1 Prevalence of Isolated Systolic Hypertension among People with

Mahalul Azam, ${ }^{1}$ Fetty Nur Hidayati, ${ }^{1}$ Arulita Ika Fibriana, ${ }^{1}$ Udin Bahrudin, ${ }^{2}$ Syed Mohamed Aljunid ${ }^{3}$
${ }^{1}$ Department of Public Health, Faculty of Sports Science, Universitas Negeri Semarang, Semarang, Indonesia
${ }^{2}$ Department of Cardiology and Vascular Medicine, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
${ }^{3}$ Department of Health Policy and Management, Faculty of Public Health, Kuwait University, Kuwait, Kuwait

Correspondence should be addressed to Mahalul Azam; mahalul.azam@ mail.unnes.ac.id

Abstract

The present study aimed to explore the prevalence of isolated systolic hypertension (ISH) and its risk factors among diabetes mellitus (DM) subjects in the community setting study in Indonesia. This cross-sectional study extracted secondary data from basic health survey (Riset Kesehatan Dasar; RISKESDAS) conducted in 2018. DM subjects were defined based on fasting blood glucose level $\geq 126 \mathrm{mg} / \mathrm{dL}$ or 2 hours postprandial and random blood glucose level $\geq 200 \mathrm{mg} / \mathrm{dL}$ or previously had been diagnosed by a doctor; while ISH was determined based on systolic blood pressure $\geq 140 \mathrm{mmHg}$ and diastolic blood pressure <90 mmHg . We also observed the subject's characteristics, such as demography, lipid profile, and subject's compliance. Data were then analyzed using Chi-square and Binary logistic regression. Study involved 3,911 DM subjects, revealed the overall prevalence of ISH 17.5%. Age category of $35-44$ years old (POR=10.80; 95\%CI: 2.595-44.957), 45-54 years old (POR=22.81; 95\%CI: 5.616-92.677), 55-64 years old (POR=46.12; 95\% CI: 11.393186.720); 65-74 years old (POR=81.82; 95\% CI: 20.110-332.868); ≥ 75 years old (POR= 109.64; 95\% CI: 26.373-455.789), low HDL cholesterol (POR=0,80; 95\% CI: 0.653-0.972); duration of DM (POR $=1.73 ; 95 \% \mathrm{CI}: 1.257-2.389)$ were associated with the ISH. The prevalence of ISH among DM subjects was 17.5%. Older DM subjects, low HDL cholesterol, and duration of DM were associated with the ISH, suggesting that modification lipid profile, especially the HDL cholesterol level, is an important measure to delay ISH in elderly and long-duration DM subjects.

Keywords: diabetes, isolated systolic hypertension, prevalence, risk factor, Indonesia

Introduction

International Diabetes Federation reports 463 million people globally, and 10.7 million people in Indonesia living with diabetes placing Indonesia in the $7^{\text {th }}$ rank among countries for the number of adults with diabetes [1]. Hypertension is the most frequent comorbidity for diabetes [2-4]. Both hypertension and diabetes are the major risk factors for cardiovascular diseases due to the vascular mechanism [5]. Hypertension is associated with 30% of death and 25% of cardiovascular events among diabetes mellitus (DM) subjects [6].

DM subjects with hypertension have seven times likely to experience end-stage renal disease and 2-4 times to get myocardial infarction and stroke [6].

Hypertension occurred due to the vascular resistance and increase of fluid volume [7]. Vascular resistance in DM subjects is related to vascular remodeling that caused arterial stiffness, while the increase of body fluid volume is associated with resistance-induced hyperinsulinemia and hyperglycemia [7]. Isolated systolic hypertension (ISH) is the most frequent form of hypertension among the elderly [8] and the most frequent subtype of uncontrolled hypertension [9]. People with diabetes have twice higher risk to get ISH than of those without diabetes [10]. ISH reflects widespread atherosclerosis and increases stroke risk of 11% as well as an increase in all-cause mortality risk of 16% [10]. Alongside the ISH, the pulse pressure (PP) and mean arterial pressure (MAP) is the independent predictors of cardiovascular events and all-cause mortality [10-13].

A previous study[14] based on the hospital-based data reported that the prevalence of ISH among DM subjects was 37.4%, and age was the most related factor. Another study reported that the prevalence of ISH among DM subjects was 27.6% [15]; male, older age, obesity, and smoking were its risk factors [15,16]. A study in Indonesia reported risk factors of hypertension among DM subjects such as age, mental health disorders, obesity, physical activities, duration of diabetes, dyslipidemia, and patient compliance [17]. However, limited information regarding prevalence and risk factors of ISH among DM subjects based on population-based data. The present study aimed to explore the prevalence of ISH and its risk factors among DM subjects based on community setting study in Indonesia.

Materials and Methods

Design and study population

This cross-sectional study extracted secondary data from the basic health survey (Riset Kesehatan Dasar; RISKESDAS) 2018, the latest five-annual national scope crosssectional study, conducted by the National Institute of Research and Development, Ministry of Health, the Republic of Indonesia. The survey was conducted and delivered for households systematic-randomly selected from 514 districts/cities in 34 provinces. For each province and district/city, the number of proportional census blocks was determined systematically. Three hundred households or 30.000 census blocks were then determined to be involved in the survey. Of them, 94.2% or 282,654 households completed the questionnaire consist of $1,017,290$ individual subjects[18]. The study population involved subjects with DM in the RISKESDAS 2018 data. Subjects with DM were determined by fasting blood glucose level \geq $126 \mathrm{mg} / \mathrm{dL}$ or 2 hours postprandial and random blood glucose level $\geq 200 \mathrm{mg} / \mathrm{dL}$ or previously had been diagnosed by a doctor.

