2 diabetes subjected to whole exome sequencing of peripheral blood samples. Of 
these individuals, 187 (1.3%) were heterozygous (G/A) at the rs117824875 locus. No 
individuals carrying a homozygous (A/A) rs117824875 genotype were identified.  
 We found a significantly increased risk of DKD in rs117824875 carriers as 
compared to noncarriers (OR = 2.4, p = 0.04) adjusted for age, sex, and principal 
components genetic (Supplementary Table 6). Carriers also had a greater enrollment 
serum creatinine (beta = 0.08 μmol/L 95% CI: 0.01 – 0.16, p = 0.03) adjusted for age, 
sex, and five genetic principal components. Carriers also had a significantly greater 
enrollment urinary albumin to creatinine ratio (beta = 129 μg/mg, 95% CI: 34 – 226, p = 
0.008). 
 To investigate the associations of ARHGEF18 expression levels with human 
kidney disease, we evaluated the subsegment-specific gene expression changes 
associated with CKD in one of the publicly available NephroSeq renal biopsy cohorts27. 
Compared to healthy controls, patients with CKD had significantly greater whole kidney 
expression of ARHGEF18 in biopsy specimens (Figure 1E, p < 0.001). 
 
Rs117824875 disrupts cytoskeletal dynamics and FA architecture 
 To investigate the mechanistic role of rs117824875 on podocyte function, we 
generated immortalized human podocyte cell lines that overexpressed either wild type 
(GEF18WT) or mutant GEF18 (GEF18MT) or the tag-only (EGFP) empty vector control 
(Supplementary Figure 2). We first noted that the number of GEF18MT overexpression 
cells were significantly lower 90 minutes after replating cells cultured at 33°C. (Figure 
2A). This was independent from the tissue culture substrate (Figure 2B), which 
suggested an adhesive abnormality not linked to a specific extracellular ligand receptor.  
While we did not observe an adhesion abnormality in the GEF18WT cells, cell and nuclear 
area were significantly decreased as a result of  ARHGEF18 overexpression in GEF18WT 
and GEF18MT cells. (Figure 2C). This effect was also more pronounced in GEF18MT cells 
as compared to GEF18WT cells.  In terminally differentiated cells 90 minutes after 
replating, we noted that GEF18MT cells consistently showed significantly decreased 
adhesion compared to the GEF18WT and EGFP groups (Supplementary Figure 3A). 
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However, we did not see a consistent trend in the cell and nuclear area of the terminally 
differentiated cells (Supplementary Figure 3B, C). Using previously established high-
content analytics28 on total internal reflectance fluorescence (TIRF) microscopy images 
(Figure 2D), we quantified focal adhesion-related morphological properties in podocytes 
cultured on collagen coated coverslips for two days at 33°C or differentiated for ten days 
at 37°C. In the proliferative context under 33°C, GEF18MT cells displayed significantly 
fewer FA complexes per cell, which were also shorter as compared to control EGFP cells 
and GEF18WT cells (Figure 2E, Supplementary Figure 4A). In terminally differentiated 
cells, we observed similarly decreased total FAs in GEF18MT cells as compared to 
GEF18WT (Figure 2F, Supplementary Figure 4B).    
 Given the aberrant morphometrics observed in GEF18MT cells, we investigated the 
effect of ARHGEF18 overexpression on activation of Rac1 and RhoA, small GTPases 
with canonical roles in cytoskeleton structure and function29,30. ARHGEF18 
overexpression led to increased Rac1 and RhoA activity, with a more prominent effect in 
GEF18MT cells as compared to GEF18WT cells (Figure 3A). Consequently, in proliferating 
cells imaged after 48 hours in culture we observed a small but significant reduction in 
mean stress fiber length in GEF18MT and GEF18WT cells as compared to EGFP control 
(Figure 3B, C). There was also a small but significant reduction in the number of fibers 
in the GEF18WT cells, which did not translate into a reduction in cytoskeletal coverage 
(Figure 3C, D). We also note that cell and nuclear morphometrics obtained from 
podocytes cultured for 48 hours showed no significant difference between the GEF18MT 
and EGFP (Supplementary Figure 5). While this may seem contradictory with the 
aberrant spreading phenotype observed immediately after replating (Figure 2C), it is 
likely due to survivorship bias, where cells overexpressing ARHGEF18 at high levels, 
particularly the GEF18MT cells, are less likely to survive. Indeed, viability assay performed 
during the late spreading phase shows significantly increased cell death in GEF18MT 
podocytes in a dose dependent manner (Supplementary Figure 6). 
 
