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ABSTRACT

A key parameter in epidemiological modeling which characterizes the spread of an infectious disease
is the mean serial interval. There is increasing evidence supporting a prolonged viral shedding
window for COVID-19, but the transmissibility in this phase is unclear. Based on this, we build a
model including an additional compartment of infectious individuals who stay infectious for a longer
duration than the reported serial interval, but with infectivity reduced to varying degrees. We find
that such an assumption also yields a plausible model in explaining the data observed so far, but
has different implications for the future predictions in case of a gradual easing on the lockdown
measures. Considering the role of modeling in important decisions such as easing lockdown measures
and adjusting hospital capacity, we believe that it is critically important to consider a chronically
infectious population as an alternative modeling approach to better interpret the transmission dynamics
of COVID-19.
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1 Introduction

Mathematical models have been extensively used to understand the epidemic characteristics of oubreaks, in predicting
future outcomes, and in shaping the national responses regarding control measures [1, 2]. Despite the time pressure,
a considerable amount of work has been dedicated to modeling the pandemic of novel coronavirus (SARS-CoV-2)
infections that began in China in late 2019 [3–6]. Although most of these studies are based on existing epidemic models
such as SIR and SEIR-models, several features of the COVID-19 pandemic have been independently explored, leading
to different generalizations of similar dynamical models. On one hand, having a variety of models is central to get a
notion of the model sensitivity, on the other, it shows that different assumptions are equally favorable to explain the
observed data given the right set of parameter choices, whereas they might lead to different projections on how the
epidemic would follow in the future [7, 8]. This variability in future projections becomes especially important when a
perturbation, such as the imposition or release of the control measures, is introduced to the dynamical system.

A key epidemiologic variable that characterizes the spread of an infectious disease is the mean serial interval [9], i.e.,
the time between successive cases in a chain of transmission. Li et al. [10] estimated the serial interval distribution to
have a mean of 7.5 (95%CI 5.5− 19) days based on 6 observations, whereas Ganyani et al. estimated the serial interval
distribution to have a mean of 5.20 (95%CI 3.78− 6.78) days for Singapore and 3.95 (95%CI 3.01− 4.91) days for
Tianjin [11], Bi et al. estimated the serial interval distribution to have a mean of 6.3 (95%CI 5.2− 7.6) days [12], He
et al. estimated the serial interval distribution to have a mean of 5.8 (95%CI 4.8− 6.8) days [13], and Hiroshi et al.
estimated the serial interval distribution to have a mean of 4.7 (95%CI 3.70− 6.00) days. Considering all these studies,
infectiousness is estimated to decline quickly within 4 to 8 days on average.

By contrast, certain cases arouse concern about prolonged shedding of SARS-CoV-2 after recovery [14]. Moreover,
several studies show proof of active virus replication in upper respiratory tract tissues and prolonged viral shedding even
after seroconversion for COVID-19, implying that the contagious period of COVID-19 might last more than one week
after clinical recovery in a fraction of patients [15, 16]. De Chang et al. reported patients to be virus positive even after
the resolution of symptoms up to 8 days [17]. Similarly, Young et al. reported a median duration of 12 days for viral
shedding [18], and Zhou et al. observed a median duration of 20 days [19]. Tan et al. reported a special case where the
duration of viral shedding persisted for 49 days from illness onset [20]. Considering that the duration of infectiousness
is a critical parameter in dynamical models used for predictive purposes, it is important to consider the epidemiological
plausibility of a longer shedding window than the reported serial interval in the literature and investigate its impact on
model outcomes.

