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Abstract 

Down’s Syndrome (DS) is associated with premature and accelerated ageing and a propensity for 

early-onset Alzheimer’s disease (AD). The early symptoms of dementia in people with DS may reflect 

frontal lobe vulnerability to amyloid deposition. The Mismatch Negativity (MMN) is a frontocentral 

component elicited by auditory violations of expected sensory input and it reflects sensory memory 

and automatic attention switching. In the typically developing (TD) population, the MMN response 

has been found to decrease with age. In the cross-sectional phase of this study the MMN was used 

to investigate the premature neurological ageing hypothesis of DS. In the longitudinal phase, we 

evaluated the MMN as a potential predictor of cognitive decline. The study found that age predicted 

MMN amplitude in DS but not in those who are TD, showing that the MMN reflects accelerated 
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ageing in DS. However, a follow-up of 34 adults with DS found that neither amplitude nor latency of 

the MMN predicted cognitive decline one year later. 

 

1. Introduction 1 

People with Down’s Syndrome (DS) experience premature and accelerated ageing. This is evident 2 

across several physiological systems: from earlier menopause to premature skin wrinkling and early 3 

onset of dementia (Zigman, 2013). Alzheimer’s disease (AD) pathology affects nearly the entirety of 4 

the DS population as they age with a prevalence of clinical dementia in over 40% by the time 5 

individuals with DS reach their 50s (Holland et al., 1998) and 75% by their 60s (Holland & Ball, 6 

2009). In DS there is amyloid overproduction as a result of the triplication of the amyloid precursor 7 

protein gene, which is located on chromosome 21. Similarly to the Typically Developing population 8 

(TD), cerebral amyloid binding is increased once symptoms of dementia emerge and when clinically 9 

diagnosed dementia is apparent. The pathology progression seen in DS resembles that of sporadic 10 

AD (Annus et al., 2016). Neuropathological changes associated with Alzheimer’s disease (AD) begin 11 

years before symptoms onset (Sperling et al., 2013; Teipel et al., 2020) and therefore, early 12 

detection and the ability to track pathological progression has the potential for maximizing the 13 

benefits of pharmacological and clinical interventions, ultimately leading to prevention of dementia, 14 

increased life expectancy and improved quality of life. Hence, effort has been put into identifying 15 

markers that can reliably measure premature ageing and predict future cognitive decline (Bibina et 16 

al., 2017; Counts et al., 2017; de Roeck et al., 2019; Sperling et al., 2013). 17 

Positive amyloid or tau tracer binding in positron emission tomography (PET) imaging, low cerebro-18 

spinal fluid (CSF) concentrations of amyloid, high CSF concentrations of  total tau and phospho-tau, 19 

and MRI measures of cortical and hippocampal structure and function have been suggested to be 20 

accurate biomarkers of AD progression (Annus et al., 2016; Handen et al., 2012). While the utility of 21 

these measures in early detection and tracing of AD progression is arguably of fundamental 22 
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importance, they overlook one key feature - the brain is a dynamic system that processes internal 1 

and external stimuli in a matter of milliseconds, and it is this ability that ultimately determines 2 

cognitive function and behaviour. In order to fully understand AD pathology, it is therefore crucial to 3 

understand how AD functionally affects brain dynamics. This can be achieved with 4 

electroencephalography (EEG), which also has the advantage of being an inexpensive, non-invasive 5 

and relatively participant-friendly technology, making it suitable for using with the DS population. 6 

Sensory memory is a function that has been found to decline with typical ageing. This has been 7 

assessed electrophysiologically by testing the deterioration of the auditory Mismatch Negativity 8 

response (MMN) (Cheng et al., 2013; Horváth et al., 2007; Kiang et al., 2009; Näätänen et al., 2011; 9 

Schiff et al., 2008) with age. In the TD population, the amplitude of the MMN is attenuated and the 10 

latency slowed in older compared to younger individuals (Cheng et al., 2013; Horváth et al., 2007; 11 

Kiang et al., 2009; Näätänen et al., 2011; Schiff et al., 2008). The MMN is a frontocentrally 12 

distributed Event-Related Potential (ERP) component peaking at 150-200ms after stimulus onset. It 13 

is elicited by the occurrence of violations of auditory regularities encoded as sensory memory trace 14 

in the auditory cortex (Näätänen et al., 2007; Näätänen et al., 2004). The presentation of a stimulus 15 

that deviates in one or more features from the regular stimuli creates discordance between the 16 

incoming information and the memory trace, eliciting the MMN. This occurs even if the participant is 17 

not attending to the stimuli, supporting the hypothesis that the MMN functionally reflects an 18 

involuntary attention switch to auditory changes (Näätänen et al., 2007; Paavilainen, 2013). The 19 

MMN has also been interpreted within the predictive coding framework (Friston, 2003, 2005). 20 

Predictive coding postulates that the brain creates neural predictions about future events by 21 

compiling statistical regularities from incoming stimuli. The processing of information leading to the 22 

formation of statistical models of the outside world is thought to rely on a hierarchy of brains 23 

structures and mechanisms  (Huang & Rao, 2011). The cortex generates top-down predictions that 24 

are then compared with incoming sensory stimuli at the first level, or to a bottom-up input at any 25 

higher level. If there is a discrepancy between the top-down prediction and the bottom-up input, a 26 
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prediction error occurs. Such prediction error is fed back to the higher levels of the processing 1 

hierarchy and it is used to update the internal model of the environment. The MMN response 2 

corresponds to the prediction error that is modulated by the interplay between the perceptual 3 

response contingent on the deviant stimulus and changes in synaptic sensitivity during perceptual 4 

learning (Garrido et al., 2008; Garrido et al., 2009b). 5 

The MMN is generated by a temporofrontal network comprising the bilateral auditory cortex (A), the 6 

bilateral supratemporal gyrus (STG) and the right inferior frontal gyrus (rIFG) (Garrido et al., 2008, 7 

2009a, 2009b). These cortical sources interact with each other hierarchically by changes in the 8 

connectivity  within cortical sources and between each other. Initially, the A adapts to repeated 9 

standard stimuli. Then, changes in connectivity between A and the frontotemporal nodes of the 10 

network reflect changes in the precision of the prediction error that is fed from lower sensory levels 11 

to higher levels of the hierarchy responsible for top-down predictions. The MMN results from the 12 

failure of the higher levels of the hierarchy to predict the bottom-up input, which results in changes 13 

of coupling between the sensory and the frontotemporal cortices (Garrido et al., 2008, 2009a, 14 