Rs117824875 alters subcellular distribution and dynamics of GEF18 
 Given the significant impact of GEF18 in FA architecture, we used live TIRF 
microscopy to determine if spatiotemporal subcellular localization of GEF18 was altered 
in cell lines expressing either WT or mutant protein fused with an mClover tag. There 
were no major phenotypic differences in cell lines overexpressing fluorescent fusion 
version of GEF18 compared to the unlabeled protein. However, live-cell TIRF imaging of 
proliferating cells over a period of six hours showed that in GEF18MT cells, GEF18 was 
highly localized to the periphery as compared to largely perinuclear localization in 
GEF18WT cells (Figure 4A, B, Supplementary videos 1-4). In terminally differentiated 
cells, we observed a similar peripheral localization of GEF18 in GEF18MT cells as 
compared to GEF18WT cells during live TIRF imaging, however, the effect was not as 
significant as seen in the proliferative context (Supplementary Figure 7A, 
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Supplementary videos 5-8). We note that this difference between GEF18MT and 
GEF18WT cells was not readily observable in fixed cells suggesting that rs117824875 
mostly impacts GEF18 protein localization in the context of FA dynamics and turnover 
(Figure 4C, Supplementary Figure 7B).      
 Since FA dynamics were substantially altered by rs117824875, we also tracked 
undirected cellular motility of ARHGEF18 overexpressing and control cells. On average, 
both GEF18MT and GEF18WT cells displayed decreased migration velocity and traversed 
a smaller distance during overnight culture (13 hours) as compared to GFP control cells 
(Figure 4D). We note that in terminally differentiated cells, no significant difference in 
migration velocity, net displacement, or distance travelled were observed 
(Supplementary Figure 8). 
 
Rs117824875 impacts GEF18 degradation and protein homeostasis 
 Several potential mechanisms may underlie the differences in cellular dynamics 
and GEF18 function observed in GEF18MT cells. Using transfection experiments, we 
observed that the mutant cells displayed a higher expression of GEF18 compared to the 
WT cells at the same transfection dose (Supplementary Figure 6B). We also noticed 
that GEF18MT cells expressed significantly more GEF18 protein compared to GEF18WT 

and EGFP control cell lines in both proliferating and differentiated podocytes 
(Supplementary Figure 9). We therefore investigated the effect of rs117824875 on 
GEF18 protein stability. We first inhibited protein synthesis by treating cells with 
cycloheximide (CHX) and quantified GEF18 protein levels at subsequent time points. 
Following CHX treatment, GEF18 protein levels were significantly reduced in both 
GEF18MT and GEF18WT cells (Figure 5A, B). However, GEF18MT cells displayed 
significantly slower reduction of GEF18 levels following CHX treatment, suggesting 
slower degradation kinetics (Figure 5B). Since ubiquitination and autophagy are the 
major pathways for protein degradation within the cell, we then sought to determine which 
pathway was selectively impaired by rs117824875 (Figure 5C). Inhibition of degradation 
pathways using small molecule inhibitors showed an increased accumulation of GEF18 
protein in the GEF18MT cells. Using co-immunoprecipitation, we observed significantly 
less GEF18 ubiquitination in GEF18MT cells as compared to GEF18WT cells (Figure 5D). 
These data show that the GEF18 mutant protein displays increased protein stability 
against ubiquitin mediated degradation in GEF18MT cells. 
 Since aberrant cell adhesion is known to be associated with lowered podocyte 
resilience under disease conditions31, given the altered protein stability and FA dynamics 
in GEF18MT cells, we investigated whether rs117824875 induced an increased apoptotic 
response in podocytes under stress conditions We observed significantly greater cleaved 
caspase-3 expression in GEF18MT cells as compared to GEF18WT cells after Adriamycin 
(ADR) treatment, indicative of increased propensity to undergo apoptosis (Figure 5E).  
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DISCUSSION 
 It has been recognized that genetic factors play a major role in DKD, which may 
explain why only a portion of diabetic patients develop DKD32,33. However, large genetic 
association studies, such as FIND34 and GoKinD10, have failed to demonstrate any major 
loci associated with proteinuria and eGFR in DKD. Recently, a large Genome wide 
association (GWAS) study revealed a protective role of collagen IV variants for DKD11. 
Here, we demonstrate the ability of a deep learning-based clustering strategy to identify 
two distinct subphenotypes of DKD patients using a multiethnic high-dimensional EHR 
dataset. Leveraging this hidden heterogeneity, we then identify a novel cluster-specific 
genetic association with a gain of function exonic variant in AHRGEF18, a key regulator 
of Rac1/RhoA activity. We replicate the association of this variant with DKD and renal 
function in an external dataset and find increased renal expression of ARHGEF18 in 
biopsy specimens of CKD patients. In an in vitro model system, we then demonstrate that 
this mutation affects cytoskeletal organization, focal adhesion dynamics, Rac1/RhoA 
activity, protein localization, and protein degradation. Even though this variant has a low 
minor allele frequency in the general population, it still represents a significant number of 
patients due to the large DKD population. Therefore, development of a therapeutic that 
targets this variant may have significant clinical utility.  