To do so, we first develop a generalized SEIR model by segregating the infectious compartment into two as “primarily
infectious” and “chronically infectious” population. We assume that primarily infectious individuals have a higher
infectiousnesss within the time window conventially considered as the serial interval, during when they have the
potential to develop symptoms and therefore be hospitalized. Afterwards, we assume that the non-hospitalized infecteds
transition to the chronically infectious phase before recovery and become less infectious, but may stay infectious for a
longer duration. By doing so, we include the possibility of a prolonged viral shedding window in our model. Using
the incidence and fatality data from different countries, we first show that our model is also a plausible candidate
for explaining the data observed so far for different levels of infectiousness assumed for the chronically infectious
population. Based on this conclusion, we explore the model predictions in case of gradual easing on the lockdown
measures (relaxation) in Switzerland. Our results show that the model predictions vary in one order of magnitude range
for the data considered (daily cases, daily deaths, patients at the hospital ward, and patients at the ICU) for different
levels of infectiousness assumed for the chronically infectious population. This variability is especially important when
national policies on control measures are being formed, and also for the healthcare systems if projections such as the
occupancy of the hospital ward or the ICU are calculated using similar dynamical models.

2 Methods

2.1 Mathematical Model

To describe the dynamics of the COVID-19 pandemic, we generalize the susceptible-exposed-infected-removed (SEIR)
compartmental model by including eight different states denoted by S(t), E(t), Ip(t), Ic(t), H(t), ICU(t), R(t),
and X(t), representing the number of susceptible individuals, exposed (infected but not yet infectious) individuals,
primarily infectious individuals, chronically infectious individuals, hospitalized patients, patients in ICUs, recovered
(immune) individuals, and deceased individuals at time t, respectively. To model the prolonged viral shedding in
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case of COVID-19, we segregate the infectious compartment into two by introducing two different compartments,
namely the primarily infectious (Ip) and the chronically infectious (Ic) individuals. After the incubation period is
complete, exposed individuals become primarily infectious where they stay infectious within the reported duration of
the serial interval of COVID-19. Conventionally, these individuals are assumed to stop being infectious and therefore
stop contributing to the disease spread when the serial interval is complete. Our purpose by including another step
before recovery, i.e., the chronically infectious compartment, is to model a scenario such that the primarily infectious
individuals transition to a state where they are less infectious but they may stay infectious for a longer duration than the
serial interval, i.e. continue spreading the infection with reduced transmissibility.

Transitions between different compartments are illustrated in Fig. 1, which can be translated into a system of ordinary
differential equations, where each arrow, i.e., each process, is associated with a rate. This system is given by the Eq.
set 1, including the rates of processes as model parameters, and describes the rate of change of compartments over
time. Model parameters are given in Table 1 with their corresponding descriptions. An additional compartment C(t) is
included in the Eq. set 1 to calculate the cumulative number of the positively diagnosed cases in the community, and
does not play a role in the disease dynamics.
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Figure 1: a) Notation of the compartments and their corresponding descriptions. b) Schematic of the dynamical model
given by Eq. set 1.
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Time-dependent decrease in the transmission of SARS-CoV-2 due to lockdown measures is modeled by a sigmoid
function [21], and denoted by rlock(t), such that

rlock(t) = rL + (1− rL)/
[
1 + exp

(
mL × (t− tL − sL)

)]
, (2)

where rL, tL, mL, and sL denote the final effect of the lockdown, start date of the lockdown, slope of the decrease in
transmissibility, and the time delay between implementation and effect of the lockdown, respectively. rlock(t) is used
as a multiplicative factor in modeling the transmission rate in a time-dependent manner.

The reduced transmissibility of Ic is modeled via including a reduction coefficient rc as a multiplicative factor to its
transmission rate, resulting in two different transmission rates βp and βc for Ip and Ic compartments, such that,

βp = rlock(t)×Rp
0 × γp, (3)

βc = rlock(t)×Rc
0 × γc, (4)

where Rp
0, Rc

0, 1/γp, and 1/γc denotes the basic reproduction number of the primarily infectious population, the basic
reproduction number of the chronically infectious population, duration of primarily infectious phase, and the duration
of chronically infectious phase, respectively. We assume that individuals who develop symptoms do so only during
the primarily infectious phase, and therefore hospitalization is only possible before they transition to the chronically
infectious phase. We do not assume any a priori information regarding the testing policy, therefore a positive diagnosis
is possible for both primarily and chronically infected individuals, and they contribute to the cumulative number of the
positively diagnosed cases with the rates rpd and rcd, respectively.