Data collection

Ethical clearance for the RISKESDAS 2018 study was obtained from the Ethics Committee, the National Institute of Health Research and Development (NIHRD), the Ministry of Health, Republic of Indonesia. Subject with ISH was defined as those with systolic blood pressure $\geq 140 \mathrm{mmHg}$ and diastolic blood pressure $<90 \mathrm{mmHg}$ [19]. We categorized the subject as non-hypertensive when meet the criteria of optimal ($<120 \mathrm{mmHg}$ and $<80 \mathrm{mmHg}$), or normal ($120 \mathrm{mmHg}-129 \mathrm{mmHg}$ and $/$ or $80-84 \mathrm{mmHg}$), or high normal ($130-139 \mathrm{mmHg}$ and $/$ or $85-89 \mathrm{mmHg}$). While non ISH hypertension were categorized for grade 1-3 hypertension; grade 1 hypertension: $140-159 \mathrm{mmHg}$ and/or $90-99 \mathrm{mmHg}$; grade 2 hypertension: $160-179 \mathrm{mmHg}$ and/or $100-109 \mathrm{mmHg}$; grade 3 hypertension: $\geq 180 \mathrm{mmHg}$ and or $\geq 110 \mathrm{mmHg}$ [19]. Based on the measurement of blood pressure, we also calculated pulse pressure (PP) and mean arterial pressure (MAP). PP was calculated as a result of the
formula ($\mathrm{PP}=$ systolic blood pressure (SBP) - diastolic blood pressure (DBP)), while the MAP was calculated as the formula of $\left(\mathrm{MAP}=\frac{(\mathrm{SBP}+2 * \mathrm{DBP})}{3}\right)$.

Secondary data acquired from RISKESDAS 2018 were age, sex, urban-rural residence status, marital status, educational level, employment status, total cholesterol level, HDL-cholesterol level, triglycerides level, history of hypertension, smoking, physical activity status, alcohol consumption, body mass index (BMI), duration of DM, type of medication, and medication compliance.

Statistical analysis

Characteristics of the subjects were presented as proportions since they are categorical type of data. The association between ISH status were analyzed using the Chi-square test. The p-values <0.05 were considered statistically significant. Parameters that had p-value <0.25 were then involved in the multivariate analysis using binary logistic regression. All statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS) software (version 23.0 for Windows, IBM SPSS Inc., Chicago, IL).

Results

Data extracted from the RISKESDAS 2018 consisted of 3,911 DM subjects that were included in the final analysis. Study population consisted of 1,289 (33\%) male and 2,622 (67%) female. The most frequent age category was $45-54$ years old (29.3%). More than half of the study population was live in the urban area with a low level of education and were employed in various sectors. Most of the study population had lower total cholesterol levels, lower high-density lipoprotein (HDL) cholesterol level, higher low-density lipoprotein (LDL) cholesterol level, and lower triglyceride levels. Most of them had a history of hypertension, non-smoking, active physical activity, and fair medication compliance. The detailed subjects' characteristics are presented in Table 1.

Table 1. Subjects' characteristics

Variable	n	\%
Age category (years old)		
≥ 75	167	4.3
65-74	502	12.8
55-64	1098	28.1
45-54	1146	29.3
35-44	668	17.1
15-34	330	8.4
Sex		
Female	2622	67
Male	1289	33
Residence status		
Urban	2057	52.6
Rural	1854	47.4
Marital status		
Un-married	147	3.8
Married	3764	96.2
Educational level		
Primary high school	3006	76.9

Secondary high school or above 905 23.1Employment status
Un-employed 1639 41.9
Employed 2272 58.1
Total Cholesterol level
$\geq 200 \mathrm{mg} / \mathrm{dL}$
$\geq 200 \mathrm{mg} / \mathrm{dL}$ 1832 1832 46.8 46.8
$<200 \mathrm{mg} / \mathrm{dL}$ 2079 53.2
HDL level
$\geq 40 \mathrm{mg} / \mathrm{dL}$ 1140 29.1
$<40 \mathrm{mg} / \mathrm{dL}$ 2771 70.9
LDL level
$\geq 100 \mathrm{mg} / \mathrm{dL}$ 3296 84.3
$<100 \mathrm{mg} / \mathrm{dL}$ 615 15.7
Triglyceride
$\geq 150 \mathrm{mg} / \mathrm{dL}$ 1612 41.2
$<150 \mathrm{mg} / \mathrm{dL}$ 2299 58.8
History of hypertension
Yes 1350 34.5
No 2561 65.5
Smoking
Yes 1002 25.6
No 2909 74.4
Physical activity status 605 15.5
Active 3306 84.5
Alcohol consumption

Yes 37 0.9
No 3874 99.1
BMI
Obese 126232.3
Overweight 603 15.4
Normal 1767 45.2
Underweight 164 4.2
Severe Underweight 115 2.9
Duration of DM
>5 years 1867 47.7
<5 years 2044 52.3
Type of DM medication
No medication 830 21.2
OHD+insulin 828 21.2
Insulin 770 19.7
OHD 1483 37.9
Medication compliance
No 1625 41.5
Yes 2286 58.5
116 BMI: body mass index; HDL=high-density lipoprotein; LDL=low-density lipoprotein