The high dimensionality of EHR features makes applying conventional distance-
based clustering algorithms, such as K-means, difficult. In this work, we leveraged 
autoencoders to reduce the dimensionality of the input feature space. By constraining the 
latent representation to have a smaller dimension than the input layer, we generated a 
minimal set of highly salient features that both preserve information and enable clustering. 
Given the well-recognized effect of population structure in confounding biological subtype 
identification35, we used a novel clustering method that accounts for genetic structure. By 
utilizing this approach, the resulting clusters likely have genuinely distinct genetic drivers 
and pragmatic importance.   

Comparing the two clinical clusters, we found a three-fold difference in the rate of 
end-stage kidney disease (5% vs 15%), suggesting practical importance to our clustering 
strategy. Although replicating these specific clusters is difficult due to systematic 
differences in EHR variable distributions, future work may broadly define subtypes using 
aggregated data from multiple cohorts. One of the goals of our work was to demonstrate 
the performance of a deep learning feature selection strategy that can define subtypes 
with unique genetic drivers.  

We also demonstrate that rs117824875 is associated with DKD diagnosis and 
renal function in the UK Biobank. Since clinical notes were not available in UK Biobank 
and the patient populations differed significantly between UK Biobank and Mount Sinai 
BioMe biobank, we were unable to reproduce the clusters themselves. However, a 
significant impact on renal function suggests that this variant has a clinical impact in 
multiple populations.    
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GEF18 is a known activator of both Rac1 and RhoA36–38. Since ARHGEF18 is 
selectively expressed in murine podocytes and has been shown to regulate actin 
organization and cellular morphology in vitro25,39, we hypothesized that the cluster S 
associated rs117824875 mutation may play a role in driving podocyte dysfunction. To 
study the functional difference between the WT and mutant protein, we generated 
GEF18WT and GEF18MT overexpressing immortalized human podocyte cell lines. 
Overexpression of GEF18MT resulted in decreased FAs, cellular area, and nuclear area, 
consistent with a prominent role in regulating podocyte morphology. Decreased FAs may 
also be promoting podocyte apoptosis through anoikis. In GEF18MT cells, there was also 
decreased stress fiber length but no difference in stress fiber coverage per cell. This may 
be a result of the shift to peripheral localization of GEF18 in GEF18MT cells. We 
demonstrate a significant increase in activation of both RhoA and Rac1 in ARHGEF18 
overexpressing cells. This effect was stronger in GEF18MT cells as compared to GEF18WT 

cells indicating a functional consequence of the rs117824875 mutation. Using live-cell 
imaging, we also demonstrate impaired FA dynamics and altered cell motility in GEF18MT 

cells, further supporting a key regulatory role for the ARHGEF18 variant in kidney 
podocytes. Although we acknowledge our in vitro experiments were performed under 
normal glucose conditions which is not representative of a diabetic kidney environment, 
we observed significant differences in cell and focal adhesion morphometrics in addition 
to increased GTPase activation. These data show that the effect of the mutation on 
protein function is significantly detrimental to podocyte health even at baseline conditions. 

There are several potential causes for the functional difference in GEF18 protein 
function induced by rs117824875; however, decreased ubiquitin mediated degradation 
leading to enhanced protein stability is potentially the most unique and translationally 
significant aspect. This mechanism potentially represents a druggable target. Highly 
selective degradation of target proteins by proteolysis targeting chimeras (PROTACs) has 
been exploited as a therapeutic strategy in several cancers40. PROTACs are bifunctional 
molecules consisting of a specific E3 ligand and a ligand that binds a protein of interest. 
These molecules are naturally catalytic and recruit the cell’s endogenous E3 ligase, 
making them effective at lower dosages with fewer adverse events41. Given these 
favorable properties, targeting GEF18 degradation by PROTAC-mediated recruitment of 
a podocyte specific E3 ligase may be a potential strategy to prevent RhoA/Rac1 
overactivation and podocyte loss.  

