1 Prevalence of Isolated Systolic Hypertension among People with

2 Diabetes in Indonesia

- 3 Mahalul Azam,¹ Fetty Nur Hidayati,¹ Arulita Ika Fibriana,¹ Udin Bahrudin,² Syed Mohamed
- 4 Aljunid³

¹Department of Public Health, Faculty of Sports Science, Universitas Negeri Semarang,

- 6 Semarang, Indonesia
- ²Department of Cardiology and Vascular Medicine, Faculty of Medicine, Diponegoro
 University, Semarang, Indonesia
- ³Department of Health Policy and Management, Faculty of Public Health, Kuwait University,
- 10 Kuwait, Kuwait
- 11 Correspondence should be addressed to Mahalul Azam; mahalul.azam@mail.unnes.ac.id

12 Abstract

- 13 The present study aimed to explore the prevalence of isolated systolic hypertension (ISH) and
- 14 its risk factors among diabetes mellitus (DM) subjects in the community setting study in
- 15 Indonesia. This cross-sectional study extracted secondary data from basic health survey
- 16 (Riset Kesehatan Dasar; RISKESDAS) conducted in 2018. DM subjects were defined based
- 17 on fasting blood glucose level $\geq 126 \text{ mg/dL}$ or 2 hours postprandial and random blood
- 18 glucose level $\geq 200 \text{ mg/dL}$ or previously had been diagnosed by a doctor; while ISH was
- 19 determined based on systolic blood pressure \geq 140 mmHg and diastolic blood pressure < 90
- 20 mmHg. We also observed the subject's characteristics, such as demography, lipid profile, and
- 21 subject's compliance. Data were then analyzed using Chi-square and Binary logistic
- 22 regression. Study involved 3,911 DM subjects, revealed the overall prevalence of ISH 17.5%.
- 23 Age category of 35-44 years old (POR= 10.80; 95%CI: 2.595-44.957), 45-54 years old
- 24 (POR=22.81; 95%CI: 5.616-92.677), 55-64 years old (POR=46.12; 95% CI: 11.393-
- 25 186.720); 65-74 years old (POR= 81.82; 95% CI: 20.110-332.868); ≥75 years old (POR=
- 26 109.64; 95% CI: 26.373-455.789), low HDL cholesterol (POR= 0,80; 95% CI: 0.653-0.972);
- duration of DM (POR= 1.73; 95% CI: 1.257-2.389) were associated with the ISH. The
- 28 prevalence of ISH among DM subjects was 17.5%. Older DM subjects, low HDL cholesterol,
- and duration of DM were associated with the ISH, suggesting that modification lipid profile,
- 30 especially the HDL cholesterol level, is an important measure to delay ISH in elderly and
- 31 long-duration DM subjects.
- 32

33 Keywords: diabetes, isolated systolic hypertension, prevalence, risk factor, Indonesia

34 Introduction

International Diabetes Federation reports 463 million people globally, and 10.7 million people in Indonesia living with diabetes placing Indonesia in the 7th rank among countries for the number of adults with diabetes [1]. Hypertension is the most frequent comorbidity for diabetes [2–4]. Both hypertension and diabetes are the major risk factors for cardiovascular diseases due to the vascular mechanism [5]. Hypertension is associated with

40 30% of death and 25% of cardiovascular events among diabetes mellitus (DM) subjects [6].

It is made available under a CC-BY-NC-ND 4.0 International license .

41 DM subjects with hypertension have seven times likely to experience end-stage renal disease 42 and 2-4 times to get myocardial infarction and stroke [6].

43 Hypertension occurred due to the vascular resistance and increase of fluid volume [7]. 44 Vascular resistance in DM subjects is related to vascular remodeling that caused arterial 45 stiffness, while the increase of body fluid volume is associated with resistance-induced 46 hyperinsulinemia and hyperglycemia [7]. Isolated systolic hypertension (ISH) is the most 47 frequent form of hypertension among the elderly [8] and the most frequent subtype of 48 uncontrolled hypertension [9]. People with diabetes have twice higher risk to get ISH than of 49 those without diabetes [10]. ISH reflects widespread atherosclerosis and increases stroke risk 50 of 11% as well as an increase in all-cause mortality risk of 16% [10]. Alongside the ISH, the 51 pulse pressure (PP) and mean arterial pressure (MAP) is the independent predictors of 52 cardiovascular events and all-cause mortality [10–13].

53 A previous study[14] based on the hospital-based data reported that the prevalence of 54 ISH among DM subjects was 37.4%, and age was the most related factor. Another study 55 reported that the prevalence of ISH among DM subjects was 27.6% [15]; male, older age, 56 obesity, and smoking were its risk factors [15,16]. A study in Indonesia reported risk factors 57 of hypertension among DM subjects such as age, mental health disorders, obesity, physical 58 activities, duration of diabetes, dyslipidemia, and patient compliance [17]. However, limited 59 information regarding prevalence and risk factors of ISH among DM subjects based on 60 population-based data. The present study aimed to explore the prevalence of ISH and its risk 61 factors among DM subjects based on community setting study in Indonesia.

62 Materials and Methods

63 **Design and study population**

64 This cross-sectional study extracted secondary data from the basic health survey 65 (Riset Kesehatan Dasar; RISKESDAS) 2018, the latest five-annual national scope cross-66 sectional study, conducted by the National Institute of Research and Development, Ministry 67 of Health, the Republic of Indonesia. The survey was conducted and delivered for households 68 systematic-randomly selected from 514 districts/cities in 34 provinces. For each province and 69 district/city, the number of proportional census blocks was determined systematically. Three 70 hundred households or 30.000 census blocks were then determined to be involved in the survey. Of them, 94.2 % or 282,654 households completed the questionnaire consist of 71 72 1,017,290 individual subjects [18]. The study population involved subjects with DM in the 73 RISKESDAS 2018 data. Subjects with DM were determined by fasting blood glucose level \geq 74 126 mg/dL or 2 hours postprandial and random blood glucose level \geq 200 mg/dL or 75 previously had been diagnosed by a doctor.