2.2 Model Fitting and Parameter Estimation

We implemented two stages of model fitting. The first stage aims to compare the predictions of the model given by
Eqn. set 1 for different values of rc, where 0% ≤ rc ≤ 100% with a step size of 2% to cover different scenarios with
different levels of chronic infectiousness. We refer to the model with rc = 100% as the “null model”, and assume that
the primarily infectious individuals do not have a prolonged viral shedding, but they still can be diagnosed during the
chronic phase, meaning that their test results can still be positive although they are not infectious. We then fit the model
simultaneously to the data on the number of daily confirmed cases and the number of daily deaths for various countries,
reported by the World Health Organization (WHO) [22]. The deviations between the model output and the data are
assumed to follow a Negative Binomial distribution. Dispersion parameters of the Negative Binomial distributions are
estimated seperately for both the number of daily confirmed cases and the number of daily deaths during model fitting.

When fitting the model, we fixed the reduction in infectiousness parameter rc to different values varying between 0% to
100%. Duration of infectiousness of the Ic compartment is fixed to 14 days for all simulations. Other parameters are
allowed to vary within their respective ranges, given in Table 1.

During model fitting, we leave out a certain amount of datapoints and use them later to calculate the prediction error,
which is defined as the mean Euclidian distance between the model prediction and the datapoints that are not used for
fitting. To interpret the prediction error of the models with prolonged viral shedding (0% ≤ rc ≤ 98%) relative to the
null model (rc = 100%), we normalize each prediction error value by the prediction error of the null model for a given
dataset size, and call it the relative prediction error (RPE). By definition, the RPE of the null model is 1. Any RPE
value below 1 indicates that the corresponding model has a better predictive power relative to the null model.

All datapoints before the introduction of the lockdown measures are included in the fitting procedure to have a better
estimate of the effect of the lockdown. Due to the uncertainty of the quantitative effects of the easing on the lockdown
measures (relaxation), datapoints after the relaxation are excluded from RPE calculations. By comparing the RPE values
of the models with and without the prolonged viral shedding, we aim to demonstrate that both types of model yield to
a certain predictive power that makes it difficult to reject the possibility of the existence of a chronically infectious
population from a modeling perspective.

Building upon this conclusion, the second stage of the model fitting demonstrates how the impact relaxation would
differ given different levels of reduction in infectiousness for the Ic compartment. We use the data provided by [23] for
Switzerland, and fit the model simultaneously to four datasets : the number of daily confirmed cases, the number of

1N , β, exp denotes the Normal, Beta, and Exponential distributions respectively.
2All other compartments (Ip, Ic, H, ICU, R, and X) are assumed to be zero at t = 0, and the first case is assumed to be

observed at t = 1.
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Notation Description Constained range
or definition Prior distribution 1

Rp
0

Basic reproduction number
of the primarily infectious population 0−∞ Rp

0 ∼ N (2.5, 0.5)

rc
Reduction in infectiousness
due to being chronic 0%− 100%

Fixed to a different value
for each simulation.

Rc
0

Basic reproduction number
of the chronically infectious population Rc

0 = Rp
0(1− rc) Conditioned on Rp

0 and rc.

rL
Effect of lockdown in reducing
infectiousness 0%− 100% rL ∼ β(1, 1)

mL
Slope of reduction in infectiousness
due to lockdown 0.5− 1.5 mL ∼ 0.5 + β(1, 1)

sL
Time lag of reduction in infectiousness
due to lockdown 0−∞ sL ∼ exp(1/5)

rlock(t)
Time dependent effect of the
lockdown on the transmission rate Given by Eq. 2 Conditioned on rL , rc, mL,

and sL.
1/τ Incubation period 0−∞ τ ∼ exp(1/2.5)
1/γp Duration of infection of Ip 0−∞ γp ∼ exp(1/2.5)
1/γc Duration of infection of Ic 14 days Fixed for all simulations.

βp Transmission rate of Ip Given by Eq. 3 Conditioned on rlock(t) ,
R0, and γp.