Recent work has identified several disease-associated genetic variants with 
notable effect on gene expression42. These expression-quantitative trait loci (eQTL) are 
most commonly in regulatory regions and increase disease risk by affecting mRNA levels. 
In this work, we find that rs117824875 is a DKD specific eQTL. Unlike other disease 
associated eQTLs, however, rs117824875 drives kidney disease by inducing a 
dysfunctional rate of GEF18 protein degradation. Since rs117824875 impairs protein 
stability, ARHGEF18 overexpressing cells are likely undergoing apoptosis at a faster rate 
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through a mechanism of natural selection. In fact, when cultured for 10 days under 
thermoshifted (37ºC) conditions, terminally differentiated GEF18MT cells have significantly 
lower GEF18 expression since cells with high GEF18 are more likely not to survive in 
culture. As such, most biochemical and functional differences observed in proliferating 
cells were not observed in differentiated cells through 37ºC thermoshifting given the 
natural pruning of cells with high GEF18 expression (Supplementary Figure 5,6).  

In conclusion, rs117824875 represents a novel rare exonic gain of function variant 
in the ARHGEF18 gene that drives podocyte dysfunction through increased protein 
stability. Future work aimed at pharmacological inhibition of GEF18, or its increased 
degradation, may help regulate the balance of RhoA-Rac1 pathways, leading to improved 
preservation of podocyte numbers as well as function in DKD patients. 
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Table 1: Baseline Characteristics of DKD Cohort  
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Figures 
Figure 1: Unsupervised clustering reveals distinct DKD clinical subtypes with 
underlying human genetic associations.  
(A) Heatmap of laboratory values that differed significantly between clinical cluster (FDR 
<0.05). (B) Silhouette scores for clusters were computed for different values of k, the 
number of clusters. The value of k that maximized the silhouette score was chosen to 
identify the optimal number of clusters. (C) Baseline urinary albumin to creatinine ratio 
(UACR) is plotted for individuals in each cluster in BioMe. (D) Manhattan plot for exome 
wide association study comparing cluster S with DKD controls. (E) ARHGEF18 mRNA 
expression from renal biopsy specimens is plotted for all individuals in a publicly available 
biopsy cohort that included patients with CKD and healthy controls.  
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Figure 2: Rs117824875 impairs podocyte focal adhesions and morphology.  
Immortalized proliferating human podocyte cell lines that overexpress either (A) 
GEF18WT, GEF18MT, or a control EGFP vector were plated on collagen, fibronectin, or 
uncoated plastic dishes. GEF18MT cells display (B) decreased cellular adhesion 90 
minutes after replating, as well as (C) decreased cellular and nuclear area. (D) 
Representative immunofluorescence images of focal adhesions in terminally 
differentiated podocytes plated on collagen coated dishes and imaged using Leica DMi8 
Infinity TIRF microscope with a 63X TIRF objective. (E) Focal adhesion morphometrics 
from proliferating cells measured after two days in culture at 33°C. (F) Focal adhesion 
morphometrics from differentiated cells measured after 10 days of differentiation at 37°C. 
All experimental groups were taken from a minimum of three plates. Significance was 
evaluated using a Kruskal-Wallis test followed by a post hoc Tukey test (****p<0.0001, 
***p<0.001, **p<0.01, *p<0.05).
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Figure 3: Effect of rs117824875 on podocyte cytoskeletal organization. 
(A) Normalized Rac1 and RhoA activation measured by G-LISA. (B) Representative 
images of actin stress fibers obtained using Zeiss LSM880 Airyscan laser scanning 
confocal microscope with a 1.4NA 63X oil objective. (C) Representative stress fiber 
segmentation image as generated by Cellpose. (D) Stress fiber properties were quantified 
using a previously published image processing pipeline43. Significance was evaluated 
using a Kruskal-Wallis test followed by a post hoc Tukey test (****p<0.0001, ***p<0.001, 
**p<0.01, *p<0.05).  
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Figure 4: GEF18 subcellular localization and cellular motility are altered by 
rs117824875. 
Representative timelapse TIRF images in (A) GEF18MT and (B) GEF18WT mClover-fusion 
cells under the proliferative context. GEF18 protein subcellular localization was quantified 
by measuring mean pixel intensity as a function of radial distance of the center of each 
cell averaged over the timelapse. (C) Representative immunofluorescence staining of 
fixed GEF18WT and GEF18MT stained for nuclei (blue) and F-actin (purple). GEF18 
subcellular localization was quantified using normalized mean intensities for each radial 
bin. (D) GEF18MT and GEF18WT cells display decreased migration velocity, distance 
travelled, and net displacement measured by tracking the centroids of cells in live-cell 
imaging analyses. Significance was evaluated using a Kruskal-Wallis test followed by a 
post hoc Tukey test (****p<0.0001, ***p<0.001, **p<0.01, *p<0.05). 
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Figure 5: Rs117824875 enhances GEF18 protein stability and induces apoptosis. 
(A) Immortalized proliferating human podocyte cell lines that overexpress either FLAG-
GEF18WT, FLAG-GEF18MT, or a control GFP vector were treated with cycloheximide. (B) 
GEF18 protein expression was quantified at several time points. Statistical significance 
was evaluated by fitting a linear regression model adjusted for timepoint. (C) Western blot 
of FLAG-GEF18 at different times after applying small molecule inhibitors of protein 
degradation pathways. (D) Immunoprecipitation of ectopically expressed FLAG-tagged 
GEF18 precipitates greater ubiquitin in GEF18WT cells as compared to FLAG-GEF18MT 
cells. (E) Representative images of immunofluorescence staining of nuclei (blue) and 
cleaved caspase-3 (green) in FLAG-GEF18WT and FLAG-GEF18MT cell lines. 
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Methods 
Feature Selection 

