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Abstract

Rapid evidence-based decision-making and public policy based on quantitative modelling and
forecasting by local and regional National Health Service (NHS-UK) managers and planners in
response to the deadly severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), a virus
causing COVID-19, has largely been missing. In this pilot study, we present a data-driven epi-
demiological modelling framework that allows to integrate quantitative modelling, validation and
forecasting based on current available local and regional datasets to investigate and mitigate the
impact of COVID-19 on local NHS hospitals in terms of healthcare demand and capacity as well as
allowing for a systematic evaluation of the predictive accuracy of the modelling framework for long-
term forecasting. We present an epidemiological model tailored and designed to meet the needs of
the local health authorities, formulated to be fitted naturally to datasets which incorporate regional
and local demographics. The model yields quantitative information on the healthcare demand and
capacity required to manage and mitigate the COVID pandemic at the regional level. Furthermore,
the model is rigorously validated using partial historical datasets, which is then used to demon-
strate the forecasting power of the model and also to quantify the risk associated with the decision
taken by healthcare managers and planners. Model parameters are fully justified, these are derived
purely based on the time series data available at the regional level, with minimal assumptions. Us-
ing these inferred parameters, the model is able to make predictions under which secondary waves
and re-infection scenarios could occur. Hence, our modelling approach addresses one of the major
criticisms associated with the lack of transparency and precision of current COVID-19 models.
Our approach offers a robust quantitative modelling framework where the probability of the model
giving a wrong or correct prediction can be quantified.
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1 Introduction

The world is at the mercy of the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2),
the virus causing COVID-19, whose roots originated from Wuhan, China where it was identified in
December 2019 [12]. Since then, COVID-19 has swiftly and rapidly spread to all countries in the
world, becoming an ongoing global world pandemic that has required unprecedented international,
national and regional interventions to try and contain its spread [12, 5]. Unlike the 1918-19 H1N1
pandemic which is considered one of the greatest medical disasters of the 20th century [12], the spread
of COVID-19 has taken place in front of our own eyes, live on multimedia platforms with realtime
updates, statistics and with remarkable reporting accuracy [10] and yet reliable, accurate and data-
validated epidemiological modelling with forecasting and prediction capabilities remains largely out
of reach [4, 12, 13, 18, 28]. Given the lack of pharmaceutical interventions such as vaccinations and
antiviral drugs, epidemiological modelling has been thrust to the forefront of world organisations and
governments’ response, rapid decision-making and public policy [3, 4, 12]. Until these pharmaceutical
interventions become widely available, the only measures for infection prevention are self or group-
isolation, contact tracing, quarantine, physical distancing, decontamination, and hygiene measures.
A lot of these unprecedented decisions have resulted in complete lockdowns of countries, economies
and a halt to 21st-century lifestyle as we know it and yet these decisions were based on qualitative
predictions based on national datasets alien to the countries imposing the lockdowns. A fair criticism
of the underlying approach has been the lack of rigorous model validation given the datasets available
at the time of the study, the lack of risk assessment associated with the decisions and their impact
on the healthcare delivery, demand and capacity and subsequently the lack of precision forecasting
that is driven by data. Another criticism is the arbitrary choice of the assumptions and parameters
inherent in the epidemiological models which makes it almost impossible to validate the predictions
when these were made [3, 4, 12, 18, 28]. At the forefront of these epidemiological models that have
played a pivotal role in guiding public policy and national healthcare responses that include the
current social distance measures, contact tracing, isolation, and quarantine measures include the now
well documented Imperial College London model [12]. The economic impact of these decisions have
hardly been quantified, only estimates in the range of trillion of dollars to the world economy are
reported [11, 17]. A few models dealing with decision-making within the COVID-19 crisis have been
reported [1, 3], however, these lack the power of model prediction and forecasting based on appropriate
datasets.

In order to understand the temporal dynamics of COVID-19, a lot of modelling work has been
undertaken focusing primarily on national datasets from China, Italy, Spain, UK, the USA and so on
[3, 4, 9, 12, 15, 18, 19, 28]. Given the inhomogeneous nature of such datasets, accurate predictions and
forecasting of the spread of COVID-19, have so far not been possible and where such predictions were
made, footnotes accompanied these predictions simply because of the lack of rigorous mathematical
and statistical validation of the models and the lack of robust data on which mathematical assumptions
are based on [3, 4, 12, 15, 18, 19, 28]. Forecasting requires ample historical datasets, which were lack-
ing during the first wave of COVID-19. Current-state-of-the-art forecasting models are based, on one
hand, on time series analysis without an underlying dynamic epidemiological model [18, 21]. On the
other hand, where forecasting is based on epidemiological models [18], these lack rigorous validation,
sensitivity analysis, analysis with respect to identifiability of parameters and therefore have limited
forecasting power. An interesting approach is proposed in [4] where three models were presented de-
pending on the forecasting timescales; an exponential growth model, a self-exciting branching process,
and the classical susceptible-infected-recovered (SIR) compartmental model. The exponential growth
model is assumed valid at the early stages of the pandemic, the self-exciting branching process models
the individual count data going into the development of the pandemic, and the SIR is a macroscopic
mean-field model the describes the pandemic dynamics as it approaches the peak of the disease. In
that study, model parameters are inferred by fitting the models to local datasets using maximum
Poisson likelihood regression coupled with grid search techniques and a nonparametric expectation
maximization algorithm to fit the model to the branching processes [4]. The study however, does
not indicate what model-data validation approaches were used, if any, nor does it address the issue
of parameter identifiability for the models. Another interesting and alternative approach is to build
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machine learning and artificial intelligence techniques on top of epidemiological models to allow for
model predictions and forecasting [18]. This approach, so far, has been applied to national datasets
from the USA and no regional modelling of this type has been undertaken. This forms part of our
current studies by extending our proposed methodology to couple with machine learning and artificial
intelligence approaches. As mentioned above, the biggest challenge to model validation, prediction
and forecasting remains the existence of appropriate datasets that are readily amenable to modelling.

