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Abstract:  

We developed a simple and user-friendly simulator called MD Corona that is based on a 

multiagent model and describes the transmission dynamics of coronavirus for a given 

location considering three setting parameters: population density, social-isolation rate, and 

effective transmission probability. The latter is represented by the Coronavirus Protection 

Index (CPI) - a measurement of a given territory’s vulnerability to the coronavirus that 

includes characteristics of the health system and socioeconomic development as well as 

infrastructure. The dynamic model also relies on other real epidemiological parameters. The 

model is calibrated by using immunity surveys and provides accurate predictions and 

indications of the different dynamic mechanisms. Our simulation studies clearly demonstrate 

the existence of multiple epidemic curves in the same city due to different vulnerabilities to 

the virus across regions. And it elucidates the phenomenon of the epidemic slowing despite a 

reduction in social-distancing policies, understood as a consequence of “local protection 

bubbles.” The simulator can be used for scientific outreach purposes, bringing science closer 

to the general public in order to raise awareness and increase engagement about the 

effectiveness of social distancing in reducing the transmissibility of the virus, but also to 

support effective actions to mitigate the spread of the virus. 
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1- Introduction 

 

Modeling SARS-CoV2 is crucial to understanding the dynamics of the virus’s transmission. 

Models are useful for describing spatial and temporal patterns of disease prevalence, 

exploring the effectiveness of confinement measures to reduce the incidence of infection, and 

helping predict the potential resurgence of new waves of infection. But to understand the 

complexity of the virus’s epidemic curves in Latin America, particularly in a continent-sized 

country like Brazil, we have to consider the diverse socioeconomic structure of the territory 

in which it spreads, because the narrative based on a single "uniform" contagion curve hides 

the inequalities between different populations and territories.  

 

Our model is an agent-based complexity model, which simulates the spread of the 

coronavirus in various territories. This allows users to gauge local vulnerability to the virus 

by linking the probability of transmission between agents with the Coronavirus Protection 

Index (CPI). Developed by our research group (Ação Covid-19, 2020a), the CPI accounts for 

characteristics of the health system, socioeconomic development, and territorial infrastructure 

indicators for many Brazilian districts and towns that have a direct influence on the virus’s 

spread.  

 

We have used MD Corona to develop numerous studies on vulnerability to Covid-19 in 

different Brazilian cities: Fortaleza, São Paulo, Rio de Janeiro and Curitiba (Ação Covid-19, 

2020b; Ação Covid-19, 2020c; Ação Covid-19, 2020d; Ação Covid-19, 2020e). Using the 

model, we demonstrated that there are multiple epidemic curves in a single city. Once the 

model is calibrated it can make very accurate predictions. The most important prediction 

relates to the phenomenon observed in some cities where the number of new infections 

decreased despite the reduction of social-distancing policies. Our model showed that this can 

be understood as a consequence of local bubbles of protection formed in city sub-

environments, together with the exhaustion of infection networks (Guedes Pinto et al., 2020).  

 

Our paper is organized as follows: In section 2, we review the main characteristics of 

different modeling approaches currently being used to describe coronavirus epidemic curves. 

In section 3, we present our model in detail, as well as the calibration procedure that allows 

us to make predictions for specific territories. In Section 4, we show some examples of the 

power of the model in different case studies that compare the dispersion of Covid-19 in 
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different vulnerable territories. Finally, in section 5, we conclude by highlighting the possible 

uses of the model, some recommendations, and perspectives for the future.  

 

2. SARS-CoV-2 Models 

 

Modeling the Coronavirus epidemic curve is a complex task, as one needs to consider a wide 

number of nonlinear parameters such as the implementation of non-pharmaceutical 

interventions (NPI) as well as local social and territorial characteristics. In addition to our 

multiagent model approach, there are also SIR or SEIR model families, based on multiple 

differential equations, and statistical models. Obviously there are also combinations of all of 

these methods.  

 

The SIR/SIRS and SEIRS/SEIR family of models refers to the transitions between the 

different epidemiologic states that are attributed to individuals in each model – that is, 

susceptible (S), infectious (I), recovered (R), and exposed (E). These models can become 

even more complex by introducing new epidemiologic states and different parameters, such 

as the use of NPI. Examples of the use of this model are presented by Giordano et al. (2020), 

Penn Medicine (2020), Yeghikyan (2020), and Medeiros et al. (2020). 