We included mean values of seven vitals, 38 unique laboratory values (with at least 
one measurement in at least 95% of individuals), and 302 human phenotype ontology 
(HPO) terms present in the clinical notes extracted from the EHR.  
 
Study Population 

We included patients from the Mount Sinai BioMe Biobank. Briefly, the BioMe is 
an electronic health record (EHR)-linked cohort with clinical notes and whole exome 
sequencing (N= 27,651). Enrollment of participants is predominantly through ambulatory 
care practices and is representative of New York City’s ethnically diverse patient 
population. Diabetic kidney disease (DKD) cases were defined as individuals with a 
history of both chronic kidney disease determined by a previously validated algorithm44 
(Supplementary Note 1) and diabetes ascertained using International Classification of 
Disease (ICD) codes (Supplementary Note 2). Controls were defined as individuals 
without CKD or DKD. 
 
Exome Sequencing and Quality Control  
 Whole exome sequencing was performed on peripheral blood from 31,250 
samples by Regeneron26. 8,761,478 GL-passed sites were sequenced. Samples flagged 
by Regeneron as being contaminated, having low coverage, or showing genotype-exome 
discordance were removed. Sites with Hardy-Weinberg equilibrium P<1 X 10-6 were also 
removed. Missingness (fraction of missing calls per sample, F_MISS) and depth of 
coverage were calculated using vcftools45. Mean missingness was 1.24 X 10-3. Nine 
samples with a missingness greater than 0.01 were excluded. Mean depth of coverage 
(mean across all sites) for all samples was 36.4x, with 45 samples having depth less than 
30x, and a minimum depth of 27.0x.  
 212 samples were flagged as gender discordant. Of these, 17 samples were 
removed due to either contamination or low coverage status, four were removed due to 
being identified as duplicates, and 100 were able to be reconciled after resolving a 
labelling error. In addition, three were found to identify as transgender, and two were 
found to have possible sex chromosome abnormalities. The remaining 86 samples 
indicated to be gender discordant were removed. 158 duplicates samples were then 
removed. First and second-degree related individuals were excluded. Following quality 
control, 27,651 individuals were retained. 
 
Data Preprocessing 
 We utilized all laboratory values, vital signs, and human phenotype ontology (HPO) 
terms46 from our institutional electronic health records (EHR) to identify clusters. HPO 
terms were extracted from clinical notes using a natural language processing developed 
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by Clinithink47. HPO terms were filtered using a previously published pipeline48. Each 
HPO term was encoded as a binary variable (1 if individual had HPO term in any clinical 
note, 0 otherwise). Only laboratory values with at least one measurement in greater than 
95% of individuals were included. Vitals included systolic blood pressure, diastolic blood 
pressure, pulse oxygen, heart rate, height, weight, and respiratory rate. Missing 
laboratory values and vitals were imputed using a random forest based nonparametric 
imputation algorithm implemented in the missForest R package49. After imputation, mean 
values of each lab and vital measurement for everyone were included as input for an 
autoencoder model.  
 
Deriving Patient Representations using Deep Learning Autoencoder 

A flowchart of the clustering process is provided in Supplementary Figure 1B. 
Following data preprocessing, we utilized autoencoders to reduce the dimensionality of 
the data before unsupervised clustering. An autoencoder is a neural network that takes a 
high dimensional vector as input, compresses, and then attempts to reconstructs the input 
layer. We trained a separate autoencoder on mean laboratory values, mean vitals and 
HPO terms as the scale and nature of each variable differed greatly. We used an 
autoencoder with three hidden layers with 10 nodes in each layer and a Tanh activation 
function. The architecture of the autoencoder is presented in Supplementary Figure 1B.  
 