The use of regional datasets is critical for managing and mitigating COVID-19 secondary waves
and re-infection within the local communities. Already there is ample evidence that local modelling
could help local authorities to plan local lockdowns, restrictions and so. For example, in the USA, all
50 states had started to reopen and relax lockdown restrictions with bars, beaches, cafes, nightclubs
and gyms all opening, however, several states are now either putting on hold their efforts to open fully
or started to backtrack given the resurgence in COVID-19 infections and the start of secondary waves.
Here in the UK, cities such as Leicester, Bradford, Oldham and others are in the midst of experiencing
secondary COVID-19 waves and re-infection. In Australia, the city of Melbourne has now gone into a
fresh six-week lockdown after a spike of coronavirus cases, with a further surge in infections. During
the first wave, Australia was hailed as a global success story in suppressing the spread of Covid-19
and even at the height of the initial outbreak it only reported a little over 600 infections a day. A
similar story is emerging in Spain with regions in Catalona undergoing secondary lockdowns. It is
not clear in all these countries the usefulness of national models in terms of being able to predict
and forecast the emergence of such waves or re-infections locally until they have already taken place,
which is already too late. We propose therefore an alternative quantitative predictive approach which
gives local (and national) authorities an ability to predict and forecast COVID-19 scenarios based on
their current historical datasets to see future dynamic temporal trends of the disease progression for
healthcare planning purposes.

In this study, we want to demonstrate the usefulness and utility of a regionally data-driven epidemi-
ological model based on recently acquired regional datasets (involving hospital deaths and patients
recovering in hospitals) from the Sussex and Surrey NHS Trusts and Local Authorities (Brighton
and Hove City Council, East and West County Councils) to make predictions and forecasting. The
approach is based on a modified SIR-type model, that has been formulated to reflect the dynamics of
the regional population (of approximately 1.7 million) which is compartmentalised into Susceptible,
denoted by S(t), Exposed, E(t), Infected, I(t), Undetected (rather than the usual Asymptomatic),
U(t), Recovered, R(t) and the Dead, D(t) (SEIR-D), respectively (see Figure 1), where t denotes time
(days, weeks, or months).

The aim of our study is therefore to propose a systematic modelling approach that addresses
healthcare demand and capacity within the South East region. Our goal is to carry out healthcare
demand modelling that naturally leads to a standardised framework to quantify demand supressed
and generated as a result of COVID-19. We seek to make long-term forecasting and predictions to
investigate the impact of COVID-19 on healthcare provision and planning within the South East region
of the UK and to mitigate long-term changes in local hospital demands as a result of further COVID-
19 secondary waves and economic downturn. We use the local datasets collected as a result of the
first wave, starting from 24th March 2020 and this data includes cumulative hospitalisation, recovery
and deaths. Our approach differs substantially from current-state-of-the-art modelling-forecasting
approaches where unknown parameters driving epidemiological models have been based on various
assumptions which vary substantially from one model to the other as well as variations between the
domain-expertise of the researchers involved in making the assumptions. Instead, we propose that we
know nothing about the values or rates of the model parameters, instead, these are inferred through
an inverse modelling approach by requiring the model to fit to data in an optimal sense [4, 18, 21].
In this way, by fitting our SEIR-D model to data we obtain the best values of the unknown model
parameters (all the parameters shown in Figure 1), accurate to some degree of confidence [7, 26].

This paper is therefore structured as follows. In Figure 1 we have colour coded two separate areas
of data provided by the NHS hospitals in the South East region of the UK. The blue arrow denotes
death data in hospitals that we use to fit a linear regression between DH and H as described in
Section 2. The red arrows, each of which denotes deaths outside of hospital, admissions to hospital
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Figure 1: Schematic diagram illustrating the transmission dynamics within the population in the
South East region of the UK (Brighton and Hove, East and West Sussex). All arrows indicate the
flow of data from one compartment to the other. Colour code: Black arrows indicate the flow with
no reliable datasets, red and blue arrows indicate the flow with reliable datasets (hospital and non-
hospital). All parameters in the diagram are assumed unknown and must be obtained as part of the
model solution procedure (see Sections 3 for details).

and discharges from hospital, represent data used to fit the model as outlined in Section 3. In Section
3.1 we look at the predictive capabilities of the model combined with the inference by comparing model
output to new datasets to demonstrate the forecasting accuracy of the proposed approach and it is
here where we quantity the accuracy of our forecasting. Section 4 summarises the main findings of our
study. Discussions about the wider implications of the data-driven and parameter inference approach
for model predictions and forecasting in the context of COVID-19 in particular and epidemiological
modelling in general are presented in Section 5.