 

The main characteristic of these models is their extreme sensitivity to small changes in 

parameters. To fix R0 - the initial disease reproduction rate - and other parameters, these 

models must use available data on the number of infections and death over time. Examples of 

the use of this model in interactive simulations are presented by Alves et al. (2020), Neiva et 

al. (2020), Flaxman et al. (2020), Li et al. (2020), Goh (2020), and Hill (2020). Although 

these models can be very precise for a given set of data, they can be very difficult to 

understand and to manipulate without scientific knowledge of the field. 

 

Statistical models, meanwhile, are probability distributions that are able to describe different 

patterns. The target of statistical inference is to identify which specific functions and 

parameters can reproduce the available data and make predictions about future sets. The main 

statistical models are probabilistic and multivariable models. The former is related to 

frequentist and Bayesian theories, whereas multivariable models focus on assessing the 

relationship between a single dependent variable and multiple independent variables (Stokes, 

Davis and Koch, 2020). An example of this model is presented by Allenbach (2020). 
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Statistical models do not simulate the virus’s spread based on epidemiological assumptions 

and equations, but by fitting a curve to prior data. Therefore, they cannot adjust to 

socioeconomic and mobility parameters or to territorial or population characteristics. Their 

main weaknesses are that they do not provide accurate results at the beginning of a pandemic 

and their strong dependency on actual data. Particularly in Brazil, this can be a major 

problem due to widespread underreporting of cases and inefficient testing practices (Covid-

19 Brasil, 2020b). The authors of some statistical studies say that it is hard to predict where 

we are in the pandemic curve without precise information about the real number of infected 

and dead people (Wynants, 2020). 

  

Finally, in agent-based models (Ajelli et al., 2010; Venkatramanan et al., 2017) the 

phenomenon is described by the successive interactions between individual objects with 

particular properties and actions (Wilensky and Rand, 2009). Agent-based representations 

have particular advantages, such as the ease of graphically understanding the interactions 

between agents due to simple rules for their movement, as opposed to differential equation 

models that are developed from mathematical constructs. The increasingly widespread 

adoption of agent models provides some benefits to the understanding of hard domains in a 

more accessible way (Wilensky and Rand, 2009). Unlike SIR-based and statistical-model 

approaches, the multiagent model (Ajelli, 2010; Venkatramanan, 2017) does not depend on 

pandemic data (cases, deaths, and recoveries, for instance) to make predictions about the 

epidemic curve. However, like SRI-based approaches, the results of multiagent modeling of 

the virus’s spread depends on the initial conditions, such as mobility, geographic conditions, 

and population characteristics (Yeghikyan, 2020). 

 

Our “MD Corona” model, subscribing to the latter model described above, simulates the 

dispersion of the coronavirus based on complex multiagent variables in the NetLogo 

environment (Wilensky, 1999). One unique feature of our model is the inclusion of 

socioeconomic, infrastructure, and health conditions through an effective transmission 

probability, but the details will be described in the next sections of this article.  

 

There are other examples of this type of approach, such as Romer (2020), Steves (2020), 

Alves et al. (2020), Neiva et al. (2020) and Scabini et al. (2020), the latter being an example 

of a sophisticated multi-layer model produced by a Brazilian research group.  
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Our (open-source code) simulator, in contrast to these precise and complicated models, was 

designed for users without a scientific, mathematical, or computational background. We also 

provide videos and user guides on our research group’s website (https://acaocovid19-

homolog.web.app/dash).  

 

3. MD Corona dispersion model  

The main aim of the “MD Corona” model is to provide a simple tool for users to simulate the 

epidemic curve of SARS-CoV2 in neighborhoods and communities connected to large urban 

centers with different and distinct vulnerabilities.  

 

It is inspired by the original virus model (Wilensky, 1998) present in the NetLogo free 

software library (Wilensky, 1999) supported by the work of Yorke et al. (1979), which 

suggests a number of factors that could influence the virus’s survival and transmission within 

populations.  