Unsupervised Clustering 
 Identification of disease subtypes is routinely confounded by population structure 
that may be make the clinical heterogeneity of clusters. In order to account for population 
structure, we employed a recently published novel finite mixture of regression method, 
RGWAS22. This method adjusts for covariates assumed to have significant heterogeneity 
across the underlying disease subtypes. The matrix of vitals was merged with the hidden 
layers from each separate autoencoder (laboratory values and HPO terms) and then 
scaled to have mean 0 and variance of 1. We then performed unsupervised clustering 
using RGWAS adjusting 10 genetic principal components to account for population 
stratification. We varied the number of clusters, k, from two to six and then chose the k 
that maximized the cross-validated likelihood and minimized the entropy. To determine 
the stability of the clusters with the chosen k, we performed K-means clustering with the 
selected k and computed the Jaccard using a bootstrap resampling method. We also 
performed K-means clustering for values of k from two to six and computed the Silhouette 
score.  
 Clusters were visualized by plotting the first three components t-Distributed 
Stochastic Neighbor Embedding (t-SNE) components of the matrix used as input to 
clustering.  
 
Exome-wide Association Study 
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Exome wide association studies were performed comparing each cluster with non-
DKD controls. Genetic associations were computed using plink50 by fitting a logistic 
regression model with parameters –mind .1 –geno 1 –maf 0.001 –adjust –glm firth-
fallback. Variants with P < 5x10-6 were considered significant. 
 
Cell Culture 

Conditionally immortalized human podocytes were a kind gift from Dr. Moin 
Saleem (University of Bristol, Bristol, UK). Cells were cultured in RPMI 1640 medium (Cat. 
No. 11875119, Gibco) containing 10% FBS (Cat. No. 26140079, Gibco), 1% insulin-
transferrin-selenium-A supplement (Cat. No. 51300044, Gibco), 1% penicillin, and 
streptomycin (Cat. No. 10378016, Gibco) at 5% CO2 humidified environment in 33℃ 
under growth-permissive (GP) conditions or in 37ºC growth-restrictive (GR) conditions. 
Podocytes were cultured in GP condition for two days or differentiated in GR condition for 
10 days before experiments. All experiments were repeated at least three times for each 
indicated condition. For overexpression of ARHGEF18 wild-type (WT) and mutant 
constructs, podocytes were transiently transfected using ViaFect reagent (Cat. No. 
E4981, Promega). 
 
Stable Overexpression of ARHGEF18 Wildtype and Mutant in Human Podocytes 

Human ARHGEF18 expression plasmids were constructed using the ARHGEF18 
ORF (NM_015318.3). pcDNA3.1-eGFP-ARHGEF18 wildtype and mutant constructs were 
verified with DNA sequencing and then cloned into a pNL4-3 plasmid containing FLAG 
tag. Lentivirus particles were generated by transfecting HEK293T cells with the 
expression plasmid along with the packaging and envelope plasmids.  Podocytes were 
stably transduced with Flag-pNL4-3-eGFP-ARHGEF18 wildtype and mutant lentivirus, or 
control enhanced green fluorescent protein (EGFP) lentivirus. After 72 hours, cells were 
trypsinized and resuspended in PBS supplemented with 1% BSA and 2.5 mM EDTA. Cell 
sorting was performed with a BD FACSAria Fusion (BD Biosciences) according to the 
EGFP expression level. All further experiments were performed using stable expression 
cell lines. For Adriamycin (ADR) (Sigma) treatment, cells were incubated with medium 
containing 250ng/ml ADR for 24 hours. For CHX treatment, cells were incubated with 
medium containing 20ug/ml CHX for 0,1,2,4,6,8,12 hours. For MG132, VDA or Baf 
treatment, cells were incubated with medium containing 5 μmol/ml MG132(Cat. No. 
474787, Millipore), 20 μm/ml VAD or 100 nm/ml Baf for 0,2,4,8 hours. 