2 Results

We use the compartmental model described in Figure 1. We designed the model accounting for the
available data from hospitals (red) and the death registers (blue) in the area of East Sussex, West
Sussex and Brighton and Hove. From the schematic diagram shown in Figure 1 we are interested in
finding the best or optimal set of eight model parameters: β, γE , p, γU , γI , γH , mU and µH such
the SEIR-D model given by equations (3.1)-(3.9) best-fits the observed data. Note that this approach
corresponds to finding the maximum likelihood estimation (MLE) for a model with additive noise,
where the model itself is deterministic and described by the compartmental model. We estimate the
parameters in the model in two steps. First, we exploit the linear relationship, arising from the math-
ematical model, between mortality in hospitals and discharged patients. Thus we find the parameter
η = µHγ

−1
H by fitting the model equation involving the death DU (t) and DH(t) compartments, and the

recovered RU (t) and RH(t) compartments only. The second step is to find the rest of the parameters by
reducing the model to a system involving the terms of the populations U(t), I(t) and H(t) only, since
it is for these compartments that data is available. See Section 3 for details on the reduced model.
The reduced model ensures that all the parameters of interest can be identified from the available
data. By means of the minimisation algorithm L-BFGS-B [14, 20], we find the maximum likelihood
estimation (MLE) corresponding to the negative log-likelihood given by equation (.37) in Appendix
A. We summarise the parameter values in Table 1, where we note that we used µ̃H = 1 + µHγ

−1
H

along with Table 3 to gain µH . Figures 2 – 4 show the daily number of patients admitted to hospital
who are infected (Figure 2), the daily number of patients who are discharged after recovering while
in hospital (Figure 3), and the weekly total number of deaths outside of hospitals, for example, those

4



dying while at home or in care homes (Figure 4). To demonstrate the accuracy of the fitting procedure
we super-impose the observed data sets and their continuum mathematical counterparts, denoted by
CUd(t), CDis(t) and CDU

(t) in the Methods Section 3, as well their 95% confidence intervals for these
curves respectively. One can easily verify that the fitting captures the trends of the data and fits the
majority of the data within the confidence interval.

Parameter Value Epidemiological meaning

β 0.1420 days−1 Infection rate

γ−1E 6.48 days Average latent period

p 0.934 Fraction of undetected cases

γ−1U 6.06 days Average infectious period (undetected cases)

γ−1I 6.31 days Average infectious period (hospital cases)

γ−1H 10.21 days Average hospitalisation period (recovered)

mU 0.0301 Infected fatality ratio (undetected cases)

µ−1H 6.67 days Average hospitalisation period (deaths)

Table 1: Optimal parameter estimates obtained computationally by fitting the SEIR-D model (3.1)-
(3.9) to data through a parameter inference approach detailed in Section 3 of the Methods.

Figure 2: Results of fitting the reduced model defined by (.37) for admissions. The blue line depicts
CUd, the light blue region depicts the 95% confidence interval and the orange points represent the
data set CUd.

We are now in a position to compare and contrast our optimal fitted parameters to those found in
the literature [12, 25]. Comparisons between our optimal parameters and those from the literature are
included in Table 2. It must be noted that the physical interpretations of some of the parameters differ
from one model to the other, however, the overall picture appears plausible. To proceed, we compare
our optimal inferred parameters to those published in the research conducted by SAGE [25] and the
Imperial College London model [12], both studies used national datasets mainly from Wuhan and
other similar infectious diseases. Note that these are national datasets rather than regional datasets,
which is our case. From [25] the average incubation period is estimated to be approximately 5.1 days,
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Figure 3: Results of fitting the reduced model defined by (.37) for discharges. The blue line depicts
cDis, the light blue region depicts the 95% confidence interval and the orange points represent the
data set CDis.

Figure 4: Results of fitting the reduced model defined by (.37) for deaths outside of hospital. The
blue line depicts cDU

, the light blue region depicts the 95% confidence interval and the orange points
represent the data set CwDU

.

whereby the incubation period is estimated to be in the range of 1 day to 14 days from exposure
to onset of symptoms, however the period from exposure to transmissibility is said to be shorter.
We estimate that the incubation period, from exposure to transmissibility, is on average around 6.48
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Campillo-Funollet Ferguson et al.
et al. (2020) (2020) (UK-SAGE)

γ−1E 6.48 days 5.1 days

p 0.934 0.956

γ−1I 6.31 days 5 days

γ−1H 10.21 days 8-16 days

mU 0.0301 0.009*

Table 2: Comparisons between the optimal inferred parameters and some of those currently published
in the literature [12]. Note that the mortality ratio mU in [12] is for all cases (including hospitalisation),
whilst in our model refers to only non-hospital cases and is heavily influenced by the mortality in care
homes.

days (given by γ−1E ). From [25] the average period from the onset of symptoms to hospitalisation
is estimated to be 7 days, to which we have estimated that the time taken from being infectious to
being hospitalised is on average around 6.31 days (given by γ−1I ). There is evidence to support that
one becomes infectious before presenting symptoms [16, 30] and also that one becomes infectious after
presenting symptoms [18]. From [12] the period of onset of symptoms to death is said to range between
18.8 days and 23.9 days, and Wuhan analysis suggested 17.8 days. Our estimate suggests an average
of 12.98 days from becoming infectious to dying in hospital (given by γ−1I + µ−1H ) and an average of
200 days outside of hospital (given by mUγ