 

In our model, individuals are agents moving randomly around a 41 x 41 grid. The agents can 

be displaced anywhere on this grid. The virus’s transmission then depends on whether the 

interaction between two or more agents (infected, immune, or susceptible to infection by the 

virus) in a von Neumann neighborhood can result in one agent infecting the other(s).  

 

The dynamics of the coronavirus’s spread are driven by some epidemiological constants such 

as i) the virus-transmission period and ii) the immunity period; but also by parameters that we 

can vary to describe different scenarios, such as iii) the number of agents on the grid, iv) the 

initial number of infected agents, v) the probability of the virus being transmitted between 

agents, and vi) the practice of social distancing. The vii) recovery rate is also an 

epidemiological constant, but only affects mortality from the virus, not the dynamics of its 

spread.  

  

Below, we will define each of these seven factors, justifying the choice of values that we 

assumed based on the most recent medical literature available. Because of the newness of this 

pandemic, one must note that those values are constantly changing in response to results from 

new studies. Users can modify all of these variables, since the code is open source.  
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The i) virus-transmission period varies a lot in the medical literature and depends on the 

disease’s severity, e.g., for patients with mild symptoms this value can range from 7 to 12 

days (Ferguson et al., 2020, Liu et al., 2020, Cao et al., 2020). Due to the wide-ranging 

variation for this period, and the WHO (2020) recommending an isolation period of 14 days, 

we adopted the WHO value and added a four-day incubation period, therefore establishing 

the transmission period at 18 days, since there are reports of virus transmission in this period 

(ECDPC, 2020; CDC, 2020; Pan et al., 2020; Qian et al., 2020; Zou et al., 2020 and Zaki, 

2020). 

 

Many issues arise when we try to establish an average ii) immunity period to SARS-CoV2. A 

few studies state that the antibodies’ response to infection varies depending on the duration of 

the infection and the severity of the disease (Luchsinger et al., 2020; Seow et al., 2020), and 

because of that they don't provide an average length of time for patient immunity. Other 

works (Wu et al., 2007; Wei Liu et al., 2006; Edridge et al., 2020; Cao et al., 2007; Kellam & 

Barclay, 2020) report that antibody responses to other human coronaviruses (SARS-CoV, 

MERS, alpha and beta coronaviruses) wane over time, varying from 12 weeks to 34 months.  

 

Based on the abovementioned literature, and due to the newness of the disease, we chose to 

consider the immunity period as the time that the pandemic has lasted so far, thereby setting 

the agent's immunity period at 180 days. It is important to add that some research, such as 

Serrano (2020), affirms that mutations in the virus strains mean that a relatively long time 

will be needed to produce a vaccine. 

The iii) number of agents in the grid (or population density) is an important parameter in the 

model, since it affects the frequency of contact between agents in the grid and consequently 

the probability of the virus’s transmission between infected and healthy people. To make the 

simulator easier to use, in the version available on our website we converted the variable 

'number of people' in the grid into a 'demographic density' variable (set with sliders), which 

allows users to easily adapt the simulator to a territory of their choice. The coefficient that 

converts 'number of people' to 'demographic density' is defined throughout a calibration 

method discussed below. 

The iv) number of agents initially infected was fixed at one person regardless of the total 

number of people in the grid. The model also allows a periodic reintroduction of a new 
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infected agent (the frequency of which can vary, depending on the scenario we wish to 

simulate). This permits the appearance of new infection waves and for the system to remain 

open, which is consistent with the reality of the virus’s circulation across different territories. 

The v) virus’s transmission between agents depends on a number of non-pharmaceutical 

interventions such as the use of masks, hygiene procedures, and social-distancing measures. 

But it is also affected by social conditions and particularities of each territory, such as the 

existence of basic sanitation, the average number of people per house, if families are capable 

of implementing social distancing, etc. This mixture of territorial, health, and social factors 

are not easy to quantify. We parameterize them in the simulator through an effective 

transmission probability, which is directly related to an index – either the Human 

Development Index (HDI) or the Coronavirus Protection Index (CPI), the latter being an 

innovation that came along with this model and that was also developed by our research 

group (Ação Covid-19, 2020a).  

