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Abstract  

Accurate prediction of COVID-19 cases can optimize clinical trial recruitment, inform 

mitigation strategies and facilitate rapid medication development. Here we present a country-

specific, modified Susceptible, Exposed, Infectious, Removed (SEIR) model of SARS-CoV-2 

transmission using data from the Johns Hopkins University COVID-19 Dashboard. Inter-

country differences in initial exposure, cultural/environmental factors, reporting requirements 

and stringency of mitigation strategies were incorporated. Asymptomatic patients and super-

spreaders were also factored into our model. Using these data, our model estimated 65.8% of 

cases as asymptomatic; symptomatic and asymptomatic people were estimated to infect 2.12 

and 5.83 other people, respectively. An estimated 9.55% of cases were super-spreaders with a 

2.11-fold higher transmission rate than average. Our model estimated a mean maximum 

infection rate of 0.927 cases/day (inter-country range, 0.63–1.41) without mitigation 

strategies. Mitigation strategies with a stringency index value of ≥60% were estimated to be 

required to reduce the reproduction ratio below 1. It was predicted that cases over the next 2 

months would differ between countries, with certain countries likely to experience an 

accelerated accumulation of cases. Together, results from our model can guide distribution of 

diagnostic tests, impact clinical trial development, support medication development and 

distribution and inform mitigation strategies to reduce COVID-19 spread.  
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Key Findings  

• Predicting COVID-19 cases can inform medication development and mitigation 

strategies  

• We created a modified SEIR model of SARS-CoV-2 transmission 

• We integrated asymptomatic cases, super-spreaders and hotspots that drive viral 

spread  

• Mitigation strategies with a stringency index of ≥60% are required to reduce the RR 

below 1 

• Some countries may experience an accelerated accumulation of cases in the coming 

months 
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Introduction 

As of 25 October 2020, the coronavirus disease 2019 (COVID-19) first reported in Wuhan, 

China, in December 2019 had resulted in 43 million confirmed cases globally, with infections 

continuing to spread [1]. This unprecedented pandemic has presented unique challenges for 

medical professionals, biomedical researchers, governmental and non-governmental 

organizations and members of the pharmaceutical industry, each of whom have shown an 

unwavering commitment to patient care and support [2, 3]. Specifically, the pharmaceutical 

industry has increased efforts to research, develop, register and make available solutions 

ranging from antivirals to treatments of complications of COVID-19 in record speed while 

also carefully managing supply lines and manufacturing sites for existing medications in high 

demand for the general management of patients with COVID-19 [4].  

 

To support clinical trial recruitment, medication development, medication supply and 

distribution strategies, it is vital for the pharmaceutical industry, national and multi-national 

organizations, governments and non-governmental organizations to understand the 

epidemiological concept of virus transmission, the patterns and implications of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) viral spread and the impact of different 

non-pharmaceutical interventions (NPIs) proposed as mitigation strategies on local, national 

and international levels [5, 6]. Specifically, the ability to accurately project the number of 

expected cases in each country over time could assist in selecting clinical trial sites with good 

potential for rapid patient recruitment and medication development. Furthermore, this 

information could guide the fair and equitable distribution of diagnostic tests, treatment 

options and vaccines. 
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The basic reproduction number (R0) for SARS-CoV-2 infection before the implementation of 

mitigation strategies is estimated to range from approximately 2.0 to 3.6 [7-12], with a high 

risk for transmission because of high numbers of asymptomatic subjects and emerging 

clusters [13-15]. Transmission models based on real-world epidemiological data are 

important tools for understanding the dynamics of SARS-CoV-2 transmission and can be 

useful to guide mitigation strategies and policy decisions designed to assist patients with 

COVID-19 and reduce disease spread [9, 16-21].  

 

Mitigation strategies with NPIs have been effective in helping to curb the spread of SARS-

CoV-2 and in reducing the reproduction ratio (RR) [12, 22], though these are likely hindered 

by the relatively high proportion of asymptomatic cases of COVID-19 [15, 23, 24]. Although 

the magnitude of infectiousness in asymptomatic patients (i.e. when the infector has no 

symptoms throughout the course of the disease) is difficult to quantify, these cases are 

expected to heavily impact transmission dynamics [25, 26]. Indeed, non–peer-reviewed 

mathematical modelling studies highlight the importance of accounting for asymptomatic 

persons when describing transmission dynamics [27, 28]. As such, this analysis could support 

public health considerations and suggest, by quantifying their contributions, that 

asymptomatic persons might be major drivers of the COVID-19 pandemic. Unless 

asymptomatic persons happen to get tested, they may continue to socialize and work during 

the entire infectious period, in contrast to situations in which the vast majority of people are 

symptomatic and can be identified without testing and for whom rapid quarantine is possible.  