βc Transmission rate of Ic Given by Eq. 4 Conditioned on rlock(t) ,
R0, γc, and rc.

1/γH Duration of hospital ward stay 0−∞ γH ∼ exp(1/12)
1/γICU Duration of ICU stay 0−∞ γICU ∼ exp(1/12)
εH Rate of direct H admission 0−∞ εH ∼ N (0.08, 0.02)
εH2I Transfer rate from H to ICU 0−∞ εH2I ∼ N (0.4, 0.08)
εx Death rate from ICU 0−∞ εx ∼ N (0.4, 0.08)
rpd Diagnosis rate of Ip 0−∞ rpd ∼ N (0.2, 0.03)
rcd Diagnosis rate of Ic 0−∞ rcd ∼ N (0.075, 0.015)

R0 Total basic reproduction number R0 = Rp
0 + (1− εH)Rc

0
Conditioned on Rp

0, Rc
0

and εH .

E(0)
Initial frequency of the
exposed compartment 0%− 100% rcd ∼ β(1, 103)

S(0)
Initial frequency of the
susceptible compartment 1− E(0) 2 Conditioned on E(0)

N Population size − Fixed specific to the country
used for fitting.

Table 1: Model parameters given with their descriptions, constrained ranges, and prior distributions.

daily deaths, the number of patients at the hospital ward at a given day, and the number of patients at the ICU at a given
day. Only Swiss data is used to asses the impact of relaxation because it is the only country to our knowledge where
data on both the hospitalized and the ICU patients are publicly available in addition to the number of daily confirmed
cases and the number of daily deaths. This enabled us to quantify the effects of relaxation on the capacity requirements
of healthcare systems. On the other hand, we chose to exclude Swiss data from the first stage of model fitting due to its
short lockdown duration relative to other countries included in that analysis.

Using the parameters we obtained via fitting, we predict the outcomes of a gradual relaxation scenario both for the null
model and the model including the chronically infectious population with different rc values. Relaxation is modeled as
an increase in transmissibility, and characterized as a sigmoid function. It is similar to the time-dependent effect of the
lockdown (rlock(t)) given by Eqn. 2, such that

rrelax(t) = rL + 1/
[
1/(1− rL) + exp(−mR × (t− tR − sR))

]
, (5)

where tR, mR, and sR denote the start date of the relaxation (27th of April for Switzerland, 63 days after the first
case is observed), slope of increase in transmissibility (set to 0.1 for a gradual relaxation), and the time delay until
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the effect of the relaxation takes place (set to 60 days for a gradual relaxation), respectively. rrelax(t) is used as a
multiplicative factor in a similar fashion to rlock(t). Note that the parametrization of rrelax(t) does not depend on data,
and its parameter values are chosen such that it demonstrates a gradual increase in transmissibility over the months
following the start of relaxation.

For both stages of fitting, we implemented the model in a Bayesian framework using Stan [24]. Prior distributions of
the parameters used during fitting are given in Table 1. All code and data are available from https://github.com/
burcutepekule/covid_prolonged_shedding.

3 Results

3.1 Possibility of a chronically infectious population

To have as many data points as possible for relative prediction error (RPE) calculations, we have chosen the countries
with the longest durations between the start of the lockdown measures and the relaxation, which are Italy, France,
Spain, Greece, province of Hubei, and the U.S.A. During model fitting, we used all the datapoints until the start of the
lockdown with an additional 5 days of observation, and gradually increased the number of datapoints (the dataset size)
by another 5 days to systematically explore the effects of the dataset size on the prediction error.