 

The HDI has the advantage of being universal, but it serves as a very poor measurement of 

different territories’ vulnerability to coronavirus. The CPI, on the other hand, was based on 

the Surroundings Index (SI) methodology (Ranieri & Begalli, 2016) and includes other 

aspects, such as characteristics of the health system, socioeconomic development and 

infrastructure indicators. 

 

We classified a large number of districts and cities in Brazil by using CPI, and this resulted in 

a more coherent evaluation of vulnerability in a specific territory. Both HDI and CPI are 

divided into 5 levels: very high, high, medium, low, and very low (see Figure 2). Fine tuning 

the effective probability rate and the HDI/CPI scale is carried out through calibration. 

 

 

Figure 2. Ranges for the different levels of HDI and CPI. 
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Another important innovation of this model is the inclusion of the vi) social-distancing rate 

as a dynamic parameter in the model. This slows down the spread of the virus by not 

allowing a portion of the agents to move, and the rate can vary while the simulation is 

running to describe changes in social distancing over time. 

 

Finally, the vii) infection-fatality rate (IFR) determines how deadly a disease is. This is 

calculated as the proportion between the number of infected patients and the number of 

deaths, including asymptomatic and undiagnosed infections. The IFR also depends on local 

health conditions (hospital access and occupancy rates) and age factors. There are a few 

estimates for infection fatality rates in Brazil that use the total number of deaths and 

seroprevalence surveys. Mallapaty (2020) used a sample of 25,025 participants from all 27 

Brazilian states (Hallal, 2020), suggesting a rate of 1% for the IFR. However, a more accurate 

seroprevalence survey carried out only in the city of São Paulo, with a sample of 5,416 

participants, found an IFR of 0.7% (G1, 2020). The same methodology was also used to 

compute an IFR of 1% for Spain (Ministry of Health, 2020), 0.7% for France (Salje, 2020), 

and 0.66% for China (Verity, et al., 2010). Considering that we are interested in simulating 

the spread of the virus in urban regions, we chose to use the São Paulo IFR measurement of 

0.7% as a constant in our model for all the different territories.  

 

3.1 How does the model work?  

To begin the simulation, the user should define the number of people (agents) in the grid and 

the effective transmission probability by setting the population density (through a slider) and 

the HDI/CPI (through a chooser) after consulting a table we provided in the simulator that 

displays information for neighborhoods or districts in several Brazilian cities. In Figure 3, we 

can see that the remaining parameter is ‘social distancing,’ where the user can choose on the 

slider the proportion (from 0% to 100%) of agents that will randomly cease to move within 

the grid. That rate can be changed while the simulation is running.  
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Figure 3. MD Corona Simulator version 3.0 on our website. 

 

The model's time scale was set in days, and each round is equal to one day. Agents that move 

randomly in this environment are classified into one of three states: healthy agent (green), 

infected agent (red), or immune agent (gray), as can be seen in Figure 3. When running the 

simulation (clicking ‘reset’ and then ‘start’), the virus’s transmission is the outcome of the 

meeting of at least two people on the grid and the actual likelihood of infection.  

 

The number of people infected appears in a graph, along with the number of people who have 

become immune (immunity curve). A counter shows the number of simulation days and the 

percentage of infected, immune, and dead within the population (the simulation speed can be 

defined by the user on a slider). 

 

People can die from virus infection or due to age (75 years - the mean life expectancy in 

Brazil). When the population falls below the "maximum capacity" of the environment (set at 

1,000 people), healthy people can produce healthy descendants (but susceptible to infection).  

 

The “MD Corona” model generates stochastic processes, sensible to small changes in the 

initial conditions randomly determined by the simulator each time (the relative position of 

infected and immobilized individuals). We account for this fluctuation by running at least 100 
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simulations for each scenario with a Python support program we developed, which allows us 

to extract and analyze the average results. A more complete stochastic analysis could 

investigate the different trends in the simulation results, identifying the behavioral change 

threshold positions, i.e., where the curve’s inflection points are. This will be done in an 

upcoming publication. 

 

3.2 Model Calibration  

In our first version of the model, the main feedback we received was about the need for some 

way to set parameters to describe realistic environments. Users wanted to know what 

population size they should use to simulate their territory. Therefore, we developed a 

technique to calibrate the model and connect the number of agents in the grid to a specific 

population density, and the effective transmission probability to the respective HDI/CPI 

scales by using seroprevalence surveys and the trajectory of social isolation for each specific 

place. 