76

77 Data collection

78 Ethical clearance for the RISKESDAS 2018 study was obtained from the Ethics 79 Committee, the National Institute of Health Research and Development (NIHRD), the 80 Ministry of Health, Republic of Indonesia. Subject with ISH was defined as those with 81 systolic blood pressure \geq 140 mmHg and diastolic blood pressure < 90 mmHg [19]. We 82 categorized the subject as non-hypertensive when meet the criteria of optimal (<120 mmHg 83 and <80 mmHg), or normal (120 mmHg-129 mmHg and/or 80-84 mmHg), or high normal 84 (130-139 mmHg and/or 85-89 mmHg). While non ISH hypertension were categorized for 85 grade 1-3 hypertension; grade 1 hypertension: 140-159 mmHg and/or 90-99 mmHg; grade 2 86 hypertension: 160-179 mmHg and/or 100-109 mmHg; grade 3 hypertension: ≥180 mmHg 87 and or ≥ 110 mmHg [19]. Based on the measurement of blood pressure, we also calculated 88 pulse pressure (PP) and mean arterial pressure (MAP). PP was calculated as a result of the

It is made available under a CC-BY-NC-ND 4.0 International license .

- 89 formula (PP = systolic blood pressure (SBP) diastolic blood pressure (DBP)), while the
- 90 MAP was calculated as the formula of $(MAP = \frac{(SBP+2*DBP)}{3})$.
- Secondary data acquired from RISKESDAS 2018 were age, sex, urban-rural
 residence status, marital status, educational level, employment status, total cholesterol level,
 HDL-cholesterol level, triglycerides level, history of hypertension, smoking, physical activity
 status, alcohol consumption, body mass index (BMI), duration of DM, type of medication,
 and medication compliance.
- 96

97 Statistical analysis

98 Characteristics of the subjects were presented as proportions since they are categorical 99 type of data. The association between ISH status were analyzed using the Chi-square test. 100 The p-values <0.05 were considered statistically significant. Parameters that had p-value 101 <0.25 were then involved in the multivariate analysis using binary logistic regression. All 102 statistical analyses were performed using the Statistical Package for the Social Sciences 103 (SPSS) software (version 23.0 for Windows, IBM SPSS Inc., Chicago, IL).

105 **Results**

106 Data extracted from the RISKESDAS 2018 consisted of 3,911 DM subjects that were 107 included in the final analysis. Study population consisted of 1,289 (33%) male and 2,622 108 (67%) female. The most frequent age category was 45-54 years old (29.3%). More than half 109 of the study population was live in the urban area with a low level of education and were 110 employed in various sectors. Most of the study population had lower total cholesterol levels, 111 lower high-density lipoprotein (HDL) cholesterol level, higher low-density lipoprotein (LDL) 112 cholesterol level, and lower triglyceride levels. Most of them had a history of hypertension, 113 non-smoking, active physical activity, and fair medication compliance. The detailed subjects'

114 characteristics are presented in Table 1.

n	%
167	4.3
502	12.8
1098	28.1
1146	29.3
668	17.1
330	8.4
2622	67
1289	33
2057	52.6
1854	47.4
147	3.8
3764	96.2
3006	76.9
	167 502 1098 1146 668 330 2622 1289 2057 1854 147 3764

115 Table 1. Subjects' characteristics

It is made available under a CC-BY-NC-ND 4.0 International license .

Casendamy high school on shows	005	02.1
Secondary high school or above	905	23.1
Employment status	1620	41.9
Un-employed Employed	1639 2272	58.1
Total Cholesterol level	2212	38.1
	1022	16.9
$\geq 200 \text{ mg/dL}$	1832	46.8
<200 mg/dL	2079	53.2
HDL level	1140	20.1
$\geq 40 \text{ mg/dL}$	1140	29.1
<40 mg/dL	2771	70.9
LDL level	2204	04.2
$\geq 100 \text{ mg/dL}$	3296	84.3
<100 mg/dL	615	15.7
Triglyceride		
$\geq 150 \text{ mg/dL}$	1612	41.2
<150 mg/dL	2299	58.8
History of hypertension		
Yes	1350	34.5
No	2561	65.5
Smoking		
Yes	1002	25.6
No	2909	74.4
Physical activity status		
Sedentary	605	15.5
Active	3306	84.5
Alcohol consumption		
Yes	37	0.9
No	3874	99.1
BMI	0071	///1
Obese	1262	32.3
Overweight	603	15.4
Normal	1767	45.2
Underweight	164	4.2
Severe Underweight	115	2.9
Duration of DM	115	2.9
>5 years	1867	47.7
<5 years	2044	52.3
•	2044	52.5
Type of DM medication	020	21.2
No medication	830	21.2
OHD+insulin	828	21.2
Insulin	770	19.7
OHD	1483	37.9
Medication compliance		• • •
No	1625	41.5
Yes BMI: body mass index; HDL=high-density lipoprote	2286	58.5

116 BMI: body mass index; HDL=high-density lipoprotein; LDL=low-density lipoprotein

117

It is made available under a CC-BY-NC-ND 4.0 International license .