2009b). The role of the frontotemporal network in the generation of the MMN has been supported 15 

by studies on clinical populations. Specifically, studies on people with frontotemporal dementia have 16 

shown that the disruption of frontotemporal connections impairs the detection of change by the 17 

auditory cortex (Hughes & Rowe, 2013) and frontal brain injury patients have reduced MMN 18 

responses (Alain et al., 1998; Alho et al., 1994).  19 

In DS the frontal lobe is smaller and less developed than in controls, hence the potential vulnerability 20 

of the frontal lobe to amyloid accumulation may explain the early onset of executive symptoms in 21 

people with DS in the preclinical stages of AD (Annus et al., 2016; Lautarescu et al., 2017; Neale et 22 

al., 2018). On the basis that the MMN is generated by frontal and supratemporal cortices, we 23 

hypothesised that changes across age in the MMN may reflect accelerated ageing and be associated 24 

with age-related cognitive decline in people with DS. Furthermore, the independence that the MMN 25 

has from attention makes it a suitable measure in DS who experience impaired attention (Lott & 26 
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Dierssen, 2010). To investigate this, participants with DS and age-matched TD controls were 1 

presented frequent and deviant tones during EEG recording as well as being administered 2 

neuropsychological tests sensitive to age-related cognitive decline. After one year, the same 3 

participants with DS were re-administered the neuropsychological test. Specifically, we hypothesized 4 

that increasing age predicted smaller MMN amplitudes and longer latencies in both groups with a 5 

stronger effect in DS compared to TD participants. Furthermore, we hypothesized that the MMN at 6 

the first timepoint would predict cognitive decline in DS as measured by comparison in 7 

neuropsychological test scores between the time points one year apart.    8 

 9 

2. Materials and Methods 10 

The present study was conducted with both a cross-sectional and a longitudinal phase. In the cross-11 

sectional phase both DS and aged-matched Typically Developing (TD) participants took part to the 12 

EEG session (described in section 2.4) and were administered neuropsychological and cognitive tests 13 

(described in section 2.3), as well as having a hearing check. In the longitudinal phase, only the 14 

participants with DS were re-tested on neuropsychological tests to determine whether there had 15 

been cognitive decline since time point 1 (described in section 2.4). 16 

 17 

2.1. Participants in the cross-sectional phase 18 

Thirty-six adults with DS aged 20 years or older were recruited into the study. Participants with DS 19 

were predominantly identified through their previous participation in the ‘Defeat Dementia in 20 

Down’s Syndrome’ research programme.  Participants who were not already known to the research 21 

group were made aware of the study through adverts by the Down’s Syndrome Association (DSA). 22 

Thirty-nine age- and gender-matched TD control participants were also recruited into the study, 23 

identified through the Join Dementia Research (JDR) database. Ethical approval to conduct the study 24 

(reference 14/LO/1411) was given by the National Research Ethics Service (NRES). The Committee 25 



6 
 

had the expertise to assess studies that might include individuals who lacked capacity to consent to 1 

participation in research. 2 

 3 

2.2. Participants in the longitudinal phase 4 

Thirty-four adults with DS who completed the initial EEG assessment were re-approached 10-14 5 

months later (mean 12 months) for a follow-up cognitive assessment using the participant-based 6 

CAMCOG-DS, and for an informant-based diagnostic interview with the parent or carer using the 7 

CAMDEX-DS. 8 

 9 

2.3. Clinical assessments 10 

2.3.1. Hearing checks 11 

As the EEG paradigms involved the presentation of auditory stimuli hearing loss was screened for 12 

with the Siemens HearCheck Navigator, which has been validated as an appropriate tool (Fellizar-13 

Lopez et al., 2011). This HearCheck Navigator sequentially delivers tones at two frequencies 14 

(1000Hz, 3000Hz) and a range of decibels (20dB – 75dB) and participants who did not hear tones of 15 

1000Hz and 3000Hz at 55dB were to be excluded from the study, although no-one with this degree 16 

of hearing loss was identified.  17 

 18 

2.3.2. Intellectual Functioning  19 

The Kaufman Brief Intelligence Test-2 . (KBIT-2; Kaufman & Kaufman, 2014) was used to estimate  20 

intellectual functioning. The KBIT-2provides  verbal (VIQ) and nonverbal IQ (NIQ) scores. Normally, 21 

these are to produce a Composite IQ score. Where the VIQ and NIQ discrepancy is  too large (see 22 

Table B 7, ibid.), Verbal IQ on its own is used.   23 

 24 
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2.3.3. Dementia screening in TD 1 

The Addenbrooke’s Cognitive Examination Revised (ACE-R; Mioshi et al., 2006) was used to screen 2 

control participants for dementia. Control participants were excluded at the lower cut-off of 88 or 3 

below. No control participants were excluded from this study based on their ACE-R assessment.  4 

 5 

2.3.4. Cognitive decline in DS 6 

The Cambridge Examination for Mental Disorders of Older People with Down's Syndrome and Others 7 

with Intellectual Disabilities (CAMDEX-DS;  Fonseca et al., 2018; Holland & Ball, 2009; Roth et al., 8 

1986) was developed as a tool to aid the diagnosis of dementia in people with intellectual disability. 9 

It includes a cognitive assessment component (CAMCOG-DS) and an informant interview (CAMDEX-10 

DS). The CAMCOG-DS assesses seven functional domains affected by the presence of AD: 11 

orientation, language, memory, attention, praxis, abstraction, and perception. The total possible 12 

score is 109.  13 

The CAMDEX-DS informant interview (Fonseca et al., 2018) was used to identify functional decline 14 

and to structure the diagnosis of dementia in people with DS based on reported change across 15 

specific functional domains. A dementia diagnosis from the CAMDEX-DS is a clinical decision based 16 

on parent or carer reports of the participant’s best level of cognitive functioning and evidence of 17 

functional decline. The interviewee is selected on the basis of having had regular contact with the 18 

participant for at least six months prior to the assessment. In this study the diagnosis of dementia in 19 

a participant with DS was made by an experienced psychiatrist reviewing, blind to the age, gender 20 

and previous diagnostic status of the participant, the data collected using CAMDEX-DS informant 21 

interview with the parent or carer. 22 

 23 
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2.4. EEG assessment 1 

2.4.1. Task paradigm 2 

A modified version of the auditory global-local paradigm (Bekinschtein et al., 2009) was used, 3 

previously described in Chennu et al. (2013). consisting of the presentation of tones at a volume that 4 

the participants indicated as audible and comfortable. Each tone lasted 50ms and was presented in 5 

group sequences of five tones with 100ms intervals in between each tone. The five-tones group 6 

consisted of either local standard sequences in which five tones of identical pitch (AAAAA or BBBBB) 7 

were presented, or local deviant sequences in which the first four tones were identical and the last 8 

tone was of a different pitch (AAAAB or BBBBA). The tones themselves were mixtures of three 9 

sinusoids of either type: A (500, 1000, and 2000 Hz), or B (350, 700, and 1400 Hz). The tone 10 

sequences were presented either entirely monaurally (AAAAA, BBBBB, AAAAB, BBBBA), to the left or 11 

right ear, or predominantly monoaurally with the final tone presented on the opposite ear (AAAAA, 12 