 

Although some components of viral transmission (e.g. proportions of asymptomatic and 

“super-spreader” cases, duration of latency, pre-symptomatic infectious and post-

symptomatic infectious periods and duration of infectiousness) are likely to be consistent 
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across countries, other components affecting patterns of viral spread are expected to differ 

between countries, further complicating potential models of viral transmission. Further, cases 

of COVID-19 are not uniformly distributed within a country; rather, they are primarily 

located in “hotspots” of various sizes that, without mitigation, merge and grow, potentially 

including the entire population [29-31]. A proportion of super-spreaders has also been 

reported in the COVID-19 population, and a limitation of classical models is the use of mean 

parameter values across the population, even though different persons may have different 

disease characteristics (e.g. viral load, infection rate, duration of symptoms). Additional 

proposed modelling approaches could account for super-spreader profiles by differentiating 

this type of case and estimating specific transmission characteristics of super-spreaders. 

 

Although several epidemiological transmission models exist, our model is the first to clearly 

quantify the effect of NPIs on COVID-19 transmission in individual countries while also 

accounting for the expected contribution of asymptomatic cases to COVID-19 transmission 

and differentiating potential super-spreaders. Given that these components are crucial for 

robust, country-specific projections, we aimed to implement a modified Susceptible, 

Exposed, Infectious, Removed (SEIR) model of SARS-CoV-2 transmission incorporating 

those components, with the objectives of supporting the development of medications, 

optimizing clinical trial recruitment and facilitating a fast-to-market strategy for medications 

that have the potential to reduce symptoms and complications in patients with COVID-19. 

 

Methods 

Data sources 

Real-world epidemiological data were obtained from the Johns Hopkins University COVID-

19 Center for Systems Science and Engineering COVID-19 Dashboard on 31 August 2020 
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[1]. This includes data from national and state government health departments and local 

media reports. In addition, country-level mitigation data from the Coronavirus Government 

Response Tracker, collected and validated by Oxford University [32], were used to 

investigate the potential mitigation impact of NPIs on the transmission of SARS-CoV-2, with 

the objective of building country-specific quantitative relationships between NPIs and 

transmission model parameters. 

 

Model development 

Development of the initial modified SEIR model was based on the susceptible population (S), 

exposed patients not yet infectious (E), infected infectious patients who are asymptomatic 

(Ia), infected infectious patients (I), recovered patients (R) and death (D) (Fig. 1). Additional 

components, detailed below, were added to account for reporting rates of individual 

countries, incorporate hotspots and emerging clusters, include asymptomatic and super-

spreader profiles and evaluate the impact of various mitigation strategies on transmission 

rate. The model was used to estimate the expected total number of symptomatic and 

asymptomatic cases regardless of whether they were reported.  

 

To account for regional differences in initial exposure, we started with a set time of 1 January 

2020 and estimated a country-specific lag time to the first infected cases in each country. To 

forecast accurately, it was essential to properly incorporate the population at risk for infection 

in each country and to avoid overestimating or underestimating the transmission rate because 

this could impact the model’s outcomes and ultimately misinform subsequent decisions 

regarding medication development and deployment. To account for non-uniform 

geographical distribution of cases within a country, the size of a susceptible population was 
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initially estimated by mimicking the size and distribution of COVID-19 hotspots and was 

inflated every 15 days using an estimation of the inflation parameter for that country.  

 

The asymptomatic population was included in our SEIR model by estimating the proportion 

of asymptomatic cases and assuming a daily infection rate of half that of symptomatic cases. 

This rate assumption was based on reports of reduced viral load in asymptomatic persons, a 

potential surrogate marker of the infection rate [23, 33, 34]. The infectious period of 

asymptomatic cases was fixed at 10 days, based on the observed viral load time course [23, 

33]. These characteristics of asymptomatic cases were then further refined using sensitivity 

analysis. The super-spreaders were accounted for in our SEIR model in the same way 

asymptomatic cases were. However, both the proportion of super-spreaders in the population 

and the increase in their infection rate could be estimated in our model.  