- Based on the result of blood pressure measurement, a total of 1,903 (48.7%) subjects
- 119 were categorized as normal, while the rest of 2,008 (51.3%) were categorized as
- 120 hypertension, whether grade 1,2,3 or ISH. ISH was the most frequent form of hypertension in
- 121 the study population (Fig. 1). The highest mean MAP was in non-ISH hypertension group,
- 122 while the highest mean PP was in the ISH group (Fig. 2)

Blood pressure classification

124 Figure 1. Frequency of blood pressure	e classification among DM subjects
---	------------------------------------

- 125 Optimal: <120 and <80; Normal: 120-129 and/or 80-84; High normal: 130-139 and/or 85-89; Grade I
- 126 hypertension: 140-159 and/or 90-99; Grade II hypertension: 160-179 and or 100-109; Grade III hypertension:

127 \geq 180 and or \geq 110; Isolated systolic hypertension (ISH): \geq 140 and <90

Figure 2. Mean arterial pressure (MAP) and pulse pressure based on hypertension classification.

131	ISH: isolated systolic hypertension
132	Of the total 3,911 study population of DM subjects, 685 subjects were identified as
133	ISH, indicated that the prevalence of ISH was 17.5%. Table 2 identified variables associated
134	with the ISH. Older subjects, low educational level, high total cholesterol level, low HDL
135	level, active physical activity, obese, duration of DM, and type of medication were associated
136	with the ISH status among DM subjects. These variables, combined with other variables that
137	$p \le 0.25$, i.e., employment status, LDL level, triglyceride, history of hypertension, alcohol
138	consumption, and medication compliance, continued to be involved in the Binary logistic
139	regression, and the final model of regression showed in Table 3.
140	
141	Table 2. Subjects' characteristics based on ISH status

5	ISH						95%CI	
Parameter	Yes	No	Total	_ p*	POR	Lower	Uper	
Age (years old)	n(%)	n(%)	n(%)				1	
≥ 75	70 (41.9)	97 (58.1)	167	0.001	69.16	17.172	278.560	
65-74	174 (34.7)	328 (65.3)	502	0.001	57.19	14.289	228.905	
55-64	253 (23)	845 (77)	1098	0.001	38.02	9.508	152.020	
45-54	145 (12.7)	1001 (87.3)	1146	0.001	20.88	5.200	83.822	
35-44	41 (6.1)	627 (93.9)	668	0.001	10.13	2.465	41.612	
15-34	2 (0.6)	328 (99.4)	330	Reference	10.15	2.403	41.012	
Sex	2 (0.0)	520 (77.4)	550	Reference	1			
Female	451 (17.2)	2171 (82.8)	2622	0.489	0.95	0.821	1.093	
Male	234 (18.2)	1055 (81.8)	1289	0.407	0.75	0.021	1.075	
Residence status	231 (10.2)	1055 (01.0)	1207					
Urban	370 (18)	1687 (82)	2057	0.437	1.06	0.924	1.214	
Rural	315 (17)	1539 (83)	1854	01107	1100	0.72.		
Marital status	010 (17)	(00)	1001					
Un-married	23 (15.6)	124 (84.4)	147	0.619	0.89	0.607	1.303	
Married	662 (17.6)	3102 (82.4)	3764	01017	0.07	01007	110 00	
Education level								
Low	553 (18.4)	2453 (81.6)	3006	0.009	1.26	1.059	1.502	
High	132 (14.6)	773 (85.4)	905					
Employment status								
Un-employed	308 (18.8)	1331 (81.2)	1639	0.081	1.13	0.988	1.298	
Employed	377 (16.6)	1895 (83.4)	2272					
Total Cholesterol level								
≥200 mg/dL	345 (18.8)	1487 (81.2)	1832	0.046	1.15	1.005	1.319	
<200 mg/dL	340 (16.4)	1739 (83.6)	2079					
HDL level								
$\geq 40 \text{ mg/dL}$	169 (14.8)	971 (85.2)	1140	0.005	0.80	0.679	0.934	
<40 mg/dL	516 (18.6)	2255 (81.4)	2771					
LDL level								
≥100 mg/dL	591 (17.9)	2705 (2.1)	3296	0.127	1.17	0.961	1.433	
<100 mg/dL	94 (15.3)	521 (84.7)	615					
Triglyceride								
≥150 mg/dL	261 (16.2)	1351 (83.8)	1612	0.075	0.88	0.763	1.010	
<150 mg/dL	424 (18.4)	1875 (81.6)	2299					
History of hypertension								
Yes	250 (18.5)	1100 (81.5)	1350	0.248	1.09	0.947	1.255	

It is made available under a CC-BY-NC-ND 4.0 International license .

No	435 (17)	2126 (83)	2561				
Smoking							
Yes	182 (18.2)	820 (81.8)	1002	0.563	1.05	0.901	1.225
No	503 (17.3)	2406 (82.7)	2909				
Physical activity status							
Sedentary	131 (21.7)	474 (78.3)	605	0.004	1.29	1.091	1.531
Active	554 (16.8)	2752 (83.2)	3306				
Alcohol consumption							
Yes	2 (5.4)	35 (94.6)	37	0.084	0.31	0.080	1.182
No	683 (17.6)	3191 (82.4)	3874				
BMI							
Obese	165 (13.1)	1097 (86.9)	1262	0.003	0.557	0.389	0.798
Overweight	91 (15.1)	512 (84.9)	603	0.037	0.643	0.439	0.940
Normal	368 (20.8)	1399 (79.2)	1767	0.576	0.887	0.630	1.249
Underweight	34 (20.7)	130 (79.3)	164	0.690	0.883	0.566	1.379
Severe underweigth	27 (23.5)	88 (76.5)	115	Reference			
Duration of DM							
>5 years	469 (25.1)	1398 (74.9)	1867	0.001	2.38	2.049	2.758
<5 years	216 (10.6)	1828 (89.4)	2044				
Type of DM medication							
No medication	235 (28.3)	595 (71.7)	830	0.001	2.09	1.766	2.471
OHD+insulin	158 (19.1)	670 (80.9)	828	0.001	1.41	1.164	1.703
Insulin	91 (11.8)	679 (88.2)	770	0.261	0.87	0.692	1.099
OHD	201 (13.6)	1282 (86.4)	1483	Reference	1		
Medication compliance							
No	307 (18.9)	1318 (81.1)	1625	0.062	1.14	0.997	1.310
Yes	378 (16.5)	1908 (83.5)	2286				
12 * Chi square tost							