BBBBB, AAAAB, BBBBA. See Fig. 1).. Tone sequences were presented in experimental blocks, and 13 

each block included approximately 160 sequences and was counterbalanced by the dominant tone 14 

type (A or B) and the laterality of monoaural tone delivery (left or right). There were two block types. 15 

In block type X, local deviant sequences were 14.25% of the total sequences, the rest being local 16 

standards. In block type Y, local deviant sequences were 85.75% of the total sequences.   17 

At the beginning of the testing session, participants were informed that they were about to hear 18 

groups of sounds. Participants were asked to listen carefully to the groups of sounds because at the 19 

end of each block they would be asked:  “can you tell me what group of sounds you heard a lot?” 20 

and “can you tell me what group of sounds you heard sometimes?”. Participants’ answers were 21 

recorded at the end of each block. The purpose of the questioning was to maintain participants’ 22 

attention on the groups of sounds. At the end of each block, participants were also asked about their 23 

arousal levels on a scale of 1-10 (1 – Asleep to 10 – Fully awake), and attentiveness (1 – Mind 24 

wandering/unattentive to 10 – Fully attentive to stimuli).  Participants took a break between each 25 

block at a length of their choosing. A total of 8 experimental blocks (4 Y blocks and 4 X blocks) were 26 
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presented, with total testing time, including breaks and questioning, taking an average of 40 1 

minutes.  2 

The global-local paradigm is measure prediction error responses to two hierarchical levels of 3 

deviation: (i) global – between trial variance: which requires the participants to report rare 4 

sequences of tones; (ii) local – within trial variance: the automatic detection of individual deviant 5 

tones. As shown in Chennu et al. (2013), the perception of global deviance elicits an attention-6 

dependent P300 response, whereas the detection of local deviance elicits a MMN. This paper is 7 

focused on the local effect, which elicits an MMN response, even in the absence of explicit attention.  8 

 9 

 10 

Figure 1 - Paradigm: Examples of five tones sequences. In standard sequences, tones were all of the same pitch 11 

(A and C). In deviant sequences, the first four tones were identical and the fifth was of a different pitch (B and 12 

D). Sequences could either be presented monoaurally on the same ear (A and B) or interaurally with the fifth 13 

tone presented on the opposite ear (C and D). Tones were 50ms long and were spaced by 100ms silence. 14 

 15 

2.4.2. Data acquisition 16 

Data were recorded with 129-channels EEG gel nets (EGI’s HydroCel Geodesic Sensor Net). Testing 17 

was conducted in an electrically shielded room, using the Net Amps 300 amplifier (Electrical 18 

Geodesics). The auditory stimuli were presented to participants using Psychtoolbox-3 (Delorme & 19 

Makeig, 2004) running on MATLAB; at a comfortable volume as judged by participants; binaurally 20 

through Etymotics ER-3A earphones. The EEG data was recorded onto NetStation Version 5(Magstim 21 
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EGI). The recording parameters for collection were: <100KOhms impedance, 500 Hz sampling rate, 1 

and referenced to the vertex. 2 

 3 

2.4.3. Data preprocessing 4 

Pre-processing was run in MATLAB using custom functions along with EEGLAB toolbox (Chennu et 5 

al., 2013). Channels of the outer circle of the net were excluded from the pre-processing as they 6 

carry little neural information and mostly muscle artifacts (Chennu et al., 2013). Continuous data 7 

were low-pass filtered offline at 20Hz (Garrido et al., 2008; Jacobsen & Na, 2005; Näätänen et al., 8 

2004). Epochs were then selected from -200ms to 700ms relative to the onset of the fifth tone in 9 

each sequence and baseline corrected -200ms to 0ms relative to the 5th tone onset. Bad electrodes 10 

were detected by a quasi-automated procedure: noisy channels were identified by calculating their 11 

normalized variance and then manually rejected or retained by visual inspection. Rejected channels 12 

were excluded from ICA decomposition, which was used to remove eyeblinks and lateral saccades. 13 

Robust detrending was applied on the ICA corrected signal to correct for slow drifts. Subsequently, 14 

rejected channels were interpolated and epochs exceeding ±150µV were marked and then discarded  15 

following further visual inspection and the signal was then re-referenced to the average. An average 16 

of 6% of the trials were rejected (range = 0-36%). The Global Field Power (GFP) and the ERP was 17 

obtained for standard and deviant conditions and the MMN difference waves (dERP and dGFP) were 18 

obtained by subtracting the waveform of standard epochs from the waveforms of deviant epochs 19 

and were baseline corrected after the subtraction. The GFP was obtained by calculating the point-20 

by-point standard deviation of the ERP voltage and was then baseline corrected.  21 

Because the MMN has not yet been characterised in DS, the peak of the MMN was initially identified 22 

by the inspection of butterfly plots (Fig. 2) and thereby identified as occurring at 140ms after 23 

stimulus onset. In order to select the relevant electrodes for ERP analysis for each group, the cluster-24 

permutation algorithm (run with FieldTrip toolbox; Maris & Oostenveld, 2007) was run separately 25 

for controls and DS contrasting deviant and standard trials. Two-tailed dependent t-tests were used 26 
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to evaluate the effect. At the cluster level, the null distribution was generated using the Monte Carlo 1 

method and the critical value used for thresholding the sample-specific T-statistics was set at α = 2 