−1
U ). To our knowledge there has not been a quantified

estimate of the contact rate β as well as the death rate outside of hospital, only scaled estimates based
on pre-conceived values of R0 and the recovery rates given by [12] and similar reports. Estimates for
1 − p, the probability of needing hospital treatment, from [5, 12, 27] are around 4.4% in comparison
to our inferred estimate which for 1 − p is estimated to be approximately 6.6%. It must be noted
that our set of optimal inferred parameters give a value of effective reproduction number Reff = 0.81
which is similar to that obtained in other UK county datasets (Isle of Wight, private communication).

2.1 Predictive power of the SEIR-D model

To validate the predictive power of our modified SEIR-D model described in Figure 1, we obtain new
estimates for the model parameters using only a limited number of data points. We use a minimum
of twelve data points since the mortality data is not available until the eleventh daily time point. We
evaluate the predictive power of a parameter set by performing a prediction for the next days, starting
the day after the last data point used for the parameter estimation. By comparing the prediction with
the available data, we compute the percentage of days that are correctly predicted. We consider that
a day is correctly predicted if the model output lies within a 95% confidence interval for the available
data. Figure 5 shows the results for predictions 10, 20 and 30 days into the future.

The prediction power for admissions into hospital is high even when we only use a few data points
to inform the model. For the number of discharged patients, the prediction power is irregular when we
use less than 25 data points to fit the model, and is over 90% otherwise, even for predictions 30 days
into the future. With only 15 data points, the predictions have an accuracy of almost 80%. Finally,
the hospital capacity requires 30 data points to reach a high accuracy, but 15 suffice to reach 85% of
correct predictions.

3 Methods

We are now in a position to make a detailed exposition of the methodology underpinning our epidemi-
ological modelling of COVID-19. Our motivation is to present details of the approach that benefit the
wider epidemiological community and those interested in fitting models to data, where datasets can
be obtained either regionally or otherwise.

Let N denotes the total regional population in the South East region of the UK including only
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Figure 5: Predictive power of the SEIR-D model for East Sussex, West Sussex and Brighton and Hove,
evaluated as the percentage of days predicted within a 95% accuracy.

Brighton and Hove, East and West Sussex (with N approximately 1.7 million). The temporal dy-
namics of the compartmentalised epidemiological model are depicted in Figure 1, following classical
approaches for formulating SIR models [2, 5, 24]. In this setting, S(t) denotes the proportion of the
total population N who are susceptible to the disease, COVID-19. These become exposed to the
disease to form the E(t) sub-population at rate β U+I

N , where β is the contact rate between individuals
multiplied by the probability of infection during a contact. This sub-population is in incubation period
(which is assumed unknown and will be determined as part of the parameter inference approach) and
can further evolve in two ways, either a proportion of this sub-population gets infected but remains
undetected, denoted U(t), at rate pγE but does not require hospitalisation or the population gets
infected at rate (1 − p)γE and will require hospitalisation. We denote by I(t) the proportion of the
total population who are infectious which will require hospitalisation. The sub-population that does
not require hospitalisation can either progress to recover at rate (1 −mU )γU to form the recovered
population denoted by RU (t) or die at rate mUγU to form the dead population DU (t). The dead
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population for this compartment comes mainly from the care homes and those that die at home due
COVID-19. The infected population becomes hospitalised, denoted by H(t), at rate γI . H(t) repre-
sents the proportion of the total population that is in hospital care. Once in hospital, patients can
evolve in two separate pathways, a proportion of the hospitalised population can fully recover at rate
γH to form the sub-population RH(t). Alternatively, if they can not recover, then they die while in
hospital at rate µH to form the dead population DH(t). In the spirit of epidemiological models of
this nature [5], β denotes the contact rate between individuals, γ−1E denotes the incubation time, p
denotes the proportion of infected individuals who will not require hospital treatment, γ−1U denotes the
recovery time, γ−1I denotes the time from being infectious to being admitted to hospital, γ−1H denotes
the recovery time for those in hospital and µH represents the death rate for those in hospital.

The mathematical translation or interpretation or modelling of the schematic diagram in Figure
1, given the rates described above, leads to the following temporal epidemiological dynamical system
modelled by a system of ordinary differential equations supported by non-negative initial conditions

Ṡ = −β S
N

(U + I), t ∈ (0, T ], S(0) = S0, (3.1)

Ė = β
S

N
(U + I)− γE E, t ∈ (0, T ], E(0) = E0, (3.2)

U̇ = p γEE − γUU, t ∈ (0, T ], U(0) = U0, (3.3)

İ = (1− p)γEE − γII, t ∈ (0, T ], I(0) = I0, (3.4)

Ḣ = γII − (γH + µH)H, t ∈ (0, T ], H(0) = H0 (3.5)

ṘU = (1−mU )γUU, t ∈ (0, T ], RU (0) = RU,0, (3.6)

ṘH = γHH, t ∈ (0, T ], RH(0) = RH,0, (3.7)

ḊU = mUγUU, t ∈ (0, T ], DU (0) = DU,0, (3.8)