 

It is important to stress that in our model the epidemic curve included symptomatic and 

asymptomatic patients. This is why in order to calibrate the model it is necessary to use the 

results of studies that test immunity to the virus, i.e., seroprevalence in random populations. 

These tests detect the presence of Immunoglobulin G (IgG) antibodies produced by people 

who have been infected with the SARS-CoV-2 virus for at least 20 days. 

 

In terms of population density on the grid (number of agents/1,681 points on the grid), by 

modifying the number of people on the grid we can replicate the densities that correspond to 

different locales we wish to calibrate for. In all cases, however, the calibration methodology 

is exactly the same: users plug in the known history of social-distancing rates in the simulator 

and toggle the effective transmission probability and the number of people in the grid to 

match results from seroprevalence surveys on a given date, so that time-lapse simulations 

arrive at the same percentage of infected people as reported in survey data. 

 

In the case of the city of São Paulo, for example, applying the known history of social-

isolation rates (Governo do estado de São Paulo, 2020) given in Table 1, we set the number 

of agents in the grid to 369 and the effective transmission probability at 40%, corresponding 

to a population density of 8,054.7 inhab./km² and the ‘high’ level (0.79) on the CPI scale, 

respectively.  
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Table 1. History of social-distancing rates for the city of São Paulo used in the calibration of 

“MD Corona”.  

Date Description Social-distancing rate Number of days 

Feb 25 – Mar 17 
1st case and self-imposed social 

distancing 27% 21 

Mar 18 – Mar 21 official social constraints 43% 4 

Mar 22 – Apr 12 
decline in social distancing (Bolsonaro 

effect) 58% 22 

Apr 13 – May 3 further decline (Bolsonaro effect) 53% 21 

May 4 – May 31 announcement of São Paulo plan 51% 28 

June 1 – June 22 
São Paulo plan - seroprevalence survey 

9.5% 48% 22 

June 23 – July 12 orange and yellow phase 46% 20 

total days simulated 138 

Source: São Paulo State Government (2020) 

With these parameters set, the simulation results (Figure 4) show that 10.87% of the São 

Paulo population were infected, on average (the colored curves represents each simulation), 

and an average mortality rate of 0.08% from Covid-19 (or 0.75% of the total infected) on 

June 22, 118 days after the first case. This is compatible, as expected, with the immunity 

survey that reported 9.5% (with a 1.7% error interval) of São Paulo residents infected by 

Covid-19 on the same date (G1, 2020). 

 

Figure 4. Results for 100 simulations of MD Corona model with the history of confinement 
given in table 1: (left) the percentage of infected people (daily), totaling 10.87% after 118 
simulated days; (right) percentage of deaths, totaling 0.08% after 118 simulated days. The 
blue curve is the average curve for all the simulations. 
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By calibrating the model for São Paulo, we established the city’s ‘high’ CPI level with a 40% 

probability of transmission. Using the same calibration interval, we applied it to New York 

City (10,947 inhabitants/km² and ‘very high’ HDI) – where the most recent immunity survey 

reported 19.9% of people infected as of May 2 (Governor Andrew M. Cuomo's Press Office, 

2020) – by setting the transmission probability at 39%. Therefore, by carrying out this 

calibration, the model converted each element on the scale (HDI or CPI) into respective 

transmission probabilities of 39%, 40%, 42%, 44%, and 46% for “very high,” “high,” 

“medium,” “low,” and “very low” HDI/CPI levels.  

 

These calibrations also established a rule for converting demographic densities into the 

number of people that should be entered into the simulator:  

Number of people in the grid = demographic density of a specific territory x 0.0498 

 

This calibration defines a maximum (20,080 inhab./km²) and minimum (3,010 inhab./km²) 

range for population density in the simulation, considering that the number of agents in the 

grid can vary from 150 to 1,000. For densities greater than the maximum, we recommend that 

users set the slider to the maximum level, as transmission dynamics will be similar. 