0.01. Separately for both groups, the relevant electrodes to be kept for further analysis were 3 

selected as the electrodes forming a significant negative cluster between 120ms and 160ms after 4 

stimulus onset (Fig. 3) and the ERP MMN peak detection was performed on the average of the 5 

selected electrodes. For each individual participant the peak corresponding to the MMN was defined 6 

as the most negative value between 120ms and 160ms for the ERP of standard and deviant trials and 7 

the dERP. For the GFP of standard and deviant trials and the dGFP, the MMN was defined as the 8 

most positive value between 120ms and 160ms. Both amplitudes and latencies were extracted for 9 

statistical analyses. 10 

Figure 2 – Butterfly plots: Grand average of all electrodes in DS, controls and all participants for both standard 11 

and deviant conditions combined (first column). ERP of all electrodes in DS, controls and all participants of the 12 

difference waveforms (second column). 13 

 14 

 15 

 16 



12 
 

Figure 3 – MMN electrodes: In grey are the electrodes selected to obtain the MMN ERP in controls and DS. The 1 

electrodes significant between 120-160ms (α ≤ 0.01) were selected following cluster permutation analysis 2 

contrasting standard and deviant trials. The colour bar represent the amplitude of the difference wave obtained 3 

subtracting the waveform of standards to the waveform of deviants. 4 

 5 

2.4.4. Cross-sectional statistical analyses 6 

To first assess whether the topography of the ERP MMN differs between the two groups, cluster-7 

based permutations were run for the ERP regardless of condition (merging standard and deviant 8 

trials) and for the dERP. Two-tailed dependent t-tests were used to  evaluate the effect between 9 

50ms and 250ms after stimulus onset. At the cluster level the null distribution was generated using 10 

the Monte Carlo method and the critical value used for thresholding the sample-specific T-statistics 11 

was set at α = 0.01. 12 

The Shapiro-Wilk test for normality was run on all measures and revealed that dERP and dGFP 13 

amplitudes and latencies were normally distributed and were retained for all further analyses. 14 

However, amplitudes and latencies of ERP and GFP were not normally distributed (all p-values ≤ 15 

0.001) and therefore were omitted from multiple regression analysis. 16 

To assess whether the auditory response to the fifth tone differed between the two groups 17 

regardless of condition, ERP and GFP amplitudes and latencies were compared using the non-18 

parametric Wilcoxon rank sum test with continuity correction and to assess whether the MMN 19 

differed between the two groups, dERP and dGFP amplitudes and latencies were compared using 20 

two-tailed independent samples t-tests. Finally, multiple regressions were fitted to the data and 21 

model comparison was conducted to assess whether age predicted changes in MMN across the two 22 
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groups. Models were built with dERP and dGFP amplitudes and latencies as dependent variables, 1 

and with the factors Group and Age as predictors (models in Formula 1). Models a to d were 2 

compared in the order exposed in Formula 1 using the likelihood ratio test (lrtest() in R). Bayes 3 

Factors (BF) were also calculated with 50% prior (bayesfactor_models() in R). In case of a significant 4 

Group and Age interaction, linear models for the two separate groups were fitted and contrasted to 5 

the intercept (models e and f in Formula 1). 6 

 7 

a) 𝑦 ~ 1 8 

b) 𝑦 ~ 𝐴𝑔𝑒 9 

c) 𝑦 ~ 𝐴𝑔𝑒 + 𝐺𝑟𝑜𝑢𝑝 10 

d) 𝑦 ~ 𝐴𝑔𝑒 ∗ 𝐺𝑟𝑜𝑢𝑝 11 

e) 𝑦𝑔𝑟𝑜𝑢𝑝  ~ 𝐴𝑔𝑒𝑔𝑟𝑜𝑢𝑝  12 

f) 𝑦𝑔𝑟𝑜𝑢𝑝  ~ 1 13 

 14 

Formula 1 Linear models were fitted and compared to assess whether age predicted changes in 15 

MMN across the two groups. y is either amplitude or latency of dGFP or dERP. Model a) is the 16 

intercept model; model b) expresses the relationship between physiological measures and Age as 17 

only predictor; model c) includes the main effects of predictors Age and Group; model d) includes 18 

the main effects of the predictors Age and Group as well as their interaction; model e) expresses the 19 

relationship between the dependent variable of only one group (controls or DS) and age; and model 20 

f) is the intercept model of data from only one group. 21 

 22 

2.4.5. Longitudinal statistical analyses 23 

The analyses focused on the difference between participants’ CAMCOG-DS scores at the cross-24 

sectional phase (Time 1; T1) and the longitudinal phase (Time 2; T2). The total CAMCOG-DS 25 

difference score (dCAMCOG) was calculated as the score at Time 2 minus the score at Time 1. To test 26 
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whether performance at the CAMCOG at T2 decreased compared to the performance at T1, paired t-1 

test was run on CAMCOG scores at the two timepoints. To assess whether changes in CAMCOG-DS 2 

scores over time correlate with age, a two-tailed Spearman’s Rank-Order correlation was run 3 

between age and dCAMCOG. The Spearman’s test was chosen because research has suggested that 4 

the relationship between age and amyloid deposition is not linear (Holland et al., 1998). The BF was 5 

calculated for such correlation as well. 6 

Finally we tested whether amplitude and latency of dGFP and dERP at T1 predicted changes in 7 

CAMCOG-DS scores over time. We built models with amplitude and latency of dGFP and dERP as 8 

predictors, IQ as covariate and dCAMCOG scores as dependent variable. To assess the relationship 9 

between variables, linear and curvilinear quadratic models (formula 2) were compared using 10 

likelihood ratio tests and BF were calculated. 11 

 12 

a) 𝑑𝐶𝐴𝑀𝐶𝑂𝐺 ~ 1 13 

b) 𝑑𝐶𝐴𝑀𝐶𝑂𝐺 ~ 𝑥 14 

c) 𝑑𝐶𝐴𝑀𝐶𝑂𝐺 ~ 𝑥 + 𝐼𝑄 15 

d) 𝑑𝐶𝐴𝑀𝐶𝑂𝐺 ~ 𝑥 + 𝑥2 + 𝐼𝑄 16 

e) 𝑑𝐶𝐴𝑀𝐶𝑂𝐺 ~ 𝑥 + 𝑥2  17 

 18 

Formula 2 Linear (a,b,c) and curvilinear (d,e) models compared to assess whether physiological 19 

measures predicted changes in CAMCOG scores (total score and subscales) over time in DS. x is 20 

either the amplitude or latency of dGFP or dERP. 21 

 22 

3. Results 23 

3.1. Demographics of the cross-sectional phase 24 

Independent samples t-tests for Equality of Means were conducted, with Equality of Variances 25 

assumed (p > 0.05) to determine that DS and controls did not significantly differ in age (p = 0.15). 26 
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Equality of Variance was not assumed (p ≤ 0.05) for group comparisons on hearing acuity, which was 1 

determined using the number of tones identified from the Siemens Hear Check Screener. However, 2 

an independent samples t-test for the Equality of Means found that the number of tones identified 3 

did not significantly differ between groups (p = 0.12). A chi-square test of independence was 4 

performed to examine the relationship between gender (male, female) and group (DS, controls) and 5 

found no significant relationship:  χ2(1, 75) = 2.24, p = 0.134. Please see table 1 for more details. 6 