We find that both the null model and the models with prolonged viral shedding provide almost identical fits for the
observed data independent of the dataset size, however they differ in their predictive abilities. For Italy, the models with
a higher level of infectiousness (lower rc) provide a better prediction relative to the null model (rc = 100%) for both
the number of confirmed cases and deaths when the size of the dataset used for fitting is small (Figs. 2 a), b), e), and f)).
As the dataset size used for fitting increases, both the null model and the models with prolonged viral shedding provide
similar short-term predictions and narrower confidence intervals (Figs. 2 c), d)). In case of Greece, we observe that all
RPE values for both the number of daily deaths and daily cases are close to 1 (SI Fig. 1), meaning that there is not
a substantial difference in the predictive capacity of the null model relative to the models including prolonged viral
shedding with different levels of infectiousness. For Spain, RPE values decrease as the level of infectiousness decreases
(rc increases) for both the number of daily cases and daily deaths, and the models with prolonged viral shedding provide
a better prediction for smaller datasets when the level of infectiousness is below 20% (rc > 80%). Additionally, using
smaller datasets for fitting results in a very poor predictive capacity and very wide confidence intervals for all models
including the null model (SI Fig. 2 a) and b)). Analysis for the U.S.A (SI Fig. 4) and France (SI Fig. 5) provide
similar results as Spain. For Hubei, all models perform poorly to predict the number of daily cases (SI Fig. 3 a) and c)),
whereas the models with prolonged viral shedding with higher levels of infectiousness provide better predictions as the
dataset size used for fitting increases.

As the dataset size used for fitting increases, both the null model and the models with prolonged viral shedding provide
similar short-term predictions (Panels c) and d) for SI Figs. 1-5 and Fig 2.). This is to be expected since the data points
used for fitting can be explained equally well using all models, and the differences in infectiousness level (rc) manifest
itself more as the prediction horizon increases. Consequently, RPE curves with larger dataset sizes result in lower RPE
values in general for all countries.

3.2 Impact of relaxation

Data for Switzerland is used to simulate the impact of a gradual easing on the lockdown measures (relaxation) both for
the null model and the model with prolonged viral shedding for different levels of reduction in infectiousness (different
values of rc).

We observe that the predictions for both the continuation of the lockdown and the relaxation present similar shapes,
but the quantitative difference varies by one order of magnitude range for different rc values (Fig. 3). In case of the
continuation of the lockdown, a longer duration is required for the number of daily deaths and daily cases to go down to
the same value as the infectiousness of the chronically infectious population increases (Figs. 3 c), e), g), and i)). In case
of relaxation, both the number of daily cases and the number of daily deaths start to increase faster as the infectiousness
of the chronically infectious population increases, and reach almost a ten fold higher value within two weeks following
the start of the relaxation (Figs. 3 d) and f)). This increase is also reflected in the number of patients observed in the
hospital ward and the ICU (Figs. 3 h) and j)), indicating a faster influx to the health facilities under the assumption of a
highly chronically infectious population.

The fact that observed data can be explained equally well by all rc values varying from 0% to 100% (null model) is
partially due to the flexibility of the fitting procedure, which allows other parameters to be adjusted for a given rc value.
Most parameters are free to vary, but their prior distributions are informed such that the hyperparameters (parameters of
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the prior distributions) align with the reported values in the literature (Table 1). As an example, both the incubation
period (1/τ ) and the duration of infectiousness of the primarily infectious population (1/γp) have the mean of 2.5 days,
resulting in a serial interval distribution with a mean of 5 days, in agreement with the reported values in the literature
for COVID-19 (see Introduction). Similarly, the basic reproduction number of the primarily infectious population
Rp

0 is normally distributed with a mean of 2.5, which is the average value reported for basic reproduction number of
COVID-19 in many countries [10,25]. Mean values of the prior distributions of the parameters related to hospitalization
(γH , γICU , εH , εH2I , and εx) are adopted from Ferguson et al. [26] and Verity et al. [27], and given a variance such
that they can be adjusted specifically for each country during the fitting procedure.

The rc dependent posterior distributions for Rp
0, R0, and rL provide a good example to demonstrate the flexibility of the

fitting procedure (Fig 4). As expected, the final reduction in infectiousness due to lockdown (1− rL), basic reproduction
number of the primarily infectious population (Rp

0), and the total basic reproduction number (R0 = Rp
0 + (1− εH)Rc

0)
is estimated to be lower as the infectiousness of the chronically infectious population decreases (as rc increases) to
explain the observed data.