 

The ease of changing MD Corona parameters allows us to implement different calibrations 

depending on the specific characteristics of the territory we want to study and the availability 

of immunity surveys and social isolation data. The very first calibration we performed in late 

April used New York City's first immunity survey, one of the few available at the time, 

which reported immunity rates of 20% on April 22 (NY Times, 2020). More recently, in a 

study that included very high-density slums in Rio de Janeiro (Ação Covid-19, 2020f) we 

used results from a study in the city with 3,210 samples in six neighborhoods – including 

Cidade de Deus, a very dense slum with 28,684 inhabitants per square kilometer, where data 

showed that 28% of the population had been infected with Covid-19 (Ação Covid-19, 

2020f).  

 

4. The Model as a tool for understanding the unequal spread of Covid-19  

From the very beginning of its development, MD Corona was meant to serve educational 

outreach and research purposes, but we have always considered its potential to be used, albeit 

cautiously, as a tool to help decision-making by public and private planners, as well as 
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community leaders, social movements, and other civil society actors that could play a 

relevant role in this pandemic.  

 

So far we have used MD Corona to develop numerous studies on vulnerability to Covid-19 in 

different Brazilian cities: Fortaleza, São Paulo, Rio de Janeiro, and Curitiba. With the CPI 

calculated for unequal neighborhoods in terms of socioeconomic development, we 

demonstrated the existence of multiple epidemic curves within the same city.  

 

Once it is calibrated, there are multiple explorations users can develop with MD Corona: 

using the dynamics of confinement to tell a story about the virus in that environment and 

make very accurate predictions; studying the social-confinement rates needed to not 

overwhelm the health system and instead flatten the epidemic curve; or using the history of 

social isolation and immunity survey data to evaluate the effectiveness of NPI implemented 

in a specific territory. Also, the model reveals important features of the dynamics of the 

epidemic outbreak. Below we show examples of potential uses for the Model through some 

studies we have performed so far.  

 

4.1 Different epidemic curves across districts of major Brazilian cities  

 

We studied the epidemic curve of the virus in different districts of big cities that have distinct 

Covid-19 protection indexes. In Rio de Janeiro, we looked at (Ação Covid-19, 2020d) the 

famous Copacabana neighborhood, located next to the Pavão-Pavãozinho communities, all of 

which are equally dense in terms of population. The slum communities located up the hill 

from Copacabana have a “medium” HDI (0.64), while the wealthier neighborhood at the 

bottom of the hill had a “very high” HDI (0.93).  

The high population density of both territories is an important factor in the virus’s rate of 

spread. The main difference pointed out by the simulator is that areas with less protection 

from  

Covid-19 (such as the Pavão-Pavãozinho communities) have more pronounced infection 

curves and therefore needed to isolate themselves more. In Figure 5, our simulations with 

80% of the population practicing social isolation (a lockdown scenario) predicted a controlled 

epidemic curve on average for the rich part of the neighborhood (right) but not in the poorer 

communities (left).  
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Figure 5: MD Corona simulations for Copacabana (right) and Pavão-Pavãozinho 
communities (left) with 80% social isolation. The colored lines represent each of the 100 
simulations, and the blue line shows the average. 
 

Similar simulations were made to compare the dynamics of the pandemic in poor and rich 

districts in the cities of Fortaleza (Meireles and Barra do Ceará, Ação Covid-19, 2020b), São 

Paulo (Brasilândia, Sapopemba, and Jardim Paulista, Ação Covid-19, 2020c), and Curitiba 

(Água Verde, Sítio Cerrado, and Tatuquara, Ação Covid-19, 2020e), and all showed similar 

results. What the model highlights is a new layer of inequality emerging in those cities as a 

result of unequal protection capacities across the cities’ regions. 

 

One of the conclusions of these studies is that the government should urgently transfer 

resources intended for the richest districts and apply them to the poorest in order to mitigate 

the deadly effects of the pandemic. 