 7 

 N males females mean age 
(years) 

SD age range mean number 
of tones heard 

SD 

DS 36 21 15 36.81 9.22 22-55 9.83 1.8 

controls 39 17 22 39.89 11.29 20-59 10.33 0.70 

Table 1 Participant demographics: sex, age and hearing acuity.  8 

 9 

Thirty six adults with DS, aged 22-55 years (M = 37.3, SD = 9.39) completed the cross-sectional 10 

neuropsychological and EEG testing schedule. Of the 36 adults, 3 had a dementia diagnosis and 21 11 

were male. At the cross-sectional phase, the participants’ total CAMCOG score ranged from 55-105 12 

points (M = 83.1, SD = 13.7). For four participants, KBIT-2 Composite IQ scores could not be used; 13 

Verbal IQ scores ranged from  70-80 points (M = 77, SD = 4.7). For the remaining 32 participants,  14 

Composite IQ scores range from  40-88  points (M = 53.7, SD = 12.3). The age- and gender-matched 15 

controls were aged 20-58 years old (M = 40.08, SD = 11.43), and 17 were male. The lowest 16 

Composite  IQ score, as assessed by the KBIT-2was 90 (M = 115.76, SD = 22.27); the lowest 17 

dementia-screening score, as assessed by the ACE-R, was 88. Therefore, the group is considered to 18 

be  appropriate as  TD controls for this study.  19 

 20 

3.2. Cross-sectional phase 21 

The cluster permutation run on the ERP regardless of condition between 50ms and 250ms revealed 22 

a difference between controls and DS (p ≤ 0.01) at frontal and parietal areas (Fig. 4). The Wilcoxon 23 
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rank sum test was statistically significant on amplitude (W = 3488, p ≤ 0.01, r = 0.24) and latency (W 1 

= 3491.5, p ≤ 0.01, r = 0.24) of the GFP and latency of the ERP (W = 3446, p ≤ 0.01, r = 0.23). DS had 2 

smaller amplitude and shorter latency of GFP peaks and shorter latency of ERP peaks than controls 3 

(Table 2, Fig. 5). Moreover, when testing for the effect of the MMN in the same time window there 4 

was difference between controls and DS (p ≤ 0.01) most pronounced at the right central electrodes 5 

(Fig. 4). In DS the dGFP (t(71.97)= 4.88, p ≤ 0.001, d = 1.13) and dERP (t(71.64)= -2.95, p ≤ 0.01, d = -0.69)  6 

peak amplitudes were smaller than in controls. T-tests run on latencies did not show any significant 7 

difference in dGFP peaks and only a marginal difference in dERP peaks (t(71.88)= -1.94, p = 0.06, d = -8 

0.45)  with DS showing longer latencies (Table 2, Fig. 5). 9 

 10 

 ERP amplitude ERP latency GFP amplitude GFP latency 

Controls -1.32 (0.92) 148.74 (11.43) 1.13 (0.99) 148.21 (12.04) 

DS -1.29 (0.97) 143.69 (11.62) 0.67 (0.81) 142.36 (12.92) 

 

 dERP amplitude dERP latency dGFP amplitude dGFP latency 

Controls -1.71 (0.67) 136.74 (9.41) 1.71 (0.64) 136.76 (9.41) 

DS -1.25 (0.68) 140.78 (8.54) 1.00 (0.60) 137.83 (10.04) 

 11 
Table 2 Mean and standard deviations (in brackets) of latency (ms) and amplitudes (SD of μV) of ERP 12 

and GFP peaks in the two groups regardless of condition and in difference waves. 13 

 14 

Comparing the models that predicted dGFP amplitudes based on Age and Group, the model with 15 

Group and Age (model c in Formula 1) provided a significant improvement compared to the model 16 

(model b in Formula 1) with Age as only predictor (χ2
(1) = 20.78, p ≤ 0.001, λ = -68.84, BFcb = 3780). 17 

The model with the interaction between Age and Group (model d in Formula 1) was significantly 18 

better (χ2
(1) = 7.54, p ≤ 0.01, λ = -65.07, BFdb = 5.05) than the model with only the main factors 19 

(model c). Model d explained a significant amount of the variance of dGFP amplitude changes with 20 

age (F(3,70) = 11.02, p ≤ 0.001, R2 = 0.32, R2
Adj = 0.29). Of the coefficients, only the interaction 21 

statistically predicted dGFP amplitude (B = -0.04, SE = 0.01, t(70) = -2.74, p ≤ 0.01). Confirming that 22 
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age alone was not predictive of dGFP amplitudes, the BFba = 0.14 between model b and the intercept 1 

(model a) was obtained. The linear model fitted only on TD data (model e, Formula 1) was not 2 

significant and did not differ from the intercept (model f, Formula 1) as confirmed by BFef = 0.54, 3 

suggesting that Age is not a good predictor of dGFP amplitude in TD. On the other hand, the model 4 

fitted on DS data (model e) was significant (F(1,34) = 5.57, p ≤ 0.05, R2 = 0.14, R2
Adj = 0.12). The 5 

predictor Age significantly predicted dGFP amplitude in DS with smaller amplitudes in older 6 

individuals (B = -0.02, SE = 0.01, t(35) = -2.36, p ≤ 0.05) and the model differed from the intercept (χ2
(1) 7 

= 5.46, p ≤ 0.05, λ= -29.28, BFef = 2.56). The loglikelihood test on dGFP latencies found no 8 

improvements of the alternative models compared to the intercept. When running incremental 9 

bayesian model comparisons, the simpler model was always probable with a greater degree of belief 10 

than the alternative, more complex model (BFba = 0.21, BFcb = 0.14,  BFdb = 0.12). 11 

 12 

 13 

Figure 4 – Cross-sectional cluster permutation: Results of cluster permutation analysis between 50-250ms. In 14 

the top row are plotted the results of the analysis of the ERP of standard and deviant conditions combined 15 

contrasting DS and controls. In the bottom row are plotted the results of the analysis of the difference waves DS 16 

and controls. Significant electrodes (α ≤ 0.01) are marked in grey. The colour bar represent the amplitude of the 17 

waveform obtained subtracting the waveform of DS to the waveform of controls. 18 

 19 
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Regarding dERP, comparing the models that predicted variations in amplitudes based on Age and 1 