Based on the result of blood pressure measurement, a total of 1,903 (48.7\%) subjects were categorized as normal, while the rest of $2,008(51.3 \%)$ were categorized as hypertension, whether grade $1,2,3$ or ISH. ISH was the most frequent form of hypertension in the study population (Fig. 1). The highest mean MAP was in non-ISH hypertension group, while the highest mean PP was in the ISH group (Fig. 2)

Blood pressure classification

Figure 1. Frequency of blood pressure classification among DM subjects
Optimal: <120 and <80; Normal: 120-129 and/or 80-84; High normal: 130-139 and/or 85-89; Grade I hypertension: 140-159 and/or 90-99; Grade II hypertension: 160-179 and or 100-109; Grade III hypertension: ≥ 180 and or ≥ 110; Isolated systolic hypertension (ISH): ≥ 140 and <90

128
129

Figure 2. Mean arterial pressure (MAP) and pulse pressure based on hypertension classification.

ISH: isolated systolic hypertension
Of the total 3,911 study population of DM subjects, 685 subjects were identified as ISH, indicated that the prevalence of ISH was 17.5%. Table 2 identified variables associated with the ISH. Older subjects, low educational level, high total cholesterol level, low HDL level, active physical activity, obese, duration of DM, and type of medication were associated with the ISH status among DM subjects. These variables, combined with other variables that $\mathrm{p} \leq 0.25$, i.e., employment status, LDL level, triglyceride, history of hypertension, alcohol consumption, and medication compliance, continued to be involved in the Binary logistic regression, and the final model of regression showed in Table 3.

Table 2. Subjects' characteristics based on ISH status

Parameter	ISH			p^{*}	POR	95\%CI	
	$\frac{\text { Yes }}{\mathrm{n}(\%)}$	$\frac{\text { No }}{\mathrm{n}(\%)}$	$\frac{\text { Total }}{\mathrm{n}(\%)}$			Lower	Uper
Age (years old)							
≥ 75	70 (41.9)	97 (58.1)	167	0.001	69.16	17.172	278.560
65-74	174 (34.7)	328 (65.3)	502	0.001	57.19	14.289	228.905
55-64	253 (23)	845 (77)	1098	0.001	38.02	9.508	152.020
45-54	145 (12.7)	1001 (87.3)	1146	0.001	20.88	5.200	83.822
35-44	41 (6.1)	627 (93.9)	668	0.001	10.13	2.465	41.612
15-34	2 (0.6)	328 (99.4)	330	Reference	1		
Sex							
Female	451 (17.2)	2171 (82.8)	2622	0.489	0.95	0.821	1.093
Male	234 (18.2)	1055 (81.8)	1289				
Residence status							
Urban	370 (18)	1687 (82)	2057	0.437	1.06	0.924	1.214
Rural	315 (17)	1539 (83)	1854				
Marital status							
Un-married	23 (15.6)	124 (84.4)	147	0.619	0.89	0.607	1.303
Married	662 (17.6)	3102 (82.4)	3764				
Education level							
Low	553 (18.4)	2453 (81.6)	3006	0.009	1.26	1.059	1.502
High	132 (14.6)	773 (85.4)	905				
Employment status							
Un-employed	308 (18.8)	1331 (81.2)	1639	0.081	1.13	0.988	1.298
Employed	377 (16.6)	1895 (83.4)	2272				
Total Cholesterol level							
$\geq 200 \mathrm{mg} / \mathrm{dL}$	345 (18.8)	1487 (81.2)	1832	0.046	1.15	1.005	1.319
<200 mg/dL	340 (16.4)	1739 (83.6)	2079				
HDL level							
$\geq 40 \mathrm{mg} / \mathrm{dL}$	169 (14.8)	971 (85.2)	1140	0.005	0.80	0.679	0.934
$<40 \mathrm{mg} / \mathrm{dL}$	516 (18.6)	2255 (81.4)	2771				
LDL level							
$\geq 100 \mathrm{mg} / \mathrm{dL}$	591 (17.9)	2705 (2.1)	3296	0.127	1.17	0.961	1.433
$<100 \mathrm{mg} / \mathrm{dL}$	94 (15.3)	521 (84.7)	615				
Triglyceride							
$\geq 150 \mathrm{mg} / \mathrm{dL}$	261 (16.2)	1351 (83.8)	1612	0.075	0.88	0.763	1.010
$<150 \mathrm{mg} / \mathrm{dL}$	424 (18.4)	1875 (81.6)	2299				
History of hypertension							
Yes	250 (18.5)	1100 (81.5)	1350	0.248	1.09	0.947	1.255