ARHGEF18 WT and mutant expressing mClover fusion cell lines were generated 
by sub-cloning ARHGEF18 WT and mutant into a VVPW lentiviral vector. Lentivirus 
particles were generated by transfecting HEK293T cells with the expression plasmid 
along with the packaging and envelope plasmids. Human immortalized podocytes were 
stably transduced and sorted based on mClover expression. Fusion protein expression 
was validated using fluorescence microscopy. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 7, 2023. ; https://doi.org/10.1101/2023.09.06.23295120doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.06.23295120


 
Cell Viability 

The cell viability was assessed using MultiTox-Fluor Multiplex cytotoxicity assay 
(Cat. No. G9201, Promega). 96-well plates containing 5000 cells per well were transiently 
transfected with ARHGEF18 WT and mutant constructs using Viafect reagent (Cat. No.  
E4981, Promega). After 24 and 48 hours, 2X Multi-Fluor Multiplex Cytotoxicity reagent 
was added in equal volume (100 μl per well) to all the wells and mixed briefly on an orbital 
shaker. After 30 minutes of incubation at 37ºC, fluorescence was measured using a plate 
reader (excitation ~485 nm; Emission ~ 520 nm). 
 
Cell Adhesion 

Cell adhesion experiments were performed using immortalized human podocytes 
expressing EGFP, GEF18 wild type and mutant cultured under permissive and restrictive 
conditions. Briefly, cells were plated on 96-well imaging plates that were uncoated, 
collagen type I coated, or fibronectin coated and allowed to attach for 90 minutes. After 
90 minutes, cells were fixed and stained with AlexaFluor 568 Phalloidin (Cat. No. A12380, 
Invitrogen) and Hoechst 33342 (Cat. No. 62249, Thermo Fisher). Cells were imaged on 
Leica DMi8 widefield microscope and the number of adhered cells were quantified based 
on the number of nuclei attached using Fiji. Cell and nuclear area were also quantified 
using a Fiji script. 
 
Live-cell Motility 

Human immortalized podocytes were plated on collagen-coated Ibidi 8-chamber 
slide at a density of 2000 cells per well and maintained at 33°C for 2 days or differentiated 
for 10–14 days at 37°C before experiments. Live cell imaging was performed with a Leica 
DMi8 widefield microscope with a Pecon black-box environmental enclosure using a 20X 
Leica air objective with a rate of 3 frames per hour over a period of 13 hours. For data 
analysis, cell nuclei were segmented using Cellpose (v0.6) to generate masks for each 
frame in the time course, as previously described51. From here, the masks were run 
through a custom MATLAB (R2021b) script that links nuclei in one frame to the next, 
generating cell trajectories by solving a linear assignment problem with the distance 
between nuclei as the cost. 
 
Immunofluorescence Staining 

Immortalized human podocytes expressing EGFP, GEF18WT and GEF18MT were 
cultured on collagen coated glass coverslips. Cells were fixed with 4% PFA in PBS at 
room temperature for 20 minutes then treated with 0.05% Triton-X (Cat. No. #T8787; 
Sigma Aldrich) permeabilization solution for 15 minutes at room temperature. The 
permeabilization solution was replaced with blocking buffer with BSA and donkey serum 
and incubated at 4ºC overnight. Immunostaining was performed using the primary 
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antibodies mouse anti-Paxillin mAb (Cat. No. #ma5–13356; Invitrogen) or rabbit cleaved-
caspase 3 mAb (Cat. No. 9664, Cell Signaling). Thereafter, cells were incubated with 
fluorophore-linked secondary antibodies (568 anti-mouse IgG: from Thermo Fisher). After 
another wash, either AlexaFluor-568 phalloidin (when performing fusion cell experiments, 
catalog #A12380) or AlexaFluor-647 phalloidin (focal adhesion morphometrics 
experiments, Cat. No. A22287) and Hoechst 33342 (Cat. No. 62249; all from Thermo 
Fisher) were used to label F-actin and nuclei, respectively. After staining, coverslips were 
stored in PBS at 4ºC and imaged within a week. Representative confocal images were 
obtained using a Zeiss LSM880 confocal microscope with a 63X oil objective at 1 Airy 
Unit. 
 
Total Internal Reflection Fluorescence Microscopy 

TIRF microscopy was performed using a Leica DMi8 TIRF microscope and LASX 
(v.3.6). For focal adhesion morphometrics quantification, cells were plated on 25 mm 
glass coverslips at a density of 6,000-12,000 cells per condition. Paxillin and phalloidin 
stained coverslips were imaged in 1X PBS (Cat. No. # P36975; Thermo Fisher) at a 
penetration depth of 90 nm using a 1.4 NA Leica 63X oil TIRF objective. Focal adhesion 
area and count per cell was quantified using Fiji script as previously described32. 