142 **Chi-square* test

HDL: high density lipoprotein; LDL: low density lipoprotein; OHD: oral hypoglicaemic drugs; POR:
 prevalence odds ratio

145

146 We found that older subjects, low HDL cholesterol (prevalence odds ratio;

147 POR=0.80; 95% CI: 0.653-0.972), and duration of DM (POR=1.73; 95% CI: 1.257-2.389),

148 all together were associated with the ISH. Subjects with the older age category tend to get

149 higher POR, i.e., 10.80, 22.81, 46.81, 81.82, and 109.64 for the age category of 35-44, 45-54,

150 55-64, 65-74, and \geq 75 years old, respectively (Table 3).

151

152 Table 3. Binary logistic regression of ISH risk factors among DM subjects

• • •		0 0		
Variables	р	POR	95	5% CI.
Age (years old)				
≥75	0.001	109.64	26.373	455.789
65-74	0.001	81.82	20.110	332.868
55-64	0.001	46.12	11.393	186.720
45-54	0.001	22.81	5.616	92.677
35-44	0.001	10.80	2.595	44.957
High HDL cholesterol	0.025	0.80	0.653	0.972
History of hypertension	0.070	1.183	0.986	1.418
BMI				
Obese	0.331	0.769	0.453	1.306
Overweight	0.493	0.825	0.475	1.431
-				

It is made available under a CC-BY-NC-ND 4.0 International license .

0.360	1 0 4 1	0 775	1 007
0.369	1.241	0.775	1.987
0.857	0.946	0.520	1.722
0.001	1.73	1.257	2.389
		0.857 0.946	0.857 0.946 0.520

153 154

BMI: body mass index; HDL: high density lipoprotein; POR: prevalence odds ratio

54

155 **Discussion**

156 The present study reported a national scope, population-based cross-sectional study 157 that involved 3,911 DM subjects in Indonesia. Of them, 685 experienced ISH, indicated that 158 the prevalence of ISH among DM subjects in this population study was 17.5%. The 159 prevalence of ISH among DM subjects in Indonesia based on this study population was lower 160 than the prevalence of ISH in Ghana, i.e., 37.4% based on the out-patient diabetes clinic in 161 the teaching hospital of Tamale [14]. Similarly, as a hospital-based study, a study in Jimma, 162 Ethiopia, found that the prevalence of ISH among DM patients was 27.6% [15]. A 163 population-based study in district Chiem Hoa, Vietnam, observed the general elderly 164 population aged >60 years old found a prevalence of 22.9 % [20]. Another national 165 population-based study in the USA revealed that the prevalence of ISH in the general 166 population was 9.4% [21]. A similar result as the current study reported by a hospital-based 167 cohort study in Italy that observed ISH among type 2 DM and found a prevalence of 20.3 % 168 [22].

169 The present study also added evidence that DM subjects with older age, i.e., >75170 years old, was the most influential risk factor of ISH. This finding is in accordance with the 171 previous cohort study in Italy which concluded that the mean age of type 2 DM subjects 172 experienced ISH was 74.3 years old [22]. On the other hand, a study in Ethiopia reported that 173 DM subjects aged ≥ 60 years old were the protective factor for ISH, while the age category of 174 47-55 years old was the risk factor with the highest OR, i.e., 2.63 [15]. Similarly, the study in 175 Ghana showed the most frequent ISH in the DM subjects aged 50-69 years old [14]. 176 Regarding the study population, a study in Italy and Ethiopia comparing ISH to non-ISH, 177 including other forms of hypertension, while a study in Ghana comparing ISH to normal 178 subjects [14,15,22]. The previous review concluded that ISH affects 10-20% of the elderly, 179 systolic blood pressure increase with age, while diastolic blood pressure rises until the age of 180 50 years and then decreases after that [23]. Increase in blood pressure with age is mostly 181 associated with arterial stiffness. Degenerative processes such as calcification and alteration 182 of arteriosclerotic structure play a pivotal role in the formation of large artery stiffness as well 183 as in the small vessels. Small vessel stiffness leads to the condition of peripheral vascular 184 resistance that influences the increase of both systolic and diastolic blood pressure. The 185 existence of large artery stiffness increases systolic blood pressure and, conversely, decreases 186 diastolic blood pressure. The acceleration of large artery stiffness after 50 years old lead to 187 the steeper increase of systolic blood pressure that caused the ISH condition [24]. 188 Lipid profile leads to the process of endothelial dysfunction that affects blood

189 pressure. HDL cholesterol tends to have inversely associated with hypertension, while non-190 HDL cholesterol has a positive association [25]. The present study found that HDL was 191 inversely associated with the ISH, while in the bivariate analysis, total cholesterol showed a 192 positive association with ISH. High HDL level, i.e., $\geq 40 \text{ mg/dL}$, was concluded as the 193 protective factor for ISH in this study. This finding was in accordance with the Physician 194 Health Study that reported the highest quartile of HDL level, i.e., >53 mg/dL had the lowest 195 adjusted-RR (0.68) compared to the other quartile [26]. A study in China also reported that 196 HDL level was inversely related to the blood pressure as well as brachial-ankle pulse-wave 197 velocity, a marker of arterial stiffness development [25]. The atherosclerotic formation

It is made available under a CC-BY-NC-ND 4.0 International license .