No	435 (17)	2126 (83)	2561				
Smoking							
Yes	182 (18.2)	820 (81.8)	1002	0.563	1.05	0.901	1.225
No	503 (17.3)	2406 (82.7)	2909				
Physical activity status							
Sedentary	131 (21.7)	474 (78.3)	605	0.004	1.29	1.091	1.531
Active	554 (16.8)	2752 (83.2)	3306				
Alcohol consumption							
Yes	2 (5.4)	35 (94.6)	37	0.084	0.31	0.080	1.182
No	683 (17.6)	3191 (82.4)	3874				
BMI							
Obese	165 (13.1)	1097 (86.9)	1262	0.003	0.557	0.389	0.798
Overweight	91 (15.1)	512 (84.9)	603	0.037	0.643	0.439	0.940
Normal	368 (20.8)	1399 (79.2)	1767	0.576	0.887	0.630	1.249
Underweight	34 (20.7)	130 (79.3)	164	0.690	0.883	0.566	1.379
Severe underweigth	27 (23.5)	88 (76.5)	115	Reference			
Duration of DM							
>5 years	469 (25.1)	1398 (74.9)	1867	0.001	2.38	2.049	2.758
<5 years	216 (10.6)	1828 (89.4)	2044				
Type of DM medication							
No medication	235 (28.3)	595 (71.7)	830	0.001	2.09	1.766	2.471
OHD+insulin	158 (19.1)	670 (80.9)	828	0.001	1.41	1.164	1.703
Insulin	91 (11.8)	679 (88.2)	770	0.261	0.87	0.692	1.099
OHD	201 (13.6)	1282 (86.4)	1483	Reference	1		
Medication compliance							
No	307 (18.9)	1318 (81.1)	1625	0.062	1.14	0.997	1.310
Yes	378 (16.5)	1908 (83.5)	2286				

142 "Chi-square test
143 HDL: high density lipoprotein; LDL: low density lipoprotein; OHD: oral hypoglicaemic drugs; POR:
144 prevalence odds ratio

We found that older subjects, low HDL cholesterol (prevalence odds ratio; POR=0.80; 95\% CI: 0.653-0.972), and duration of DM (POR=1.73; 95\% CI: 1.257-2.389), all together were associated with the ISH. Subjects with the older age category tend to get higher POR, i.e., $10.80,22.81,46.81,81.82$, and 109.64 for the age category of $35-44,45-54$, $55-64,65-74$, and ≥ 75 years old, respectively (Table 3).

Table 3. Binary logistic regression of ISH risk factors among DM subjects

Variables	p	POR	95% CI.	
Age (years old)				
275	$\mathbf{0 . 0 0 1}$	109.64	26.373	455.789
$65-74$	0.001	81.82	20.110	332.868
$55-64$	0.001	46.12	11.393	186.720
45-54	0.001	22.81	5.616	92.677
35-44	0.001	10.80	2.595	44.957
High HDL cholesterol	$\mathbf{0 . 0 2 5}$	0.80	0.653	0.972
History of hypertension	0.070	1.183	0.986	1.418
BMI				
Obese	0.331	0.769	0.453	1.306
Overweight	0.493	0.825	0.475	1.431

Normal	0.369	1.241	0.775	1.987
Underweight	0.857	0.946	0.520	1.722
Duration of DM	$\mathbf{0 . 0 0 1}$	1.73	1.257	2.389

Discussion

The present study reported a national scope, population-based cross-sectional study that involved 3,911 DM subjects in Indonesia. Of them, 685 experienced ISH, indicated that the prevalence of ISH among DM subjects in this population study was 17.5%. The prevalence of ISH among DM subjects in Indonesia based on this study population was lower than the prevalence of ISH in Ghana, i.e., 37.4% based on the out-patient diabetes clinic in the teaching hospital of Tamale [14]. Similarly, as a hospital-based study, a study in Jimma, Ethiopia, found that the prevalence of ISH among DM patients was 27.6% [15]. A population-based study in district Chiem Hoa, Vietnam, observed the general elderly population aged >60 years old found a prevalence of 22.9% [20]. Another national population-based study in the USA revealed that the prevalence of ISH in the general population was 9.4% [21]. A similar result as the current study reported by a hospital-based cohort study in Italy that observed ISH among type 2 DM and found a prevalence of 20.3 \% [22].

The present study also added evidence that DM subjects with older age, i.e., ≥ 75 years old, was the most influential risk factor of ISH. This finding is in accordance with the previous cohort study in Italy which concluded that the mean age of type 2 DM subjects experienced ISH was 74.3 years old [22]. On the other hand, a study in Ethiopia reported that DM subjects aged ≥ 60 years old were the protective factor for ISH, while the age category of 47-55 years old was the risk factor with the highest OR, i.e., 2.63 [15]. Similarly, the study in Ghana showed the most frequent ISH in the DM subjects aged 50-69 years old [14].
Regarding the study population, a study in Italy and Ethiopia comparing ISH to non-ISH, including other forms of hypertension, while a study in Ghana comparing ISH to normal subjects $[14,15,22]$. The previous review concluded that ISH affects $10-20 \%$ of the elderly, systolic blood pressure increase with age, while diastolic blood pressure rises until the age of 50 years and then decreases after that [23]. Increase in blood pressure with age is mostly associated with arterial stiffness. Degenerative processes such as calcification and alteration of arteriosclerotic structure play a pivotal role in the formation of large artery stiffness as well as in the small vessels. Small vessel stiffness leads to the condition of peripheral vascular resistance that influences the increase of both systolic and diastolic blood pressure. The existence of large artery stiffness increases systolic blood pressure and, conversely, decreases diastolic blood pressure. The acceleration of large artery stiffness after 50 years old lead to the steeper increase of systolic blood pressure that caused the ISH condition [24].