Group, the model with Group and Age (model c in Formula 1) provided a significant improvement to 2 

the model (model b in Formula 1) with Age as only predictor (χ2
(1) = 8.45, p ≤ 0.01, λ= -75.00, BFcb = 3 

7.96). The model with the interaction between Age ad Group (model d in Formula 1) was 4 

significantly better (χ2
(1) = 11.01, p ≤ 0.001, λ= -69.50, BFdb = 28.55) than the model with only the 5 

main factors (model c). Model d explained a significant amount of the variance of dERP amplitude 6 

changes with age (F(3,70) = 7.04, p ≤ 0.001, R2 = 0.23, R2
Adj = 0.20). In the model, the predictor Group 7 

(B = -1.42, SE = 0.58, t(70) = -2.43, p ≤ 0.05) and the Group and Age interaction (B = 0.05, SE = 0.01, t(70) 8 

= 3.35, p ≤ 0.01) significantly predicted dERP amplitude. The predictor Age was not significant but 9 

approached significance (B = -0.02, SE = 0.01, t(70) = -1.91, p = 0.06). To further investigate the role of 10 

age regardless of group, the BFba = 0.12 between model b and the intercept (model a) was obtained. 11 

The linear model fitted only on control data (model e, Formula 1) was not significant and did not 12 

differ from the intercept (model f, Formula 1) as confirmed by BFef = 0.96. On the other hand, the 13 

model fitted on DS data (model e) was significant (F(1,34) = 7.94, p ≤ 0.01, R2 = 0.19, R2
Adj = 0.17). The 14 

predictor Age significantly predicted dERP amplitude in DS (B = 0.03, SE = 0.01, t(35) = 2.82, p ≤ 0.01) 15 

and the model differed from the intercept (χ2
(1) = 7.56, p ≤ 0.01, λ= -33.00, BFef = 7.31). The 16 

loglikelihood test on dERP latency showed that model c with the main factors had better fit than 17 

model b (χ2
(1) = 5.27, p ≤ 0.05, λ = -264.10, BFcb = 1.62). Model c explained a significant amount of the 18 

variance of dERP latency (F(2,71) = 4.41, p ≤ 0.05, R2 = 0.11, R2
Adj = 0.09) and both Age (B = 0.22, SE = 19 

0.10, t(71) = 2.21, p ≤ 0.05) and Group (B = 4.72, SE = 2.06, t(71) = 2.29, p ≤ 0.05) were significant 20 

predictors of latency. Hence, the data showed that latency slowed down as a function of age in both 21 

groups. To further explore the role of age, model b was compared against the intercept and a BFba = 22 

0.64 showed only anecdotal evidence for model b. Multiple regressions are plotted in Fig. 6. 23 

 24 

 25 
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Figure 5 – Cross-sectional results: Waveforms (top row), boxplots representing peak amplitudes (second row) 1 

and peak latencies (bottom row) of dERP (first column), ERP regardless of condition (second column), dGFP (third 2 

column), and GFP regardless of condition (fourth column) of controls and DS. In the waveform plots, the grey 3 

segment represents the 120-160ms window in which the peaks have been identified, shading represents 95% 4 

confidence intervals. 5 

 6 

3.3. Demographics of the longitudinal phase 7 

Thirty-four of the 36 adults with DS completed both the initial (cognitive and EEG) and the follow-up 8 

(cognitive only) assessments. One participant was deceased and one participant was excluded 9 

because had fulfilled criteria for “uncooperative behavior”, “silly behavior” and “flat affect”. Of the 10 

34 adults, 3 had a dementia diagnosis at time 1 (T1), 20 were male and 32 were right handed. No 11 

participants transitioned to an AD diagnosis between T1 and T2. Table 3 provides more demographic 12 

and cognitive detail for the cognitive follow-up of participants. 13 

 14 

 min max mean SD 

T1 age (years) 22 55 37.6 9.4 

T1 total CAMCOG score 58 105 83.4 14.0 
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T2 total CAMCOG score 48 104 81.4 15.1 

T2-T1 total CAMCOG score -17 5 -2.0 4.7 

Table 3 Demographics of the longitudinal phase participants. T1 represents time 1 (initial 1 

assessment), T2 represents time 2 (follow-up assessment). SD is standard deviation from the mean. 2 

 3 

 4 

Figure 6 – Prediction of age: Fitted linear models with dGFP amplitude (first row), dGFP latency (second row), 5 

dERP amplitude (third row), and dERP latency (fourth row) as dependent variable and age as predictor. In the 6 

second and third column, the linear models have been plotted separately for the group factor so that to illustrate 7 

the interaction between age and group predictors. Shading represents 95% confidence intervals. 8 

 9 

3.4. Longitudinal phase 10 

Scores on the  CAMCOG at T2 were significantly lower than scores at T1 (t(34) = 2.51, p≤0.05, Cohen’s 11 

d = 0.42). The Spearman’s Rank-Order correlation between dCAMCOG and age was not significant 12 

(ρ(33) = -0.16, p = 0.36, BF10 = 1.07. Fig. 7). Therefore, age was considered no further in the following 13 

analyses. The 34 participants’ total CAMCOG difference scores ranged from -17 to 5 points with a 14 

mean change of -2.06 points (SD = 4.77 points). Sequentially comparing the models reported in 15 
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Formula 2 with dGFP amplitude as predictor, no model was a significant improvement over the 1 

preceding model (BFba = 0.31, BFcb = 0.17, BFdc = 0.21, BFde = 0.17), suggesting that dGFP amplitude 2 

was not a predictor of cognitive decline as measured by dCAMCOG scores. The same model 3 

comparison on models with dGFP latency as predictor, showed that the curvilinear model d was 4 

significantly better than the linear model c (Loglikelihood = -98.67, χ2(1) = 5.83, p ≤ 0.05, BFdc = 3.11). 5 

However, model d did not have a significantly better fit than model e. Therefore model e was kept as 6 

the chosen model being a simpler model. Model e was statistically significant (F(2,32) = 4.79, p ≤ 0.05, 7 

R2 = 0.23, R2
Adj = 0.18) and both the linear (B = 3.87, SE = 1.60, t(32) = 2.42, p ≤ 0.05) and quadratic (B = 8 