198 structure of the vessels also influenced by the oxidative activity of LDL cholesterol that is 199 also inhibited by HDL [27,28]. However, a previous study in Japan reported a positive 200 correlation between HDL and hypertension in apparently healthy people [29]. Another study 201 revealed that a positive association between HDL and hypertension occurred in the subjects 202 with high-level circulation CD34-positive cells, a bone marrow-derived endothelial 203 progenitor. The level of circulating CD-34 increases as a response of the endothelial damage, 204 therefore masking the role of HDL as endothelial protective in healthy subjects [30]. 205 The current study also found that duration of DM, i.e., more than five years, was 206 significantly associated with ISH, PR=1.73 (95% CI: 1.257-2.389). This finding adds the 207 evidence that previously reported elsewhere that revealed diabetes duration and insulin 208 treatment status were the independent predictor of ISH [31]. The progression and duration of 209 diabetes increase complications. Duration of diabetes is associated with arterial stiffness, 210 while arterial stiffness plays a pivotal role in ISH [31]. The gradation of DM duration as a 211 dose-response relationship with hypertension was also described in the previous study [32]. 212 These findings strengthen the hypothesis that diabetes precedes arterial stiffness that caused 213 ISH; however, another study found that onset on diabetes and brachial-ankle pulse wave 214 velocity occurred simultaneously after a longitudinal observation indicates conversely 215 condition [33]. Indeed, there are roles of multifactor that contributed to the arterial stiffness 216 as a major cause of ISH. Arterial stiffness is a result of degenerative processes in the 217 extracellular matrix of elastic arteries caused by aging and many other risk factors [34]. 218 The final model of Binary logistic regression in this study involved a history of 219 hypertension; however, the p-value did not meet to be considered significant. The previous 220 history of hypertension describes the condition of individuals who tend to have a genetic 221 predisposition [35]. Hypertension is the form of the complex trait that involved multiple

organs and pathways [35,36]. Comprehensive understanding of genomics, epigenomics,
 metabolomics, proteomics, and transcriptomics of blood pressure plays a pivotal role in the
 context of the previous history of hypertension [35]. Further study that observed the detailed
 genetic role should be conducted to elucidate the novel hypertension pathophysiology and
 dissect and characterize the disorder's mechanism.

227 It is well established that obesity is associated with ISH [37–39]. Obesity affects the 228 process of inflammation, cell adhesion, and coagulation that impact in the arterial stiffness 229 [38,40]. Obesity is also related to the insulin and leptin resistance that contributes to sodium 230 retention with concomitant cardiac output [39]. However, in this study, BMI did not 231 significantly associate with ISH, although involved in the final model. It must be considered 232 that the role of BMI measurement alone is inadequate for accurately predict the disease 233 progression in DM subjects [41]. Other parameters such as body composition, total adipose mass, visceral adiposity-accumulation of intra-abdominal fat, and muscle mass should be 234 235 analyzed to describe the current condition of DM subjects [41–43].

236

237 Conclusions

The prevalence of ISH among Indonesian DM subjects in the present study was 17.5%. Older DM subjects, low HDL cholesterol, and duration of DM were associated with the ISH, suggesting that modify lipid profile, especially HDL cholesterol level, is a needful measure to delay ISH in older and duration DM subjects.

It is made available under a CC-BY-NC-ND 4.0 International license .

242 Data Availability

- 243 The data used in this study are available from the corresponding author Mahalul Azam upon
- request through the email address <u>mahalul.azam@mail.unnes.ac.id</u>. The data set was
- 245 accessed from the RISKESDAS (Riset Kesehatan Dasar); a five-annual national basic health
- survey that conducted and supported by the National Institute of Health Research and
- 247 Development (NIHRD), Ministry of Health, the Republic of Indonesia. The protocol and
- 248 reports of the RISKESDAS is published on https://www.litbang.kemkes.go.id/laporan-riset-
- 249 kesehatan-dasar-riskesdas//

250 Conflicts of Interest

- 251 The authors have declared that there is no conflict of interest exists.
- 252
- 253

254 **Funding Statement**

Research Grant of Faculty of Sports Science, Universitas Negeri Semarang. [Grant ID:
36.4.5/UN37/PPK.4.6/2020].

257 Acknowledgments

- 258 This study was supported by the Faculty of Sports Science, Universitas Negeri Semarang,
- 259 Indonesia [Grant ID: 36.4.5/UN37/PPK.4.6/2020]. The RISKESDAS (Riset Kesehatan
- 260 Dasar); a five-annual national basic health survey is conducted and supported by the National
- 261 Institute of Health Research and Development (NIHRD), Ministry of Health, the Republic of
- 262 Indonesia. The manuscript was prepared using a limited access data set obtained from the
- 263 NIHRD and does not reflect the opinions or views of RISKESDAS and NIHRD. The authors
- thank the RISKESDAS investigators for granting permission to use their data set for the
- current study. The protocol and reports of the RISKESDAS is published on

267

268 **References**

- 269 [1] International Diabetes Federation, IDF Diabetes atlas 9th edition, Brussel, Belgium,
- 270 2019. https://www.diabetesatlas.org.
- 271 [2] B. Tesfaye, A. Alebel, A. Gebrie, A. Zegeye, C. Tesema Leshargie, A. Ferede, H.
- 272 Abera, K. Alam, Diabetes Mellitus and Its Association with Hypertension in Ethiopia:
- A Systematic Review and Meta-Analysis., Diabetes Res. Clin. Pract. 156 (2019)
- 274 107838. https://doi.org/10.1016/j.diabres.2019.107838.
- 275 [3] A.D. Colosia, R. Palencia, S. Khan, Prevalence of hypertension and obesity in patients
- with type 2 diabetes mellitus in observational studies: a systematic literature review.,