ḊH = µHH, t ∈ (0, T ], DH(0) = DH,0. (3.9)

Model system (3.1)–(3.9) follows the general principles of SIR modelling approaches with one clear
difference in that this model system is data-driven formulated where we have highlighted in colour
those compartments or pathways where data is available within our local region. The physical justifi-
cation of the SEIR-D model above is well grounded in the modelling literature for COVID-19 and the
general theory of epidemiology [2, 5, 24]. It is known, for example, that those infected with COVID-19
have an incubation period whereby individuals are not infectious themselves [18] giving rise to the
E(t) compartment and that not all infected persons present themselves, i.e. individuals may be in-
fected but do not show symptoms, giving rise to the U(t) compartment. Many models have split the
U(t) compartment into two separate compartments (see for example [5]), one to describe individuals
who are asymptomatic and the other to describe individuals who have symptoms but do not require
hospitalisation. However this approach is constrained by the lack of reliable datasets in these com-
partments and therefore models of this nature rely purely on the merits of the simulations with no
forecasting capabilities. For such models, it is very difficult to obtain reliable data on those who are
asymptomatic, especially on the scale of multiple counties. Instead, we split the U(t) compartment
into recovered RU (t) and DU (t) as, even though we can not gather information on those who have
recovered, we have access to reliable death data outside of hospitals. Similarly, the same claim holds
true for individuals who die in hospital DH(t). We added a hospital compartment H(t) into the model
as a transition compartment since we have access to hospital admission data (i.e. those moving from
being infected to seeking treatment) and hospital discharge data, (i.e. those who have recovered and
move into RH(t)).

3.1 Inferring model parameters given hospital datasets

Now that we have formulated the full model system to be studied, we next present the methodology for
parameter inference given reliable datasets as described in the previous section. For ease of exposition
of the methodology, we present two cases since this is the novel aspect of our inference approach. In
both cases, we explore the relationship between model parameters where we have access to reliable
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datasets to mitigate parameter identifiability issues [6, 22, 29]. In both cases, we employ linear
regression methods to estimate the general relationships between model parameters where data is
available. We note that Bayesian approaches [7, 26] can be treated in a similar fashion and this forms
part of our current studies. An important aspect of this analysis is that the parameters involved
do not depend, in terms of this analysis, on any of the other model parameters, thus allowing us to
include them in the model analysis in Section 2.

4 Conclusion

In this paper we have derived a novel model based on data presented to us by NHS and Public Health
England and conducted linear regression analysis as well as a novel technique to deduce a reduced
model to fit the model parameters. Furthermore we have demonstrated that the fitting process and
resulting parameters allow us to produce forecasts for quantities of interest such as hospital capacity,
which the underlying dynamics fit the pattern of an infectious disease outbreak, rather than rely on
statistically inferred parameters which have no verified ability to do long term forecasting. We look
to further this work by considering more compartments as we receive more data. For example, we
would like to use the care home data to get an idea of infectious spread within care homes. Given the
recent research conducted by [19] we also look to include a critical care pathway to model the use of
ventilators and see what impact this has on the death rate within hospitals. Another study furthering
this work would be to consider model selection to fit multiple values of β and to see if we can detect
changes in the public’s behaviour, due to a change in policy such as lifting parts of the lockdown for
example. This would also allow some scope for an early warning detection system to help forecast
potential infection spikes in the system.

5 Discussion

Predicting local COVID-19 outbreaks has emerged as the number one priority by governments and
local authorities around the UK and the rest of the world in trying to halt re-infection within the
local and national populations. The pandemic itself has thrown to the forefront of science the role of
epidemiological modelling when trying to provide novel solutions when questions of urgency, national
importance and uncertainty collide thereby exposing its current limitations in terms of predictions and
forecasting [23]. A comment in Nature by Salelli et al. [23] outline a manifesto highlighting five ways in
which mathematical models should serve society. These include minding the assumptions (the minimal
the better), be mindful of model complexities (hubris - balancing the usefulness of the model with the
breath of its predictions), be mindful of the interests of the researchers (techniques and methodology
can be limited in scope to the expertise of the researchers), beware of the consequences (mitigate
the uncertainty), and finally be mindful of the unknowns (communicating what is unknown is as
important as communicating what is known). Our approach is based on these five pillars to ensure that
our research outcomes are engrained and driven by reliable local datasets with minimal assumptions
and an explicit simple data-formulated model. Predictive epidemiological modelling applied to local
datasets has the unique ability to offer local authorities a framework for decision-making that is based
on temporal trends of these local datasets. Modelling lessons learnt at the regional level can hopefully
be transferred to the national arena to help guide data acquisition such that datasets are amenable
to model-data prediction approaches as well as providing avenues for short-, medium- and long-term
forecasting.