 

The effect of mitigation strategies on the RR (number of new cases per subject during the 

entire infectious period) was evaluated using the Oxford COVID-19 Government Response 

Tracker [32], which calculates a stringency index to score the strength of mitigations. This 

tool systematically collects country-specific policy responses to COVID-19, including 

indicators such as school closures and travel restrictions (Fig. 2). The value of an index on 

any given day is calculated as the average of nine sub-indices pertaining to individual policy 

indicators assigned a value between 0 and 100, where the stronger the mitigation, the higher 

the stringency index. In our model, the relationship between the stringency index and the 

daily infection rate was characterized using an Emax model from which a maximum infection 

rate could be estimated considering no mitigation (stringency index of 0), and then a decrease 

in the infection rate could be estimated depending on the stringency index, the magnitude of 

the decrease and the stringency index value that would correspond to 50% of the decrease. 
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We also assumed a similar relationship between the stringency index and the daily infection 

rate for symptomatic and asymptomatic cases, considering that different NPIs constituting the 

stringency index (e.g. school or public transport closing) would impact both infection rates. 

The policy most specific to symptomatic cases is to quarantine starting soon after the 

emergence of symptoms; we included this in the model as directly impacting the infectious 

period of symptomatic cases only. 

 

Between-country variability 

Because our objective was to describe and forecast the number of cases in each country, we 

had to consider which parameters would be similar across countries (virus specific) and 

which parameters would vary between countries (country specific). Therefore, we included a 

certain amount of inter-country variability in our model to account for country-specific 

factors, among them potential differences in transmission resulting from cultural and 

environmental differences and differences in the way cases were reported. Similarly, the 

impact of mitigation strategies on the rate of transmission was considered country specific. 

 

Simulations 

Our model was used to project the mid- to long-term expected number of cases in each 

country according to different scenarios. We fixed the stringency index at the latest reported 

value for each country at the cut-off date (25 October 2020) because it appeared to reflect the 

maximum sustainable mitigations countries could implement without jeopardizing economic 

factors. However, different scenarios could account for specific viral spreading according to 

the size of the target population (to mimic the occurrence of new clusters). We defined two 

possible scenarios. In scenario 1, which corresponds to low viral spread, the susceptible 

population was increased every 15 days using country-specific means of the stringency index 
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values estimated during the period with strong travel limitations (mid-March to mid-May). 

Scenario 2 corresponds to high viral spread with a bi-weekly increase of the susceptible 

population implemented using country-specific means of the stringency index values 

estimated over the recent months with no travel restrictions (mid-August to mid-October). 

 

We limited the simulation period to 2 months as we considered the effects of certain 

parameters (e.g. seasonality of virus transmission, effects of face mask wearing, test strategy, 

increase in reporting rate due to test deployment) sufficiently ambiguous to limit confidence 

in a longer simulation period. 

 

Results 

Tailored model for understanding virus spread characteristics per country 

Parameter estimates are shown in Table 1. Across countries, our model estimated that it takes 

an average of 3.43 days after a person contracts the virus to become infectious and another 

2.57 days before the onset of symptoms, resulting in an incubation period of almost 6 days. 

On average, 65.8% of all cases are estimated to be asymptomatic and 9.55% of all cases are 

estimated to be super-spreaders, with a transmission rate 2.11-fold higher than average.  

 

The stringency index, derived from the Oxford COVID-19 Government Response Tracker 

[32], was used for scoring initiated mitigations. In our model, the maximum infection rate in 

the absence of specific policies (other than self-imposed quarantine in response to symptoms) 

was estimated as 0.927 cases per subject per day of symptoms, with a range between 0.63 and 

1.41, depending on the country. Assuming a reduction in the infection rate of 50% for pre-

symptomatic and asymptomatic cases, the average RR was computed as shown in Table 2. 

Based on this, a symptomatic person is predicted to infect a total of 2.12 people – 
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approximately 1.1 during the pre-symptomatic period and 1.0 during the symptomatic period. 