-0.01, SE = 0.006, t(32) = -2.33, p ≤ 0.05) predictors were significant in the model (Fig. 7), which 9 

suggested that there is a nonlinear relationship between dGFP latencies and cognitive decline as 10 

measured by dCAMCOG scores. Specifically, bigger cognitive decline (smaller dCAMCOG scores) 11 

predicted shorter and longer latencies while intermediated dCAMCOG scores predicted intermediate 12 

latencies. No model was a significant improvement over the preceding model in models with dERP 13 

amplitude as predictor (BFba = 0.21, BFcb = 0.17, BFdc = 0.17, BFde = 0.17) and in models with dERP 14 

latency as predictor (BFba = 0.17, BFcb = 0.17, BFdc = 0.18, BFde = 0.17). 15 

The curvilinear quadratic model was then fit to dGFP latency data parsed in CAMCOG subscales 16 

where the T2-T1 score to each subscale was set as dependent variable. The BF against the intercept 17 

was also obtained. The model was not significant for any of the subscales (Table 4). 18 

 19 

Subscale M SD BF10 

orientation -0.03 1.29 0.05 

language 0.06 2.71 0.04 

memory 0.11 2.91 0.08 

attention -0.23 1.11 0.05 

praxis -0.57 1.61 0.34 

perception 0.43 1.15 0.03 

abstract thinking -1.17 2.38 0.07 

Table 4 T2-T1 difference scores to the CAMCOG subscales. Means (M) and standard deviations (SD) 20 

are reported. BFs are calculated comparing the curvilinear model e (Formula 2) against the intercept 21 
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(model a in Formula 2). BF are expressed as the alternative model (1) against the denominator 1 

model (0). 2 

Figure 7 – Prediction of cognitive decline: Correlation between total dCAMCOG score and age (first plot). Linear 3 

models with dGFP amplitude, dGFP latency, dERP amplitude, and dERP latency as predictors and total dCAMCOG 4 

score as dependent variable (second to fifth plot). Shading represents 95% confidence intervals. 5 

 6 

 7 

4. Discussion 8 

Individuals with DS experience premature ageing and AD pathology affects nearly the entirety of the 9 

DS population with increasing age (Grothe et al., 2017; Sperling et al., 2013; Teipel et al., 2020). The 10 

prolonged preclinical phase of AD during which time neuropathology is developing indicates the 11 

importance (Näätänen et al., 2004) of identifying early markers of cognitive decline to both enable 12 

the assessment of potential treatments and also to indicate in whom and when treatments once 13 

developed should be started. The present research aims to identify electrophysiological markers of 14 

premature ageing in DS and predictors of cognitive decline. 15 

To assess premature ageing in DS, DS and TD age-matched controls were presented sequences of 16 

five tones that could either consist of five identical tones (standard) or four identical tones and a 17 

fifth different tone (deviant). The contrast between standard and deviant tones generate the MMN 18 

component, which is believed to be a marker for the brain’s automatic detection of auditory 19 

regularity violation (Näätänen et al., 2011). The MMN depends on temporo-frontal short-term 20 

memory trace in the auditory cortex (Cheng et al., 2013). Hence, the decline in sensory memory, 21 

perceptual accuracy and the brains’ predictive power with ageing is reflected in decreased MMN 22 

response (Näätänen et al., 2011). To assess whether the MMN is a predictor of cognitive decline in 23 

DS, CAMCOG scores were obtained at the same time as the EEG recording (T1) and 10 to 14 months 24 
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later (T2) for DS participants. The relationship between the MMN at T1 and the CAMCOG difference 1 

score between the two timepoints allowed on the predictive power of the MMN to be studied. Both 2 

traditional ERP and whole scalp GFP techniques were employed to address these research questions. 3 

The MMN is considered an index of cognitive decline in several neuropsychological disorders (Lalo et 4 

al., 2005). However, it has not been extensively studied in participants with DS (Romano et al., 5 

2016). Hence, we first compared DS and controls in the response elicited by the fifth tone regardless 6 

of condition and in the difference wave (standard minus deviant) independently of age. dERP and 7 

dGFP, which directly represents the MMN marker of auditory regularity violation, consistently 8 

showed a reduced MMN response in DS compared to controls (Fig. 5). It is possible that such 9 

difference is driven by age-related reduction in grey matter which is apparent already at 20 years of 10 

age (Näätänen et al., 2011) and that may impair the ability of forming sensory memory traces. The 11 

difference in MMN responses between groups is widespread over central-right electrodes (Fig. 4). 12 

Because interaural stimulation was counterbalanced between left and right ear in both groups, the 13 

topography is not an artifact of stimulus presentation. In fact, it may indicate that DS are mostly 14 

impaired in the involuntary attention switch to auditory change, which has been found to be a right-15 

lateralised process (Näätänen & Picton, 1987; Tomé et al., 2015).  16 

When looking at the response to the fifth tone regardless of condition, the cluster permutation 17 

revealed that the ERP response of DS and controls differed over localized frontal and parietal 18 

electrodes. It is possible that such effect is driven by the response to deviant sequences. However, it 19 

is also possible that the cluster permutation detected differences in the N1 component that overlaps 20 

with the MMN (Tomé et al., 2015). The N1 is a bilateral frontocentral component elicited by both 21 

frequent and infrequent stimuli and reflects sensory and perceptual processes (Näätänen & Picton, 22 

1987; Tomé et al., 2015) suggesting that DS may present sensory and perceptual impairment 23 

regardless of abstract detection of regularity violation. We also compared DS and controls on the 24 

ERP peaks that were extracted only from the electrodes that had formed significant clusters when 25 

contrasting standard and deviant sequences (Fig. 3). Peak comparison yielded no differences in 26 
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amplitude between DS and controls. It has been suggested that several different components 1 

generated by different cerebral locations and sub-serving different cognitive processes contribute to 2 

a widespread negativity peaking around 150ms  (Tomé et al., 2015). The electrodes selected may 3 

have recorded the summation of such processes and did not measure any difference in response 4 

intensity to tones between the two groups. We found key differences in GFP amplitude, where DS 5 

had smaller N1 responses compared to controls. GFP is a whole-scalp measure, so the GFP might 6 

have picked up the group difference at frontal electrodes underlying the same frontal N1 effect 7 

emerged in the cluster permutation analysis. Surprisingly, latencies were reduced in DS compared to 8 

controls in both GFP and ERP. Findings on the N1 latency have been inconsistent (Eggermont, 1988; 9 