^{266 &}lt;u>https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas//</u>

277		diabetes. Metab. Syndr. Obes. 6 (2013) 327–338.
278		https://doi.org/10.2147/DMSO.S51325.
279	[4]	C.T. Nguyen, N.M. Pham, A.H. Lee, C.W. Binns, Prevalence of and Risk Factors for
280	[.]	Type 2 Diabetes Mellitus in Vietnam: A Systematic Review., Asia-Pacific J. Public
281		Heal. 27 (2015) 588–600. https://doi.org/10.1177/1010539515595860.
282	[5]	J.R. Petrie, T.J. Guzik, R.M. Touyz, Diabetes, Hypertension, and Cardiovascular
283		Disease: Clinical Insights and Vascular Mechanisms., Can. J. Cardiol. 34 (2018) 575–
284		584. https://doi.org/10.1016/j.cjca.2017.12.005.
285	[6]	G. Chen, F.A. McAlister, R.L. Walker, B.R. Hemmelgarn, N.R.C. Campbell,
286		Cardiovascular outcomes in framingham participants with diabetes: The importance of
287		blood pressure, hypertension. 57 (2011) 891–897.
288		https://doi.org/10.1161/HYPERTENSIONAHA.110.162446.
289	[7]	M. Ohishi, Hypertension with diabetes mellitus: physiology and pathology.,
290		Hypertens. Res. 41 (2018) 389-393. https://doi.org/10.1038/s41440-018-0034-4.
291	[8]	C. Bavishi, S. Goel, F.H. Messerli, Isolated Systolic Hypertension: An Update After
292		SPRINT., Am. J. Med. 129 (2016) 1251–1258.
293		https://doi.org/10.1016/j.amjmed.2016.08.032.
294	[9]	S.S. Franklin, P. Lapuerta, G.J. L'Italien, N.D. Wong, M.J. Jacobs, Predominance of
295		Isolated Systolic Hypertension Among Middle-Aged and Elderly US Hypertensives,
296		Hypertension. 37 (2012) 869-874. https://doi.org/10.1161/01.hyp.37.3.869.
297	[10]	I. Os, H. Gudmundsdottir, S.E. Kjeldsen, S. Oparil, Treatment of isolated systolic
298		hypertension in diabetes mellitus type 2., diabetes. Obes. Metab. 8 (2006) 381-387.
299		https://doi.org/10.1111/j.1463-1326.2005.00523.x.
300	[11]	N. Madan, A.K. Lee, K. Matsushita, R.C. Hoogeveen, C.M. Ballantyne, E. Selvin,
301		J.W. McEvoy, Relation of Isolated Systolic Hypertension and Pulse Pressure to High-
302		Sensitivity Cardiac Troponin-T and N-Terminal pro-B-Type Natriuretic Peptide in
303		Older Adults (from the Atherosclerosis Risk in Communities Study)., Am. J. Cardiol.
304		124 (2019) 245-252. https://doi.org/10.1016/j.amjcard.2019.04.030.
305	[12]	S. Selvaraj, P.G. Steg, Y. Elbez, E. Sorbets, L.J. Feldman, K.A. Eagle, E.M. Ohman, J.
306		Blacher, D.L. Bhatt, Pulse Pressure and Risk for Cardiovascular Events in Patients
307		With Atherothrombosis: From the REACH Registry., J. Am. Coll. Cardiol. 67 (2016)
308		392-403. https://doi.org/10.1016/j.jacc.2015.10.084.
309	[13]	G.J. Winston, W. Palmas, J. Lima, J.F. Polak, A.G. Bertoni, G. Burke, J. Eng, R.
310		Gottesman, S. Shea, Pulse pressure and subclinical cardiovascular disease in the multi-

311		ethnic study of atherosclerosis., Am. J. Hypertens. 26 (2013) 636-642.
312		https://doi.org/10.1093/ajh/hps092.
313	[14]	R.K.D. Ephraim, A.R. Saasi, E.O. Anto, P. Adoba, Determinants of isolated systolic
314		hypertension among diabetic patients visiting the diabetic clinic at the Tamale
315		Teaching Hospital, Northern Ghana., Afr. Health Sci. 16 (2016) 1151–1156.
316		https://doi.org/10.4314/ahs.v16i4.33.
317	[15]	B. Dagnew, Y. Yeshaw, Predictors of isolated systolic hypertension among type 2
318		diabetes mellitus patients in Jimma University Specialized Hospital, Southwest
319		Ethiopia, BMC Res. Notes. 12 (2019) 1-7. https://doi.org/10.1186/s13104-019-4550-
320		3.
321	[16]	R. Grebla, C. Rodriguez, L. Borrell, T. Pickering, Prevalence and determinants of
322		isolated systolic hypertension among young adults., J. Am. Soc. Hypertens. 28 (2010)
323		15-23. https://doi.org/10.1097/HJH.0b013e328331b7ff.Prevalence.
324	[17]	M. Sihombing, Faktor yang Berhubungan dengan Hipertensi pada Penduduk Indonesia
325		yang Menderita Diabetes Melitus (Data Riskesdas 2013), Bul. Penelit. Kesehat. 45
326		(2017) 53-64. https://doi.org/10.22435/bpk.v45i1.5730.53-64.
327	[18]	Badan Penelitian dan Pengembangan Kesehatan, Laporan Nasional Riset Kesehatan
328		Dasar: RISKESDAS (Indonesia Basic Health Survey) tahun 2018, 2018.
329		http://labmandat.litbang.kemkes.go.id/images/download/laporan/RKD/2018/Laporan_
330		Nasional_RKD2018_FINAL.pdf.
331	[19]	A.F. Members, G. Mancia, R. Fagard, K. Narkiewicz, J. Redon, A. Zanchetti, M.
332		Böhm, T. Christiaens, R. Cifkova, G. De Backer, A. Dominiczak, M. Galderisi, D.E.
333		Grobbee, T. Jaarsma, P. Kirchhof, S.E. Kjeldsen, S. Laurent, A.J. Manolis, P.M.
334		Nilsson, L.M. Ruilope, R.E. Schmieder, P.A. Sirnes, P. Sleight, M. Viigimaa, B.
335		Waeber, F. Zannad, E.S.H.S. Council, J. Redon, A. Dominiczak, K. Narkiewicz, P.M.
336		Nilsson, M. Burnier, M. Viigimaa, E. Ambrosioni, M. Caufield, A. Coca, M.H. Olsen,
337		R.E. Schmieder, C. Tsioufis, P. van de Borne, E.S.C.C. for P.G. (CPG), J.L.
338		Zamorano, S. Achenbach, H. Baumgartner, J.J. Bax, H. Bueno, V. Dean, C. Deaton, C.
339		Erol, R. Fagard, R. Ferrari, D. Hasdai, A.W. Hoes, P. Kirchhof, J. Knuuti, P. Kolh, P.
340		Lancellotti, A. Linhart, P. Nihoyannopoulos, M.F. Piepoli, P. Ponikowski, P.A. Sirnes,
341		J.L. Tamargo, M. Tendera, A. Torbicki, W. Wijns, S. Windecker, D. Reviewers, D.L.
342		Clement, A. Coca, T.C. Gillebert, M. Tendera, E.A. Rosei, E. Ambrosioni, S.D.
343		Anker, J. Bauersachs, J.B. Hitij, M. Caulfield, M. De Buyzere, S. De Geest, G.A.
344		Derumeaux, S. Erdine, C. Farsang, C. Funck-Brentano, V. Gerc, G. Germano, S.