Lipid profile leads to the process of endothelial dysfunction that affects blood pressure. HDL cholesterol tends to have inversely associated with hypertension, while nonHDL cholesterol has a positive association [25]. The present study found that HDL was inversely associated with the ISH, while in the bivariate analysis, total cholesterol showed a positive association with ISH. High HDL level, i.e., $\geq 40 \mathrm{mg} / \mathrm{dL}$, was concluded as the protective factor for ISH in this study. This finding was in accordance with the Physician Health Study that reported the highest quartile of HDL level, i.e., $>53 \mathrm{mg} / \mathrm{dL}$ had the lowest adjusted-RR (0.68) compared to the other quartile [26]. A study in China also reported that HDL level was inversely related to the blood pressure as well as brachial-ankle pulse-wave velocity, a marker of arterial stiffness development [25]. The atherosclerotic formation
structure of the vessels also influenced by the oxidative activity of LDL cholesterol that is also inhibited by HDL [27,28]. However, a previous study in Japan reported a positive correlation between HDL and hypertension in apparently healthy people [29]. Another study revealed that a positive association between HDL and hypertension occurred in the subjects with high-level circulation CD34-positive cells, a bone marrow-derived endothelial progenitor. The level of circulating CD-34 increases as a response of the endothelial damage, therefore masking the role of HDL as endothelial protective in healthy subjects [30].

The current study also found that duration of DM, i.e., more than five years, was significantly associated with ISH, PR=1.73 (95\% CI: 1.257-2.389). This finding adds the evidence that previously reported elsewhere that revealed diabetes duration and insulin treatment status were the independent predictor of ISH [31]. The progression and duration of diabetes increase complications. Duration of diabetes is associated with arterial stiffness, while arterial stiffness plays a pivotal role in ISH [31]. The gradation of DM duration as a dose-response relationship with hypertension was also described in the previous study [32]. These findings strengthen the hypothesis that diabetes precedes arterial stiffness that caused ISH; however, another study found that onset on diabetes and brachial-ankle pulse wave velocity occurred simultaneously after a longitudinal observation indicates conversely condition [33]. Indeed, there are roles of multifactor that contributed to the arterial stiffness as a major cause of ISH. Arterial stiffness is a result of degenerative processes in the extracellular matrix of elastic arteries caused by aging and many other risk factors [34].

The final model of Binary logistic regression in this study involved a history of hypertension; however, the p-value did not meet to be considered significant. The previous history of hypertension describes the condition of individuals who tend to have a genetic predisposition [35]. Hypertension is the form of the complex trait that involved multiple organs and pathways [35,36]. Comprehensive understanding of genomics, epigenomics, metabolomics, proteomics, and transcriptomics of blood pressure plays a pivotal role in the context of the previous history of hypertension [35]. Further study that observed the detailed genetic role should be conducted to elucidate the novel hypertension pathophysiology and dissect and characterize the disorder's mechanism.

It is well established that obesity is associated with ISH [37-39]. Obesity affects the process of inflammation, cell adhesion, and coagulation that impact in the arterial stiffness [38,40]. Obesity is also related to the insulin and leptin resistance that contributes to sodium retention with concomitant cardiac output [39]. However, in this study, BMI did not significantly associate with ISH, although involved in the final model. It must be considered that the role of BMI measurement alone is inadequate for accurately predict the disease progression in DM subjects [41]. Other parameters such as body composition, total adipose mass, visceral adiposity-accumulation of intra-abdominal fat, and muscle mass should be analyzed to describe the current condition of DM subjects [41-43].

Conclusions

The prevalence of ISH among Indonesian DM subjects in the present study was 17.5%. Older DM subjects, low HDL cholesterol, and duration of DM were associated with the ISH, suggesting that modify lipid profile, especially HDL cholesterol level, is a needful measure to delay ISH in older and duration DM subjects.

Data Availability

The data used in this study are available from the corresponding author Mahalul Azam upon request through the email address mahalul.azam@mail.unnes.ac.id. The data set was accessed from the RISKESDAS (Riset Kesehatan Dasar); a five-annual national basic health survey that conducted and supported by the National Institute of Health Research and Development (NIHRD), Ministry of Health, the Republic of Indonesia.The protocol and reports of the RISKESDAS is published on https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas//

Conflicts of Interest

The authors have declared that there is no conflict of interest exists.

Funding Statement

Research Grant of Faculty of Sports Science, Universitas Negeri Semarang. [Grant ID: 36.4.5/UN37/PPK.4.6/2020].

Acknowledgments

This study was supported by the Faculty of Sports Science, Universitas Negeri Semarang, Indonesia [Grant ID: 36.4.5/UN37/PPK.4.6/2020]. The RISKESDAS (Riset Kesehatan Dasar); a five-annual national basic health survey is conducted and supported by the National Institute of Health Research and Development (NIHRD), Ministry of Health, the Republic of Indonesia. The manuscript was prepared using a limited access data set obtained from the NIHRD and does not reflect the opinions or views of RISKESDAS and NIHRD. The authors thank the RISKESDAS investigators for granting permission to use their data set for the current study. The protocol and reports of the RISKESDAS is published on https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas//