 

4.2 A measurement of the effectiveness of NPI in Rio de Janeiro slums 

In collaboration with the Observatorio de Favelas NGO, we developed a study (TEIXEIRA et 

al., 2020) to forecast the spread of the pandemic in rich and poor neighborhoods in different 

regions of the city of Rio de Janeiro. In this study, we were able to measure the extent to 

which the more organized communities of Maré and Rocinha worked to protect themselves 

from the virus when compared to other communities that were less organized, such as Cidade 

de Deus.  
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Given the initial conditions of vulnerability expressed in the CPI index map (Figure 6), Maré, 

Rocinha and Cidade de Deus have, respectively, ‘very low,’ ‘low’ and ‘medium’ protection 

indexes. Which, combined with the density of these territories (about 48,200, 30,400 and 

28,700 inhab/km², respectively), we would expect to lead to higher infection and death rates 

for the first two than the latter, which ended up not happening. Instead, based on a 

seroprevalence survey carried out in some communities within the city (Prefeitura da Cidade 

de Rio Janeiro, 2020) in late June, we know that the immunity rates in Rocinha and Maré 

were, respectively, 23% and 19%, whereas in Cidade de Deus it was 28%. After calibrating 

MD Corona for Cidade de Deus, we showed that by modifying the CPI index to “high” for 

Rocinha (from “very low”) and Maré (from “low”), the simulation yields, respectively, 

25.7% and 21% of the population infected by the virus. Those results are compatible with the 

survey data for the same time frame, which shows the strength of the Model’s predictions. 

 

One conclusion of this study is that actions implemented by Maré and Rocinha to contain the 

pandemic ended up raising the Coronavirus Protection Index (CPI) of these communities 

almost to the exact same CPI level as wealthier neighborhoods, such as Tijuca and Botafogo. 

 

 

Figure 6: Coronavirus Protection Index (CPI) map (Ação Covid-19, 2020a) for the city of 

Rio de Janeiro. 
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Figure 7: Simulation results for the Maré community (left) with “low” CPI - as indicated in 

our map in Fig. 6, and (right) with CPI increased to “high” after considering the effect of 

local actions. The colored lines represent each of the 100 simulations and the blue line shows 

the average. 

 

4.3 Local protection bubbles as an alternative explanation to herd immunity 

More recently, we were faced with apparently contradictory results from the simulations that 

ended up demonstrating the robustness of the model. Seeking to alert public authorities to the 

possible dangers of reopening the economy in the city of São Paulo, we tried to model what 

would happen if social-isolation rates fell in the city of São Paulo starting in mid-July. We 

expected the infection curves to rise, but the model showed us the opposite: that even with 

the reduction in social isolation at that specific moment and in that specific territory, the 

curves fell, as shown in Figure 8. 

 

 

Figure 8. Result of MD Corona simulation based on trajectory of social distancing in the city 

of São Paulo, extended by 100 days with a 20% social-isolation rate. 
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At that time, scientists from different fields, including health care, estimated that the city 

could be close to so-called collective (or "herd") immunity, or that this stage of immunity 

would require much lower rates than the 70% rate of infected as is usually expected.  

 

Our simulations, however, showed that a more realistic explanation was the formation of 

"protection bubbles," as highlighted in Figure 9, where a concentration of red (infected) 

agents surrounded by gray (immune) ones protects the susceptible agents (green) from being 

infected. In other words, social groups in which the infected dominate (with many already 

becoming immune) tend to have little contact with susceptible groups. Social isolation 

practices, whether voluntary or mandatory, can be part of the explanation for the origin of 

these bubbles, as well as socio-economic segmentation, which restricts contacts within the 

city, in addition to the new habits of the population (wearing masks, hand washing, etc.) that 

ended up shrinking the infection networks.  

 

We should note, however, that our hypothesis refers to a local equilibrium, possibly unstable, 

which can be perturbed by the introduction of a new infected agent, bursting these protection 

bubbles and restarting the infection networks. This study was published on the MedRxiv 

platform (Guedes Pinto et al, 2020) and also submitted to the PLOS One journal, and was 

widely discussed in the media as of the date of this article. 

 

Figure 9. Grid from MD Corona simulation for the city of São Paulo. The yellow circle 

highlights the existence of protection bubbles.  
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5 Conclusions  

 

Modeling the pandemic has been tremendously important when alerting society to the 

importance of good decisions, changing the social culture, and improving scientific 

understanding of coronavirus dynamics, all of which help avoid an even worse tragedy. 