245		Cisher H Heller AW Here I Lender T Keher M Kennelde D Lende H
345		Gielen, H. Haller, A.W. Hoes, J. Jordan, T. Kahan, M. Komajda, D. Lovic, H.
346		Mahrholdt, M.H. Olsen, J. Ostergren, G. Parati, J. Perk, J. Polonia, B.A. Popescu, Ž.
347		Reiner, L. Rydén, Y. Sirenko, A. Stanton, H. Struijker-Boudier, C. Tsioufis, P. van de
348		Borne, C. Vlachopoulos, M. Volpe, D.A. Wood, 2013 ESH/ESC Guidelines for the
349		management of arterial hypertension: The Task Force for the management of arterial
350		hypertension of the European Society of Hypertension (ESH) and of the European
351		Society of Cardiology (ESC), Eur. Heart J. 34 (2013) 2159–2219.
352		https://doi.org/10.1093/eurheartj/eht151.
353	[20]	N. Bui Van, L. Vo Hoang, T. Bui Van, H.N.S. Anh, H.T. Minh, K. Do Nam, T.N. Tri,
354		P.L. Show, V.T. Nga, D.B. Thimiri Govinda Raj, DT. Chu, Prevalence and Risk
355		Factors of Hypertension in the Vietnamese Elderly., High Blood Press. Cardiovasc.
356		Prev. Off. J. Ital. Soc. Hypertens. 26 (2019) 239-246. https://doi.org/10.1007/s40292-
357		019-00314-8.
358	[21]	X. Liu, C.J. Rodriguez, K. Wang, Prevalence and trends of isolated systolic
359		hypertension among untreated adults in the United States., J. Am. Soc. Hypertens. 9
360		(2015) 197-205. https://doi.org/10.1016/j.jash.2015.01.002.
361	[22]	S. Bo, G. Ciccone, G. Grassi, R. Gancia, R. Rosato, F. Merletti, G. Pagano, Isolated
362		systolic hypertension in a cohort of type 2 diabetic patients., Nutr. Metab. Cardiovasc.
363		Dis. 14 (2004) 157–161. https://doi.org/10.1016/s0939-4753(04)80036-x.
364	[23]	L. Thijs, E. Den Hond, T. Nawrot, J.A. Staessen, Prevalence, pathophysiology and
365		treatment of isolated systolic hypertension in the elderly, Expert Rev. Cardiovasc.
366		Ther. 2 (2004) 761–769. https://doi.org/10.1586/14779072.2.5.761.
367	[24]	E. Pinto, Blood pressure and ageing, Postgrad. Med. J. 83 (2007) 109-114.
368		https://doi.org/10.1136/pgmj.2006.048371.
369	[25]	B. Zhan, X. Huang, J. Wang, X. Qin, J. Zhang, J. Cao, Y. Song, L. Liu, P. Li, R. Yang,
370		Y. Wu, Q. Wu, Y. Zhang, J. Li, Y. Huo, B. Wang, X. Xu, H. Bao, X. Cheng,
371		Association Between Lipid Profiles and Arterial Stiffness in Chinese Patients With
372		Hypertension: Insights From the CSPPT, Angiology. 70 (2019) 515–522.
373		https://doi.org/10.1177/0003319718823341.
374	[26]	HR O., SH D., M. Jing, BJ E., SM J., MG J., Dyslipidemia and the Risk of Incident
375		Hypertension in Men, Hypertension. 47 (2006) 45–50.
376		https://doi.org/10.1161/01.HYP.0000196306.42418.0e.
377	[27]	F. Brites, M. Martin, I. Guillas, A. Kontush, Antioxidative activity of high-density
378		lipoprotein (HDL): Mechanistic insights into potential clinical benefit., BBA Clin. 8
		· · · · · · · · · · · · ·