An asymptomatic person is predicted to infect 5.83 people in total. Accounting for the 

proportion of asymptomatic cases estimated by the model, it can be derived that 

asymptomatic persons are responsible for 84% of new infections. Thus, the relationship 

between the stringency index and the daily infection rate could be estimated within the 

model; an example based on global level data is shown in Fig. 3. A stringency index value of 

35.3% was estimated as required to result in a 50% decrease in daily infection rate with a 

range between 17.4% and 74.5%, depending on the country. Therefore, the stringency index 

must exceed 60% to result in the RR in symptomatic cases dropping below 1 (Fig. 3). 

 

Most of the parameters were well estimated. Data fitting to describe the observed cumulative 

cases are shown in Fig. 4 for representative countries and in the online supplementary 

appendix for all countries examined. Between-country differences observed in cumulative 

cases over time were well captured with the model and could be explained by changes in the 

stringency index and the potential geographic spread of the virus, which are the two time-

dependent variables in the model.  

 

Supporting questions around clinical development and future supply 

The simulation was also able to illustrate the projection of expected cases for the next 2 

months (Fig. 5). These projections may help inform clinical operation considerations with 

regards to site location for new COVID-19 clinical trials and allow for companies to 

anticipate future demands for medications and prioritize supplies in territories with the 

highest current or future needs. For each of the scenarios tested, some countries, such as 

Russia and Peru, are likely to have more accelerated accumulations of cases than other 

counties, such as France and the United Kingdom, especially as travel restrictions are put in 
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place in countries with slower accumulations of cases. The ability to predict where this 

acceleration will occur may allow for a more appropriate selection of clinical trial sites for 

new COVID-19 medications and may increase patient participation in these clinical trials. 

This, in turn, will ensure that medications that are safe and effective can be rapidly 

distributed to the patients who need them. Such simulation results, if regularly revised, could 

also allow for increased availability of medications where the need is likely to be high while 

also identifying countries that may be less relevant targets. 

 

Discussion 

The objective of this analysis was to tailor a transmission model to address the current issues 

faced by pharmaceutical companies, governments and multi-national organizations: how to 

best identify countries that can facilitate faster and more efficient development of potential 

COVID-19 therapies, with the ultimate goal of getting potentially life-saving medications to 

those in need. The model presented here has the potential to help support the selection of 

clinical trial sites, the initiation of mitigation strategies and the distribution of COVID-19 

diagnostics, treatments and vaccines. 

 

 This modelling study of COVID-19 transmission, based on total global cases reported as of 

25 October 2020, demonstrated disease model parameters consistent with those that have 

been reported in the literature, such as an incubation period of 6 days [35, 36][37]. In 

addition, our model was able to estimate similar rates of asymptomatic cases and proportions 

of super-spreaders across all countries. The estimated proportion of asymptomatic cases 

(66%) is very close to other reported values in the literature [15, 23, 38]. In addition, the 

estimated proportion of super-spreaders identified here (almost 10%) is similar to the 

expected proportion identified in other studies [39]. According to their daily infection rate, 
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super-spreaders are expected to infect 3.11 times the number of people normal spreaders 

infect. In the absence of mitigation, this would lead to one symptomatic super-spreader 

infecting approximately 6.6 people and one asymptomatic super-spreader infecting almost 11 

people, highlighting the large contribution this small proportion of people can make to virus 

transmission, which is consistent with previous reports [40]. Furthermore, our model 

confirms that most new cases result from asymptomatic transmission, occurring either during 

the pre-symptomatic period (from persons who later become symptomatic) or from 

asymptomatic persons [27, 28]. In general, these data highlight the importance of 

incorporating asymptomatic persons in transmission models to obtain more accurate 

projections of future cases. 

 

To better describe country-specific data, identify which countries are likely to experience 

large numbers of emerging cases and help inform decisions surrounding future clinical trial 

locations, our strategy incorporated inter-country variability into the model. This variability 

was considered for parameters that may differ, depending on social, cultural and societal 

factors (such as the rate of infection and the strength of NPIs), allowing for appropriate 

country-specific forecasts. These parameters could indirectly account for the number of 

contacts each person may have (e.g. household context, place of work) and the level of 

adherence to NPIs, with an effect that could differ between countries despite a similar 

stringency index. Notably, the amplitude of the inter-country variability was large, suggesting 

large heterogeneity between countries.  