References

[1] International Diabetes Federation, IDF Diabetes atlas 9th edition, Brussel,Belgium, 2019. https://www.diabetesatlas.org.
[2] B. Tesfaye, A. Alebel, A. Gebrie, A. Zegeye, C. Tesema Leshargie, A. Ferede, H. Abera, K. Alam, Diabetes Mellitus and Its Association with Hypertension in Ethiopia:
A Systematic Review and Meta-Analysis., Diabetes Res. Clin. Pract. 156 (2019)
107838. https://doi.org/10.1016/j.diabres.2019.107838.
[3] A.D. Colosia, R. Palencia, S. Khan, Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review.,
diabetes. Metab. Syndr. Obes. 6 (2013) 327-338.
https://doi.org/10.2147/DMSO.S51325.
[4] C.T. Nguyen, N.M. Pham, A.H. Lee, C.W. Binns, Prevalence of and Risk Factors for Type 2 Diabetes Mellitus in Vietnam: A Systematic Review., Asia-Pacific J. Public Heal. 27 (2015) 588-600. https://doi.org/10.1177/1010539515595860.
[5] J.R. Petrie, T.J. Guzik, R.M. Touyz, Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms., Can. J. Cardiol. 34 (2018) 575584. https://doi.org/10.1016/j.cjca.2017.12.005.
[6] G. Chen, F.A. McAlister, R.L. Walker, B.R. Hemmelgarn, N.R.C. Campbell, Cardiovascular outcomes in framingham participants with diabetes: The importance of blood pressure, hypertension. 57 (2011) 891-897. https://doi.org/10.1161/HYPERTENSIONAHA.110.162446.
[7] M. Ohishi, Hypertension with diabetes mellitus: physiology and pathology., Hypertens. Res. 41 (2018) 389-393. https://doi.org/10.1038/s41440-018-0034-4.
[8] C. Bavishi, S. Goel, F.H. Messerli, Isolated Systolic Hypertension: An Update After SPRINT., Am. J. Med. 129 (2016) 1251-1258.
https://doi.org/10.1016/j.amjmed.2016.08.032.
[9] S.S. Franklin, P. Lapuerta, G.J. L'Italien, N.D. Wong, M.J. Jacobs, Predominance of Isolated Systolic Hypertension Among Middle-Aged and Elderly US Hypertensives, Hypertension. 37 (2012) 869-874. https://doi.org/10.1161/01.hyp.37.3.869.
[10] I. Os, H. Gudmundsdottir, S.E. Kjeldsen, S. Oparil, Treatment of isolated systolic hypertension in diabetes mellitus type 2., diabetes. Obes. Metab. 8 (2006) 381-387. https://doi.org/10.1111/j.1463-1326.2005.00523.x.
[11] N. Madan, A.K. Lee, K. Matsushita, R.C. Hoogeveen, C.M. Ballantyne, E. Selvin, J.W. McEvoy, Relation of Isolated Systolic Hypertension and Pulse Pressure to HighSensitivity Cardiac Troponin-T and N-Terminal pro-B-Type Natriuretic Peptide in Older Adults (from the Atherosclerosis Risk in Communities Study)., Am. J. Cardiol. 124 (2019) 245-252. https://doi.org/10.1016/j.amjcard.2019.04.030.
[12] S. Selvaraj, P.G. Steg, Y. Elbez, E. Sorbets, L.J. Feldman, K.A. Eagle, E.M. Ohman, J. Blacher, D.L. Bhatt, Pulse Pressure and Risk for Cardiovascular Events in Patients With Atherothrombosis: From the REACH Registry., J. Am. Coll. Cardiol. 67 (2016) 392-403. https://doi.org/10.1016/j.jacc.2015.10.084.
[13] G.J. Winston, W. Palmas, J. Lima, J.F. Polak, A.G. Bertoni, G. Burke, J. Eng, R. Gottesman, S. Shea, Pulse pressure and subclinical cardiovascular disease in the multi-
ethnic study of atherosclerosis., Am. J. Hypertens. 26 (2013) 636-642.
https://doi.org/10.1093/ajh/hps092.
[14] R.K.D. Ephraim, A.R. Saasi, E.O. Anto, P. Adoba, Determinants of isolated systolic hypertension among diabetic patients visiting the diabetic clinic at the Tamale Teaching Hospital, Northern Ghana., Afr. Health Sci. 16 (2016) 1151-1156. https://doi.org/10.4314/ahs.v16i4.33.
[15] B. Dagnew, Y. Yeshaw, Predictors of isolated systolic hypertension among type 2 diabetes mellitus patients in Jimma University Specialized Hospital, Southwest Ethiopia, BMC Res. Notes. 12 (2019) 1-7. https://doi.org/10.1186/s13104-019-45503.
[16] R. Grebla, C. Rodriguez, L. Borrell, T. Pickering, Prevalence and determinants of isolated systolic hypertension among young adults., J. Am. Soc. Hypertens. 28 (2010) 15-23. https://doi.org/10.1097/HJH.0b013e328331b7ff.Prevalence.
[17] M. Sihombing, Faktor yang Berhubungan dengan Hipertensi pada Penduduk Indonesia yang Menderita Diabetes Melitus (Data Riskesdas 2013), Bul. Penelit. Kesehat. 45 (2017) 53-64. https://doi.org/10.22435/bpk.v45i1.5730.53-64.
[18] Badan Penelitian dan Pengembangan Kesehatan, Laporan Nasional Riset Kesehatan Dasar: RISKESDAS (Indonesia Basic Health Survey) tahun 2018, 2018. http://labmandat.litbang.kemkes.go.id/images/download/laporan/RKD/2018/Laporan_ Nasional_RKD2018_FINAL.pdf.
[19] A.F. Members, G. Mancia, R. Fagard, K. Narkiewicz, J. Redon, A. Zanchetti, M. Böhm, T. Christiaens, R. Cifkova, G. De Backer, A. Dominiczak, M. Galderisi, D.E. Grobbee, T. Jaarsma, P. Kirchhof, S.E. Kjeldsen, S. Laurent, A.J. Manolis, P.M. Nilsson, L.M. Ruilope, R.E. Schmieder, P.A. Sirnes, P. Sleight, M. Viigimaa, B. Waeber, F. Zannad, E.S.H.S. Council, J. Redon, A. Dominiczak, K. Narkiewicz, P.M. Nilsson, M. Burnier, M. Viigimaa, E. Ambrosioni, M. Caufield, A. Coca, M.H. Olsen, R.E. Schmieder, C. Tsioufis, P. van de Borne, E.S.C.C. for P.G. (CPG), J.L. Zamorano, S. Achenbach, H. Baumgartner, J.J. Bax, H. Bueno, V. Dean, C. Deaton, C. Erol, R. Fagard, R. Ferrari, D. Hasdai, A.W. Hoes, P. Kirchhof, J. Knuuti, P. Kolh, P. Lancellotti, A. Linhart, P. Nihoyannopoulos, M.F. Piepoli, P. Ponikowski, P.A. Sirnes, J.L. Tamargo, M. Tendera, A. Torbicki, W. Wijns, S. Windecker, D. Reviewers, D.L. Clement, A. Coca, T.C. Gillebert, M. Tendera, E.A. Rosei, E. Ambrosioni, S.D. Anker, J. Bauersachs, J.B. Hitij, M. Caulfield, M. De Buyzere, S. De Geest, G.A. Derumeaux, S. Erdine, C. Farsang, C. Funck-Brentano, V. Gerc, G. Germano, S.