379		(2017) 66-77. https://doi.org/10.1016/j.bbacli.2017.07.002.
380	[28]	R. Puri, S.E. Nissen, M. Shao, M.B. Elshazly, Y. Kataoka, S.R. Kapadia, E.M. Tuzcu,
381		S.J. Nicholls, Non-HDL Cholesterol and Triglycerides: Implications for Coronary
382		Atheroma Progression and Clinical Events, Arterioscler. Thromb. Vasc. Biol. 36
383		(2016) 2220-2228. https://doi.org/10.1161/ATVBAHA.116.307601.
384	[29]	E. Oda, R. Kawai, High-density lipoprotein cholesterol is positively associated with
385		hypertension in apparently healthy Japanese men and women, Br. J. Biomed. Sci. 68
386		(2011) 29-33. https://doi.org/10.1080/09674845.2011.11732838.
387	[30]	Y. Shimizu, S. Sato, J. Koyamatsu, H. Yamanashi, M. Nagayoshi, K. Kadota, SY.
388		Kawashiri, T. Maeda, Association between high-density lipoprotein-cholesterol and
389		hypertension in relation to circulating CD34-positive cell levels, J. Physiol. Anthropol.
390		36 (2017) 1-7. https://doi.org/10.1186/s40101-017-0143-9.
391	[31]	H. Smulyan, A. Lieber, M.E. Safar, Hypertension, Diabetes Type II, and Their
392		Association: Role of Arterial Stiffness., Am. J. Hypertens. 29 (2016) 5-13.
393		https://doi.org/10.1093/ajh/hpv107.
394	[32]	M. Berraho, Y. El Achhab, A. Benslimane, K. El Rhazi, M. Chikri, C. Nejjari,
395		Hypertension and type 2 diabetes: a cross-sectional study in Morocco (EPIDIAM
396		Study)., Pan Afr. Med. J. 11 (2012) 52.
397	[33]	Y. Zhang, P. He, Y. Li, Y. Zhang, J. Li, M. Liang, G. Wang, G. Tang, Y. Song, B.
398		Wang, C. Liu, L. Liu, Y. Cui, X. Wang, Y. Huo, X. Xu, X. Qin, Positive association
399		between baseline brachial-ankle pulse wave velocity and the risk of new-onset
400		diabetes in hypertensive patients, Cardiovasc. Diabetol. 18 (2019) 111.
401		https://doi.org/10.1186/s12933-019-0915-0.
402	[34]	C. Palombo, M. Kozakova, Arterial stiffness, atherosclerosis and cardiovascular risk:
403		Pathophysiologic mechanisms and emerging clinical indications., Vascul. Pharmacol.
404		77 (2016) 1-7. https://doi.org/10.1016/j.vph.2015.11.083.
405	[35]	D.K. Arnett, S.A. Claas, Omics of Blood Pressure and Hypertension., Circ. Res. 122
406		(2018) 1409-1419. https://doi.org/10.1161/CIRCRESAHA.118.311342.
407	[36]	M.L. Lindsey, M. Mayr, A. V Gomes, C. Delles, D.K. Arrell, A.M. Murphy, R.A.
408		Lange, C.E. Costello, YF. Jin, D.T. Laskowitz, F. Sam, A. Terzic, J. Van Eyk, P.R.
409		Srinivas, Transformative Impact of Proteomics on Cardiovascular Health and Disease:
410		A Scientific Statement From the American Heart Association., Circulation. 132
411		(2015) 852-872. https://doi.org/10.1161/CIR.00000000000226.
412	[37]	S. Asgari, D. Khalili, Y. Mehrabi, S. Kazempour-Ardebili, F. Azizi, F. Hadaegh,

It is made available under a CC-BY-NC-ND 4.0 International license .

413		Incidence and risk factors of isolated systolic and diastolic hypertension: a 10 year
414		follow-up of the Tehran Lipids and Glucose Study, Blood Press. 25 (2016) 177–183.
415		https://doi.org/10.3109/08037051.2015.1116221.
416	[38]	R.P. Wildman, R.H. Mackey, A. Bostom, T. Thompson, K. Sutton-Tyrrell, Measures
417		of obesity are associated with vascular stiffness in young and older adults,
418		hypertension. 42 (2003) 468-473.
419		https://doi.org/10.1161/01.HYP.0000090360.78539.CD.
420	[39]	R. and E.R. Zhang, Obesity hypertension: The effects on cardiovascular and renal
421		systems, Am. J. Hypertens. 13 (2000) 1308-1314.
422	[40]	C. Delles, E. Carrick, D. Graham, S.A. Nicklin, Utilizing proteomics to understand and
423		define hypertension: where are we and where do we go?, Expert Rev. Proteomics. 15
424		(2018) 581-592. https://doi.org/10.1080/14789450.2018.1493927.
425	[41]	M. Murea, L. Lenchik, T.C. Register, G.B. Russell, J. Xu, S.C. Smith, D.W. Bowden,
426		J. Divers, B.I. Freedman, Psoas and paraspinous muscle index as a predictor of
427		mortality in African American men with type 2 diabetes mellitus., J. Diabetes
428		Complications. 32 (2018) 558–564. https://doi.org/10.1016/j.jdiacomp.2018.03.004.
429	[42]	E.S.A. Owusu, M. Samanta, J.E. Shaw, A. Majeed, K. Khunti, S.K. Paul, Weight loss
430		and mortality risk in patients with different adiposity at diagnosis of type 2 diabetes: a
431		longitudinal cohort study., Nutr. Diabetes. 8 (2018) 37.
432		https://doi.org/10.1038/s41387-018-0042-0.
433	[43]	S. Gullaksen, K.L. Funck, E. Laugesen, T.K. Hansen, D. Dey, P.L. Poulsen, Volumes
434		of coronary plaque disease in relation to body mass index, waist circumference,
435		truncal fat mass and epicardial adipose tissue in patients with type 2 diabetes mellitus
436		and controls., Diabetes Vasc. Dis. Res. 16 (2019) 328-336.
437		https://doi.org/10.1177/1479164119825761.

438