 

With this model, we were able to simulate the expected number of COVID-19 cases over 

time using different scenarios of mitigation. Our model can be used to project the future 

profile of the pandemic based on current data to investigate the effect of mitigation specific to 
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each country. It also allows for the simulation of potential new clusters though a country-

specific stringency index (i.e. last stringency index carried forward in the simulation), 

accounting for an increase in the target population over time based on country-level 

estimates. Together these data can provide important information for the identification of 

promising new sites for COVID-19 clinical trials and may help support global supply chain 

networks by identifying potential supply-and-demand challenges arising in different countries 

during the pandemic. 

 

Our model does have certain limitations. First, it was based on observed infected cases. 

Given that some patients are asymptomatic or show only mild symptoms, however, it is likely 

that the true number of cases is higher than captured here. In addition, changes in the 

reporting rate because of local testing policies and potential seasonality differences are not 

incorporated or investigated in this model. As data on these factors are gathered over time, it 

may be possible to integrate them into our model to support future forecasting. Nevertheless, 

it is worth noting that this model has remained relatively stable since September 2020, with 

bi-weekly updates only minimally impacting the forecasting results. Finally, the model does 

not account for the availability of a vaccine. When an efficacious vaccine is widely available, 

our model must be adjusted to account for the reduced size of the susceptible population and 

the limited possibility of transmission. As with all predictive models, additional data on each 

of these factors will improve our understanding of SARS-CoV-2 transmission; integrating 

these data into our model can support more accurate forecasting in the future.  

 

In summary, our model can support and inform the development of clinical trials and the 

supply and distribution of future medications. By updating and adjusting the model as new 

data are received, our model could potentially inform longer-term considerations as well. 
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Finally, our model also represents a possible framework for describing transmission 

characteristics of other diseases, estimating viral spread and refining country-specific 

estimates of disease impact.     
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TABLES  

Table 1. Population parameter estimates 

Model 

parameter 

Description Value Precision, 

% 

Variability 

between 

countries, % 

λ Time to becoming infectious 

after contracting virus, days 

3.43 0.187 None 

α Time to development of 

symptoms after becoming 

infectious, days 

2.57 0.472 None 

kq Time to starting quarantine 

after symptom onset, days 

1.00 Fixed None 

Pra Proportion of asymptomatic 

cases, % 

65.8 0.148 None 

Pss Proportion of super-spreaders, 

% 

9.55 0.544 None 

βss Transmission rate increase in 

super-spreaders 

3.11 10.8 139 

lagD Time to the first two infected 

persons, days 

23.1 5.48 71 

βMax Maximum infection rate 0.927 5.11 67 

βmin Minimum daily infection rate 0.228 9.59 123 

S50_pop Stringency index needed to 

reach 50% of the maximum 

effect on the infection rate 

35.3 9.33 117 
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Table 2. Estimated RR of symptomatic and asymptomatic cases 

 Symptomatic cases Asymptomatic cases 

 Days Daily 

infection 

rate 

New 

cases, n 

Days Daily 

infection 

rate 

New 

cases, n 

Pre-

symptomatic 

2.57 0.46 1.19 2.57 0.46 1.19 

Symptomatic 1 0.93 0.93 — — — 

Asymptomatic — — — 10 0.46 4.64 

Total RR — — 2.12 — — 5.83 

A 50% reduction in the infection rate for pre-symptomatic and asymptomatic cases was 

assumed. 

RR, reproduction ratio (number of new cases per subject during their entire infectious 

period).  
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FIGURES 

Figure 1. Initial COVID-19 transmission model. 

 

S, susceptible population; E, exposed patients not yet infectious; Ia, infected infectious 

patients who are asymptomatic; I, infected infectious patients; R, recovered; D, death. 

λ, median incubation period; α, start of infectious period; δ, duration of infectious period. 
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Figure 2. Stringency index for mitigation strength scoring. 

 

Cj, ordinal value of the indicator; Gj, general value; Ij, subindex; Nj, maximum value of the 

indicator. 
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Figure 3. Relationship between the stringency index and the reproduction ratio. 
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     Figure 4. Data fitting for representative countries. Blue dots represent observed data; 

black lines represent model prediction. See online supplementary appendix for all countries. 

 

 

 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.23.20237404doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237404
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 
 

Figure 5. Simulation results by country. Black dots indicate observed data; blue shaded area 

indicates simulated time course for each scenario with low viral spreading; red shaded area 

indicates simulated time course for each scenario with high viral spreading; grey rectangles 

highlight the forecasted period.  
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