Gielen, H. Haller, A.W. Hoes, J. Jordan, T. Kahan, M. Komajda, D. Lovic, H. Mahrholdt, M.H. Olsen, J. Ostergren, G. Parati, J. Perk, J. Polonia, B.A. Popescu, Ž. Reiner, L. Rydén, Y. Sirenko, A. Stanton, H. Struijker-Boudier, C. Tsioufis, P. van de Borne, C. Vlachopoulos, M. Volpe, D.A. Wood, 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC), Eur. Heart J. 34 (2013) 2159-2219. https://doi.org/10.1093/eurheartj/eht151.
[20] N. Bui Van, L. Vo Hoang, T. Bui Van, H.N.S. Anh, H.T. Minh, K. Do Nam, T.N. Tri, P.L. Show, V.T. Nga, D.B. Thimiri Govinda Raj, D.-T. Chu, Prevalence and Risk Factors of Hypertension in the Vietnamese Elderly., High Blood Press. Cardiovasc. Prev. Off. J. Ital. Soc. Hypertens. 26 (2019) 239-246. https://doi.org/10.1007/s40292-019-00314-8.
[21] X. Liu, C.J. Rodriguez, K. Wang, Prevalence and trends of isolated systolic hypertension among untreated adults in the United States., J. Am. Soc. Hypertens. 9 (2015) 197-205. https://doi.org/10.1016/j.jash.2015.01.002.
[22] S. Bo, G. Ciccone, G. Grassi, R. Gancia, R. Rosato, F. Merletti, G. Pagano, Isolated systolic hypertension in a cohort of type 2 diabetic patients., Nutr. Metab. Cardiovasc. Dis. 14 (2004) 157-161. https://doi.org/10.1016/s0939-4753(04)80036-x.
[23] L. Thijs, E. Den Hond, T. Nawrot, J.A. Staessen, Prevalence, pathophysiology and treatment of isolated systolic hypertension in the elderly, Expert Rev. Cardiovasc. Ther. 2 (2004) 761-769. https://doi.org/10.1586/14779072.2.5.761.
[24] E. Pinto, Blood pressure and ageing, Postgrad. Med. J. 83 (2007) 109-114. https://doi.org/10.1136/pgmj.2006.048371.
[25] B. Zhan, X. Huang, J. Wang, X. Qin, J. Zhang, J. Cao, Y. Song, L. Liu, P. Li, R. Yang, Y. Wu, Q. Wu, Y. Zhang, J. Li, Y. Huo, B. Wang, X. Xu, H. Bao, X. Cheng, Association Between Lipid Profiles and Arterial Stiffness in Chinese Patients With Hypertension: Insights From the CSPPT, Angiology. 70 (2019) 515-522. https://doi.org/10.1177/0003319718823341.
[26] HR O., SH D., M. Jing, BJ E., SM J., MG J., Dyslipidemia and the Risk of Incident Hypertension in Men, Hypertension. 47 (2006) 45-50.
https://doi.org/10.1161/01.HYP.0000196306.42418.0e.
[27] F. Brites, M. Martin, I. Guillas, A. Kontush, Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit., BBA Clin. 8
(2017) 66-77. https://doi.org/10.1016/j.bbacli.2017.07.002.
[28] R. Puri, S.E. Nissen, M. Shao, M.B. Elshazly, Y. Kataoka, S.R. Kapadia, E.M. Tuzcu, S.J. Nicholls, Non-HDL Cholesterol and Triglycerides: Implications for Coronary Atheroma Progression and Clinical Events, Arterioscler. Thromb. Vasc. Biol. 36 (2016) 2220-2228. https://doi.org/10.1161/ATVBAHA.116.307601.
[29] E. Oda, R. Kawai, High-density lipoprotein cholesterol is positively associated with hypertension in apparently healthy Japanese men and women, Br. J. Biomed. Sci. 68 (2011) 29-33. https://doi.org/10.1080/09674845.2011.11732838.
[30] Y. Shimizu, S. Sato, J. Koyamatsu, H. Yamanashi, M. Nagayoshi, K. Kadota, SY. Kawashiri, T. Maeda, Association between high-density lipoprotein-cholesterol and hypertension in relation to circulating CD34-positive cell levels, J. Physiol. Anthropol. 36 (2017) 1-7. https://doi.org/10.1186/s40101-017-0143-9.
[31] H. Smulyan, A. Lieber, M.E. Safar, Hypertension, Diabetes Type II, and Their Association: Role of Arterial Stiffness., Am. J. Hypertens. 29 (2016) 5-13. https://doi.org/10.1093/ajh/hpv107.
[32] M. Berraho, Y. El Achhab, A. Benslimane, K. El Rhazi, M. Chikri, C. Nejjari, Hypertension and type 2 diabetes: a cross-sectional study in Morocco (EPIDIAM Study)., Pan Afr. Med. J. 11 (2012) 52.
[33] Y. Zhang, P. He, Y. Li, Y. Zhang, J. Li, M. Liang, G. Wang, G. Tang, Y. Song, B. Wang, C. Liu, L. Liu, Y. Cui, X. Wang, Y. Huo, X. Xu, X. Qin, Positive association between baseline brachial-ankle pulse wave velocity and the risk of new-onset diabetes in hypertensive patients, Cardiovasc. Diabetol. 18 (2019) 111. https://doi.org/10.1186/s12933-019-0915-0.
[34] C. Palombo, M. Kozakova, Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications., Vascul. Pharmacol. 77 (2016) 1-7. https://doi.org/10.1016/j.vph.2015.11.083.
[35] D.K. Arnett, S.A. Claas, Omics of Blood Pressure and Hypertension., Circ. Res. 122 (2018) 1409-1419. https://doi.org/10.1161/CIRCRESAHA.118.311342.
[36] M.L. Lindsey, M. Mayr, A. V Gomes, C. Delles, D.K. Arrell, A.M. Murphy, R.A. Lange, C.E. Costello, Y.-F. Jin, D.T. Laskowitz, F. Sam, A. Terzic, J. Van Eyk, P.R. Srinivas, Transformative Impact of Proteomics on Cardiovascular Health and Disease:
A Scientific Statement From the American Heart Association., Circulation. 132 (2015) 852-872. https://doi.org/10.1161/CIR.0000000000000226.
[37] S. Asgari, D. Khalili, Y. Mehrabi, S. Kazempour-Ardebili, F. Azizi, F. Hadaegh,