To-date, a lot of models have failed to make meaningful quantitative predictions and forecasts
about the impact of COVID-19 despite employing huge amounts of resources and highly sophisticated
tools [4, 12, 18, 21, 27]. During the early stages of COVID-19, parallels between COVID-19 and the
Spanish flu (among other influenza diseases) that killed more than 50 million people with average age of
28 years, were drawn [4, 12, 18, 21, 27]. As a result, to mitigate and prepare for COVID-19 deaths and
infection, national governments and hospitals suspended or postponed important critical treatments,
such as cancer treatments, mental health suffered enormously, patients with debilitating conditions
avoided visiting hospitals and yet, locally, the number of COVID-19 deaths were nowhere near the
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expected numbers predicted by the national models driving the national government decision-making
process [4, 12, 18, 21, 27]. Recent studies have highlighted how predictions need to be transparent
and humble in order to instil confidence and invite insight and not blame [23]. For a disease such as
COVID-19, espoused wrong predictions can have a devastating effect on billions of people around the
world in terms of the economy, health, education and societal turmoil, just to mention a few.

It is clear from the literature that the lack of predictions and forecasting is closely correlated
to the underlying theoretical assumptions and the use of pre-determined values of the parameters
that are alien to the models under study [23]. This in turn is driven by the lack of reliable datasets
appropriate for model-data validation and sensitivity analysis. We have proposed in this study a
bottom-up approach were a regional model built on local datasets has the ability to guide local
decision making in terms of healthcare demand and capacity, in particular given the likelihood of
COVID-19 secondary waves and re-infection. Our modelling framework is not only tailored to deal
with COVID-19, but can be applied to general epidemiological winter diseases which are known to kill
thousands of patients every year. Epidemic forecasting and the development of early warning systems
for healthcare demand and capacity has been thrown at the forefront of epidemiological modelling,
by working in close collaboration, theoreticians and local authorities and planners have a unique
opportunity to bring novel approaches to healthcare decision-making and planning.
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Appendix A: Methodology for parameter inference

The parameter inference is a two-step approach, first we infer the parameters where data is available
and model parameters can be identified independently, then the second step is to use these parameters
to infer the rest of the model parameters to yield the full optimal set of model parameters.

Step 1 – Using regression analysis to infer hospitalisation discharge and death rates

Given that we have hospital discharge data and those that die in hospital, we start by considering (3.5),
where we describe the number of individuals moving from the hospital compartment H to the hospital
recovered RH and then we describe the number of individuals moving from the hospital compartment
to the death in hospital compartment DH . We then seek to find a linear relationship between the two
descriptions and use linear regression analysis to estimate the relationship between them, giving an
estimate of the parameters involved to be used in Section 2.

We begin by considering the hospital discharged data which is available for 84 consecutive days
starting March 24th, 2020, apart from one missing data point on May 15th. We denote the set of data
points by CH , with each data point denoted as CH,i, for i = 1, . . . , 84. By considering (3.5) and (3.7),
the rate of individuals being discharged in a given day from hospital is given by γHH. This allows us
to compute the number of discharges per day in the following way

cH(t) = γH

∫ t

t−1
H, t ≥ 1, (.1)

where t is a given day. We assume that the data is perturbed with Gaussian noise of unknown mean,
denoted mH , and unknown standard deviation, denoted σD, which leads to the following relationship

CH,i = cH(i) +mH + ξH,i, (.2)

where i denotes a time point of the data and ξH,i ∼ N (0, σ2H).
We now consider the data for those who die in hospitals. The data for deaths in hospitals is

available on a weekly basis, starting on week 14 (week ending April 3rd, 2020) up to week 23 (week
ending June 5th, 2020). We denote the set of data points by CwDH

, with each data point denoted as
CwDH ,j

, for j = 14, . . . , 23. By considering (3.5) and (3.9), the rate of individuals dying in hospital in
a given day is given by µHH. In a similar fashion, we can calculate the number of deaths per day in
the following manner

cDH
(t) = µH

∫ t

t−1
H, t ≥ 1. (.3)

Since the data is weekly rather than daily, the number of deaths per week is calculated by

cwDH
(τ) = µH

∫ τ

τ−7
H, τ ≥ 7(weekly). (.4)

We again assume that the data is perturbed with Gaussian noise of unknown mean, denoted by mD,
and unknown standard deviation, denoted by σD, which leads to the following relationship

CwDH ,j
= cwDH

(tj) +mD + ξD,j , (.5)

where tj is the last day of week j and ξD,j ∼ N (0, σ2D).

Regression analysis

From (.1) and (.3) we find

cH(t) =
γH
µH

cDH
(t), (.6)

which is a consequence of equations (3.5), (3.7) and (3.9), and gives light to one of the parameters,
γHµ

−1
H , to be estimated. We are going to treat the daily deaths as unknowns in our model, by solving
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the least squares problem defined by (.2) and (.5), together with cwDH
(τ) =

∑6
k=0 cDH

(τ − k). For
simplicity, we assume that the covariance for the weekly mortality data is seven times larger than the
covariance for the daily discharged data, i.e. σ2D = 7σ2H . The rationale of this assumption is that the
relationship assumes that on the same time scale, mortality and discharged data would have the same
noise levels, and that mortality data is composed of independent daily measurements. We note that
this is a conservative assumption, since data collection methods are diverse.