For TIRF experiments using GEF18 fusion cell lines, 6,000-8,000 cells were plated 
on 25 mm coverslips and used for experiments after 48 hours in culture at 33ºC or 
differentiated for 10 days at 37ºC. Cells were fixed and stained with phalloidin as 
described above. For live cell TIRF experiments, cells were imaged over 6 hours at 20-
minute intervals. After imaging, binary cell masks of individual timepoints are generated 
using Fiji script. A custom developed MATLAB code was used quantify spatial localization 
of GEF18 during cell migration by segmenting cells into radial and angular components. 
Radial segmentation divides the cells into 3 segments: a radius of 0.1667 pixels shows 
nuclear localization, 0.5 – perinuclear and 0.83 – peripheral localization. Angular 
segmentation divides the cells into 12 segments, with 0 degree (or 3 o’clock position) 
pointing to the direction of cell movement at any given timepoint. Mean intensities are 
obtained for all the segments across for all time points and plotted as imagesc, beeswarm 
or polar plots.  For intensity normalizations, a value of 1 was assigned to the segment 
with maximum mean intensity in each cell. 
 
Stress Fiber Analysis 

Stress fiber analysis was performed as described by Zhang et al43. Briefly, cells 
were segmented from the raw image using CellPose51. For each cell, the bounding box 
was top hat filtered and the image was adjusted to saturate the top 1% and bottom 1% of 
all pixel values using Matlab. The individual cell image was run through a modified version 
of the pipeline from Zhang et al. allowing for batch processing without the use of a 
graphical user interface. The images are filtered to enhance stress fiber contrast, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 7, 2023. ; https://doi.org/10.1101/2023.09.06.23295120doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.06.23295120


binarized and skeletonized. In our implementation, binarization was achieved using k-
means clustering with k = 5, keeping the brightest three clusters as the binarized image. 
Stress fibers are then reconstructed from the skeletonized image. Final images of each 
cell were saved with the stress fiber overlay and manually inspected to ensure good 
segmentation quality. 
 
Western Blot Analysis 

Human immortalized podocytes were seeded at a density of ~50,000 cells in 100 
mm culture dishes and allowed to grow for two days at 33ºC or differentiate for 10 days 
at 37ºC. After two days in culture or 10 days of differentiation, the cells were lysed were 
lysed using 50 µL of RIPA Lysis and Extraction Buffer (Cat. No.  89901, Thermo Fisher 
Scientific) containing Halt™ Protease and Phosphatase Inhibitor Cocktail (100X) (Cat. 
No.  78442, Thermo Fisher Scientific) at 2X concentration. Equal amounts of protein (30 
µg) were separated on Bolt 4 to 12%, Bis-Tris, 1.0 mm, Mini Protein Gel, (Cat. No. 
NW04125BOX, Thermo Fisher Scientific) and transferred at 25V to a Supported 
Nitrocellulose Membrane, 0.45 µm (Cat. No. 1620094, Biorad) for 30 minutes. Lysate 
preparation and Western blotting were performed according to the standard protocol. 
Each lane contained 30 to 60 μg of total protein. The membrane was blocked under gentle 
agitation at room temperature for 30 minutes using 5% dry milk in TBS(1X). Membranes 
were incubated overnight with primary antibodies diluted in TBS-T 0.1% sodium azide at 
4°C. Band density intensity for the protein of interest was normalized to either GAPDH or 
β-actin. The following primary antibodies were used in this study: FLAG (Cat. No. F1804, 
Sigma-Aldrich), cleaved-caspase 3 (Cat. No. 9664, Cell Signaling), Ubiquitin (Cat. No. 
3936, Cell Signaling) and GAPDH (Cat. No. 2118, Cell Signaling). 
 
RhoA and Rac1 Activity  

Human immortalized podocytes were serum starved for three consecutive days at 
1% FBS in standard RPMI1640 medium. Dishes were washed with ice-cold PBS buffer 
twice and lysis was performed at 4°C. Lysates were equalized due to protein content and 
analyzed according to the manufacturer’s instruction (RhoA G-LISA activation assay kit, 
Cat. No. # BK124; Rac1 G-LISA activation assay kit, Cat. No.  BK128, Cytoskeleton, 
USA). 
 
 
Statistical Analyses 
 After identification of DKD clusters, we compared features between clusters using 
the t-test and Chi-squared test for continuous and categorical variables, respectively. 
False discovery rate was computed using the Benjamini-Hochberg procedure. For 
comparison of high content image analytics, we used nonparametric Kruskal-Wallis 
analysis of variance with post hoc Tukey test. Significance was achieved at alpha 0.05. 
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Data Availability 
BioMe data, including clinical and genetic sequencing data is not publicly available due 
to patient privacy concerns and institutional policy. Transcriptomic data from CKD biopsy 
specimens is available on the Nephroseq website.  
 
Code Availability 
Clustering analysis was performed using the publicly available RGWAS package. 
Downstream genetic association analyses were performed using the publicly available 
PLINK package.  
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