Incidence and risk factors of isolated systolic and diastolic hypertension: a 10 year follow-up of the Tehran Lipids and Glucose Study, Blood Press. 25 (2016) 177-183. https://doi.org/10.3109/08037051.2015.1116221.
[38] R.P. Wildman, R.H. Mackey, A. Bostom, T. Thompson, K. Sutton-Tyrrell, Measures of obesity are associated with vascular stiffness in young and older adults, hypertension. 42 (2003) 468-473. https://doi.org/10.1161/01.HYP.0000090360.78539.CD.
[39] R. and E.R. Zhang, Obesity hypertension: The effects on cardiovascular and renal systems, Am. J. Hypertens. 13 (2000) 1308-1314.
[40] C. Delles, E. Carrick, D. Graham, S.A. Nicklin, Utilizing proteomics to understand and define hypertension: where are we and where do we go?, Expert Rev. Proteomics. 15 (2018) 581-592. https://doi.org/10.1080/14789450.2018.1493927.
[41] M. Murea, L. Lenchik, T.C. Register, G.B. Russell, J. Xu, S.C. Smith, D.W. Bowden, J. Divers, B.I. Freedman, Psoas and paraspinous muscle index as a predictor of mortality in African American men with type 2 diabetes mellitus., J. Diabetes Complications. 32 (2018) 558-564. https://doi.org/10.1016/j.jdiacomp.2018.03.004.
[42] E.S.A. Owusu, M. Samanta, J.E. Shaw, A. Majeed, K. Khunti, S.K. Paul, Weight loss and mortality risk in patients with different adiposity at diagnosis of type 2 diabetes: a longitudinal cohort study., Nutr. Diabetes. 8 (2018) 37.
https://doi.org/10.1038/s41387-018-0042-0.
[43] S. Gullaksen, K.L. Funck, E. Laugesen, T.K. Hansen, D. Dey, P.L. Poulsen, Volumes of coronary plaque disease in relation to body mass index, waist circumference, truncal fat mass and epicardial adipose tissue in patients with type 2 diabetes mellitus and controls., Diabetes Vasc. Dis. Res. 16 (2019) 328-336.
https://doi.org/10.1177/1479164119825761.