Let η = γHµ
−1
H . The corresponding negative log-likelihood for the model given by (.2) and (.5) is

F (η,mH ,mD, cDH
;CH , C

w
DH

) :=
84∑

i=1,i 6=53

(η cDH
(i) +mH − CH,i)2

+
1

7

23∑
j=14

(
6∑

k=0

cDH
(tj − k) +mD − CwDH ,j

)2

. (.7)

We minimise F under the constraints η > 0 and cDH
(i) > 0 using the Constrained Optimisation BY

Linear Approximation (COBYLA) algorithm. The resulting parameter estimations are presented in
Table 3. The linear regression relationship between the discharged data and hospital deaths is shown
in Figure 6. Moreover we present the fit for the daily discharged individuals in Figure 7 and the fit for
the weekly deaths in hospital in Figure 8. We note here as a reminder that the death data was only
available weekly and so the daily death data for Figure 6 was inferred. Moreover we again note that
day 0 corresponds to March 24th, 2020, and week 14 corresponds to the week ending April 3rd, 2020.

Figure 6: Model and data for the daily discharged patients and daily deaths. Note that only discharged
data is available daily; the corresponding daily deaths were inferred (see Figure 8).

.1 Inference for hospital model

In this section we present the inference equations we derived in order to infer the parameters of the
model. The concept is as follows: we define variables that describe the data we have, in terms of the
model compartment and parameters, and reduce the model to only be in terms of these new variables
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Figure 7: Model and data for the daily discharged patients. Days are counted starting on March 24th,
2020.

Figure 8: Model and data for the weekly deaths. Weeks are counted starting on the week ending on
April 3rd, 2020.
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Parameter Value Std.
γH
µH

0.653902 0.004186276

mH 1.748516 0.02085394

mD -26.825357 3.183021

Table 3: Results of fitting the linear model defined by (.7) to obtain the best values for η = γHµ
−1
H ,

the means mH and mD, respectively.

and the model parameters. This establishes what parameters we can infer from the data as well as
reduce the computational power needed to fit the model since we do not need to solve the whole
system.

.1.1 Hospital and non-hospital datasets

The data we have to utilise is daily hospital admissions, daily hospital discharges and weekly non-
hospital deaths. Note, we do not consider hospital deaths as we have already used this data to
find the relationship on γHµ

−1
H . In terms of the hospital data, considering (3.5), we know that

Ḣ = Hin −Hout := admitted− (discharged+ died) and thus

CUd(t) := γI

∫ t

t−1
I(s) ds, (.8)

describes the daily hospital admissions, and

cDis(t) := γH

∫ t

t−1
H(s) ds (.9)

describes the daily hospital discharges. Similarly, considering (3.6), we have that

cDU
(t) := mUγU

∫ t

t−1
U(s) ds (.10)

describes the daily deaths outside of hospital. Note, for ease of notation we consider daily death data
rather than weekly, and we have denoted (.9) this way so as not to confuse with (.1), since although
it is the same data, the variables are being used in different settings.

Before we derive the reduced system we re-introduce the model for ease of exposition, where we
have omitted the deaths and recovered compartments (equations 3.6-3.9), namely

Ṡ = −β̃S(U + I), (.11)

Ė = β̃S(U + I)− γEE, (.12)

U̇ = pγEE − γUU, (.13)

İ = (1− p)γEE − γII, (.14)

Ḣ = γII − µ̃HγHH. (.15)

Here, we have only introduced the compartments which are necessary for the derivation of the reduced
model. Here we have also denoted β̃ = βN−1 and µ̃H = 1 + µHγ

−1
H for ease of notation.

.1.2 Reduced system

We first look to manipulate equations (.11)–(.15) to only be in terms of the compartments U(t), I(t)
and H(t) and their derivatives so that an easy application of calculus gives us the reduced equations
in terms of cDU

, CUd and cDis that we require. Since we have three variables, we look to derive
three equations in terms of U , I and H. To this extent we will use (.15) and (.13), once we have the
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relationship for E, we then use the remaining equations to get the final equation. This means that we
need to calculate S and E in terms of U , I and H.

We first note that, using (.14), we have

E =
İ + γII

(1− p)γE
, (.16)

which provides us with a way to describe E in terms of I. What remains is to find the relationship for
S. Considering (.11) and (.12) one can see that Ṡ = −Ė − γEE, and subsequently S̈ = −Ë − γEĖ.
Thus, if we can use the expressions describing S̈, Ṡ, and equation (.16) to gain the final equation we
need for the reduced system. This bypasses the need to explicitly solve (.11) to find S and keeps the
calculations easier to follow. Indeed, by taking the derivative of (.11) we have

S̈ =
Ṡ

U + I

(
(U̇ + İ)− β̃(U + I)2

)
. (.17)

Now straight substitutions of S̈ and Ṡ into (.17) yields

−Ë − γEĖ = −(Ė + γEE)
(U̇ + İ)− β̃(U + I)2

U + I
. (.18)

Hence, noting that (.16) gives us

Ė =
Ï + γI İ

(1− p)γE
, and Ë =

...
I + γI Ï

(1− p)γE
, (.19)

and so, using (.19) in (.18) and using (.16) in (.13), yields the following reduced system
...
I + γI Ï

(1− p)γE
+
Ï + γI İ

1− p
=

(
Ï + γI İ

(1− p)γE
+
İ + γII

1− p

)
U̇ + İ − β̃(U + I)2

U + I
, (.20)

U̇ =
p

1− p
(İ + γII)− γUU, (.21)

Ḣ = γII − µ̃HγHH. (.22)

For ease of notation, let us denote by x := ċAd, y := ċDU
and z := ċDis. We can now express U(t),