Ponton et al., 2000; Tomé et al., 2015), but several studies, which have reported small latency 10 

decreases with advancing age, have attributed shorter N1 to increased synaptic synchronization and 11 

efficiency during brain maturation (Horváth et al., 2007; Kiang et al., 2009; Schiff et al., 2008). This 12 

seems an unlikely scenario in this case. 13 

The models predicting dGFP and dERP amplitude as a function of age and group show that amplitude 14 

decreases with age in DS but not in controls. In a predictive coding framework, the results suggest 15 

that the ability of making accurate statistical predictions about the incoming stimuli decreases with 16 

age in DS but not in controls. In DS, the neurodegeneration caused by Aβ depositions over time may 17 

compromise anatomical connections between the nodes of the frontotemporal network, reducing 18 

the connectivity between these areas and compromising accurate prediction. According to models 19 

of the generation of the MMN (Friston, 2003, 2005; Garrido et al., 2008; Garrido et al., 2009a; 20 

2009b), the prediction error represented by the MMN is dependent on both backward (top-down) 21 

and forward (bottom-up) connections between the levels of the network hierarchy. Future studies 22 

should aim at identifying how age-related decay of the MMN response in DS affects these two 23 

directions of connectivity. 24 

 On the other hand, amplitudes seem not to be affected by the main effect of age. Notably, while the 25 

main factor Age was significant when it was the only predictor of dERP amplitude, the BF of 0.64 26 
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shows that the model cannot be taken as conclusive evidence of age-related MMN decay. The effect 1 

of age on MMN amplitude had been hypothesized for both groups based on the evidence that 2 

attenuated amplitude and longer latencies have been systematically found in normal ageing (Cheng 3 

et al., 2013; Näätänen et al., 2011, 2014).  However, in our studies DS and controls had an average 4 

age of 35 and 40 years respectively, while studies assessing the MMN in elderly controls typically 5 

have older participants. It may be that the sensory memory decay in our cohort was not sufficient to 6 

be reflected in changes in the MMN. This is consistent with the hypothesis that at 40 years of age, 7 

DS begin to show abnormal Aβ binding in the brain compared to controls (Annus et al., 2016). 8 

Interestingly, the absence of an effect of age in typically developing controls suggests that variation 9 

in the MMN may be a sensitive measure of accelerated ageing that is able to distinguish between 10 

pathological and normal ageing.  11 

In contrast to the results on amplitude, there is no effect on MMN latency. This is not surprising as 12 

evidence for the effect of ageing on MMN latency have been inconsistent (Annus et al., 2016; 13 

Holland et al., 1998; Lautarescu et al., 2017). One interpretation might be that sensory memory in DS 14 

is reduced with age but not necessarily slowed down, sensory information may simply not be 15 

properly encoded. This hypothesis needs further assessment. Overall, these results support the 16 

hypothesis that the amplitude of the MMN is a potential marker of accelerated ageing in DS. 17 

The cohort of DS participants included three individuals with AD. The decision to keep those 18 

participants in our sample was driven by the strong evidence that DS will invariantly develop AD 19 

during their lifespan (Näätänen et al., 2011). The presence of AD is typically considered a 20 

dichotomous variable used as inclusion or exclusion criterium. Instead, we made the theoretical 21 

decision of treating it as a continuous variable that simply expresses a degree of progression of 22 

inevitable pathological ageing in individuals with DS. 23 

Cross-sectional data suggest that the MMN manifested in both GFP and ERP measures is a measure 24 

sensitive to DS accelerated ageing. However, its relationship with cognitive decline over time is less 25 

clear. First, there was no correlation between dCAMCOG and age. Second, there only seem to be 26 
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moderate evidence for a nonlinear relationship between dGFP latency and dCAMCOG scores, with 1 

increasing latency predicting stronger cognitive decline (lower dCAMCOG scores) at shorter and 2 

longer latencies but weaker decline at intermediated latencies. Subsequently, no relationship was 3 

found between dGFP latency and CAMCOG subscales difference scores. Given the results, there is 4 

little evidence for any relationship between MMN measures and cognitive decline as measured 5 

through the CAMCOG. The contrast between scores at T1 and T2 showed that the CAMCOG was able 6 

to detect a significant cognitive decline after 12 months, although with a small effect size. Hence, 7 

one explanation of a lack of relationship between MMN and dCAMCOG may be that the extent of 8 

cognitive decline was not big enough to be reflected in MMN variations. One reason for this may be 9 

that the time gap between T1 and T2 might not have been long enough to see a statistically 10 

significant effect. Alternatively, the study might be underpowered to detect potentially small effects. 11 

It is also important to keep in mind that the CAMCOG assesses a variety of complex cognitive 12 

functions. On the other hand, smaller amplitudes of the pre-attentive MMN reflect decline in 13 

sensory memory (Horst et al., 1993; Huppert et al., 1996) which is a lower level function. Hence, the 14 

complexity of the CAMCOG scores may overshadow any decline on sensory memory. Finally, one 15 

may argue that if sensory memory declines then we could have expected the MMN to predict scores 16 

on the Perception subscale. However, perception is measured through recognition of famous people 17 

and objects from different angles (Horst et al., 1993; Huppert et al., 1996) and thus sensory memory 18 

is not directly assessed.  19 

A limitation of the present research is that there was no MMN measurement at T2. Future research 20 

should aim at filling this gap. First, it should assess the degree of MMN variation over time in DS 21 

within individual participants. If the MMN is a potential tool to measure accelerated ageing in the DS 22 

population, it is clinically important to establish its temporal sensitivity. Furthermore, the MMN at 23 

T1 may not be predictive of cognitive decline after 12 months but a change in MMN amplitude over 24 

time may be predictive of future cognitive decline at a larger timescale. Finally, the possibility of 25 

MMN latency variations as a measure of accelerated ageing should be further investigated. 26 
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5. Conclusions 1 

The present study investigated the MMN as a means to study accelerated ageing in DS. We showed 2 

that age predicted the amplitude of the MMN both expressed in GFP and traditional ERP. The 3 

amplitude decreased with increasing age. On the other hand, in the age-matched typically 4 

developing group, age did not predict MMN amplitude. This suggests that people with DS 5 

electrophysiologically show accelerated ageing and that the MMN is a valid marker to assess the 6 

impairment of cortical processes of sensory memory and structures associated with the generation 7 

of MMN responses.  8 

The study also investigated the MMN as predictor of cognitive decline at about 12 month time. 9 

Overall the data did not provide strong evidence in support of a significant relationship between 10 

MMN and cognitive decline in DS as measured by the CAMCOG-DS - neither for the total score, or 11 

for its subscales. Future research should look at the MMN longitudinally and should investigate 12 

whether rates of MMN change over time predict cognitive decline. 13 
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