 

In this work we presented MD Corona, a multiagent-model approach that predicts the 

coronavirus’s spread across different territories in unequal societies. The power of this model 

is that it is both intuitive and user-friendly, with good accuracy in its predictions. Although 

we calibrated the model using seroprevalence surveys, it does not depend on previous data to 

make predictions, as do the SIRS and statistical models.  

 

Another important strength of our model is its ability to investigate very different scenarios 

by toggling only three parameters (population density, HDI/CPI indexes, and social 

isolation). It is also possible to change the other four parameters, including epidemiological 

ones, in the program code (available on our website) and adjusting them as the scientific 

literature on the pandemic advances. 

 

MD Corona addresses different locations’ vulnerability to the spread of the virus by 

connecting the Coronavirus Protection Index – calculated based on social, health, and 

territorial aspects – to the effective probability of virus transmission. In the context of an 

interdisciplinary research group, we simulated the virus’s epidemic curve in several major 

Brazilian urban centers. The results showed that areas with less protection from Covid-19 

show more dramatic infection curves and require higher levels of social isolation. Those 

studies highlight the inequality of the initial conditions that locations may face in fighting 

Covid-19 and the existence of multiple epidemic curves within the same city.  

 

The dynamics of the pandemic, however, change over time. An interesting outcome from one 

of our studies in the city of Rio de Janeiro showed that the NPI practiced by the Maré and 

Rocinha communities to contain the pandemic ended up raising their Coronavirus Protection 

Index to the level of wealthier neighborhoods. This result shows the model's flexibility, as it 

denotes at least two ways of looking at the same parameter, namely, the effective probability 

of transmission between agents. It can be set as an initial structural condition (given by the 
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HDI/CPI indexes) or as a practical response of populations that can change over time 

depending on several factors, such as the adaptation of the population to the pandemic, the 

capacity for collective action, major changes in the overall culture, etc.  

 

Another important result that emerged was the capacity of the model to explain, in a simple 

way, why in some cities the virus’s spread decreased despite the reduction in social-

distancing policies. We showed that this phenomenon is the result of an unstable equilibrium 

promoted by “local protection bubbles,” together with the exhaustion of contagion networks. 

Recently, following global discussions about reopening schools, we adapted the model to 

simulate education environments like high schools, universities, kindergartens, etc. (Ação 

Covid-19 f). Although the simulator is less precise here than when examining cities, the 

insights it provides help government authorities decide in a more humane way whether or not 

to reopen schools. We focused on the school community to adapt parameters in the model 

that are specific to the school environment and their adherence to sanitary rules. 

 

It is important to stress that there are still several other possibilities that can be explored 

within the model, such as changing the average immunity time of the population (decreasing 

it from six months to three months, for example), increasing or decreasing the average 

effective transmission probability of individuals, and increasing the number of people 

initially infected or already immune (or reintroducing more infected agents during the 

simulation).  

 

In our first version of the model, back in March 2020, our simulations showed that the virus 

could be perpetuated in the environment for a long period (one year or more), leading to 

recurrent outbreaks and new waves of infection. This would happen if the virus were 

reintroduced into the system by external agents, if the period of immunity to the virus was 

short, or if the isolation of the population was not significant. Since then we have 

significantly improved the model by focusing on local short-term dynamics. But our initial 

intuition was confirmed by the actual data. The virus does demonstrate a cyclical behavior, 

and we will explore that in a forthcoming analysis. The same holds for the number of initial 

immune agents in the system, which is relevant at this stage of the pandemic, with a 

considerable number of people already affected.  
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Another important improvement could come in the simulation-analysis methodology. To deal 

with the stochastic behavior of the simulations we presented the average curve from 100 

scenarios. However, in our next studies we want to perform a more complete analysis, 

identifying behavioral-change thresholds. In order to do that, we must analyze each 

simulation individually and then classify the different groups' behaviors. 

  

The study examples we discussed in the previous section shows that our model is robust and 

has become a tool for understanding Covid-19 dynamics, with potential uses in both outreach 

and communication and in supporting effective actions to mitigate the spread of the virus. 

The model’s potentialities and its applicability in the different scenarios described are 

possible because the model has been developed in the context of an interdisciplinary group – 

Ação Covid-19 – that seeks to use it as a tool to investigate the multiple faces of this unequal 

pandemic in Brazilian cities. 
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