I(t), and H(t) in terms of x(t), y(t) and z(t), respectively, through the change of variables above,
since

I(i) =
x(i)

γI
, (.23)

U (i) =
y(i)

mUγU
, (.24)

H(i) =
z(i)

γH
, (.25)

where f (i) denotes the i−th derivative of f . Thus, using (.23)–(.25) in (.20)–(.22), we have

...
x = (ẍ+ (γI + γE)ẋ+ γI γE x)

(
x

γI
+

y

mUγU

)−1
×

(
1

1− p
ẋ

γI
+

p

1− p
x− y

mU
− β̃

(
x

γI
+

y

mUγU

)2
)

− (γI + γE)ẍ− γI γE ẋ, (.26)

ẏ =
mUγU p

1− p

(
ẋ

γI
+ x

)
− γUy, (.27)

ż = γHx− γH µ̃Hz. (.28)

In the above, we have used (.21) in (.20) to replace the U̇ term so we can transform this system into
a system of first order differential equations. Indeed, to solve (.26)–(.28), we also need to prescribe
initial conditions x(0) = x0, ẋ(0) = ẋ0, ẍ(0) = ẍ0, y(0) = y0 and z(0) = z0.
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.1.3 Inference

Now that we have the reduced system of (.11)–(.15) in terms of the data, we can proceed to fit the data
and gain the inferred parameter values by minimising a log-likelihood function. In a similar manner
to Section 5 we denote the set of daily hospital admissions data as CUd, with each data point denoted
as CUd,i, for i = 1, . . . , 84. Similarly, we denote the set of daily hospital discharge data as CDis, with
each data point denoted as CDis,i, for i = 1, . . . , 84. Finally, we denote the set of weekly death data
outside of hospital as CwDU

, with each data point denoted as CwDU ,j
, for j = 14, . . . , 23. Assuming that

the data is collected subject to centered Gaussian errors, scaling the mortality data error to account
for weekly data, we have the following negative log-likelihood function to minimise

F (CUd, cDis, cDU
;CUd, CDis, CDU

) :=
84∑

i=1,i 6=53

(CUd(i)− CUd,i)2

+
84∑

i=1,i 6=53

(cDis(i)− CDis,i)2 +
1

7

23∑
j=14

(
6∑

k=0

cDU
(tj − k)− CwDU ,j

)2

, (.29)

where we note that day 53 is missing in the hospital data. Without any constraints, (.29) has multiple
minimisers. We therefore impose two constraints (which are fully justified physically) based on the
following assumptions. First, we assume that the population within the model excluding the recovered
and death compartments is between 90% and 100% of the total population N that we consider. This
reflects the fact that an unknown fraction of the population is already immune or are not susceptible,
due to the shielding programmes in place, for example. Second, we assume that the effective repro-
ductive number Reff = S0

N R0 at the beginning on the simulation is less than one. This reflects the
effect of the lockdown on the population dynamics and avoids non-feasible parameters that involve
very high infection rates leading to close to 100% of infections in a short period of time, which is
unrealistic in the current climate. In order to include these constraints into the log-likelihood we need
to describe them in terms of the data and parameters. We first look at the initial conditions.

Considering equations (.23)–(.25) one easily sees that

I0 =
x0
γI
, (.30)

U0 =
y0

mUγU
, (.31)

H0 =
z0
γH

. (.32)

Using (.16) and (.30) we see that

E0 =
1

(1− p)γE

(
ẋ0
γI

+ x0

)
, (.33)

and similarly, (.30) and (.33) leads directly to

Ė0 =
1

(1− p)γE

(
ẍ0
γI

+ ẋ0

)
. (.34)

To find S0, we rearrange (.12) and use (.30), (.31), (.33) and (.34) to yield

S0 =
1

1− p
β̃−1

x0
γI

+ y0
mUγU

(
ẍ0
γEγI

+

(
1

γI
+

1

γE

)
ẋ0 + x0

)
. (.35)

We now turn our attention to the effective reproductive number Reff . In order to calculate the
effective reproduction number, we use the method of next-generation matrices derived in [8] to obtain
the following expression for R0:

R0 := β

(
p

γU
+

1− p
γI

)
. (.36)
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Including the constraints, the negative log-likelihood then reads

G(CUd, cDis, cDU
, S0, E0, U0, I0, H0;CUd, CDis, CDU

, N)

=
84∑

i=1,i 6=53

(CUd(i)− CUd,i)2 +
84∑

i=1,i 6=53

(cDis(i)− CDis,i)2

+
1

7

23∑
j=14

(
6∑

k=0

cDU
(tj − k)− CDU ,j

)2

− w1(1−Reff )

− w2(N −N0)(N0 − 0.9N), (.37)

where, for ease of notation, we have left the initial conditions and reproductive number in their original
notation. To aid clarity in notation, we have introduced N0 = S0 + E0 + U0 + I0 + H0. We have
also included a weighting to ensure positivity of solutions. For the simulation, we took the weights
w1 = 102 and w2 = 10−9. We minimised (.37) using the Scipy implementation of the limited memory
Broyden–Fletcher–Goldfarb–Shanno algorithm with box constraints (L-BFGS-B) [14, 20]. The box
constraints were used to ensure positivity of the relevant parameters as well as positivity of the initial
conditions.
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