Although the models we have explored so far assume different levels of infectiousness during the prolonged viral
shedding window including no infectivity at all (null model), they all assume that the infected individuals are tested and
positively diagnosed with a certain rate during the chronically infectious phase. This is not a common assumption in
other modeling studies regarding COVID-19. For comparison, we also applied both stages of model fitting using a
chronic-free model where the Ic compartment is completely omitted. We find that the chronic-free model substantially
underpredicts both the number of daily cases and the number of daily deaths when the size of the dataset used for fitting
is small (SI Fig. 6). Similar to the models explored so far, its predictive capacity increases as the dataset size used for
fitting increases. A chronic-free model can also explain the observed data equally well (SI Figs. 6 and 7), but this is
only possible with a considerably lower basic reproduction number combined with a considerably lower lockdown
effect compared to the models including the Ic compartment (SI Fig. 8).

4 Discussion

The model presented in this work explores the epidemiological plausibility of a prolonged viral shedding window for
the COVID-19 pandemic, and quantifies the impact of a gradual easing on the lockdown measures (relaxation) given
different assumptions on the infectiousness of a chronically infectious population.

Our results show that having a chronically infectious population, i.e., individuals that are less infectious but infectious
for a longer duration, is not a possibility that can be easily rejected from an epidemiological perspective. This conclusion
is based on two main results. First, the data that has been observed so far can be explained equally well by the model
with prolonged viral shedding for a variety of different levels of reduced infectiousness as well as the null model, i.e.,
the model without prolonged viral shedding. Although this is partially due to the flexibility of the fitting procedure, the
choice of hyperparameters (parameters of the prior distributions) indicate that all fits for a given reduced infectiousness
value are possible for a set of reasonable model parameters, and therefore as favorable as the null model from a modeling
perspective.

Second, it is not clear whether the null model or the model with prolonged viral shedding provides more accurate
predictions for the prospective data that is not included in the fitting procedure. The uncertainty around the prediction
error values for different countries, different types of data (confirmed cases or deaths), and different data sizes used for
fitting indicates that it is not always the null model that has the higher predictive power. Consequently, our analysis
shows that it is not possible to either accept or reject the existence of a chronically infectious population with reasonable
certainty from a modeling perspective.

The fact that observed data can also be explained with a model including prolonged viral shedding raises certain
questions about the interpretation of the epidemic curve, acquired immunity, and the current testing policies. Assuming
a relatively short serial interval for a model that does not consider a prolonged viral shedding window results in more
optimistic projections about epidemic control, as clearly demonstrated in Figs. 2 and 3. Countries that were very
successful in their initial control measures and therefore experienced a very steep decline in the number of daily
confirmed cases might choose to ease the control measures too soon. We still lack a full understanding of the viral
shedding window of COVID-19, and therefore might have a biased opinion on the number of infectious individuals in
the community. This once again emphasizes the infectiousness of COVID-19 and the significance of frequent testing
although the number of confirmed cases are in decline.

Building up on these conclusions and concerns, we investigate how the population dynamics would follow in case of
a gradual easing on the lockdown measures (relaxation) in Switzerland considering different levels of infectiousness
during a prolonged viral shedding window. Our results show that although the predictions present a similar shape for
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different levels of reduced infectiousness for the chronically infectious population, the quantitative difference varies by
one order of magnitude range for all four signals (daily cases, daily deaths, patients at the hospital ward, and patients at
the ICU). This variability is especially important for the healthcare systems if projections such as the occupancy of the
hospital ward or the ICU are calculated using similar dynamical models.

Using simplified compartmental models such as the one in this study has certain limitations. First, it does not consider
the stochastic effects that the system is subject to, which become more important as the number of infecteds decrease
in the community. Second, it assumes a well-mixed population, and does not consider the contact structure and the
demographic information which are both relevant to the disease spread. Nevertheless, we believe that these two
drawbacks of our modeling approach influence the models with and without the prolonged viral shedding to a similar
degree, if not penalizing the model with prolonged viral shedding for producing more pessimistic projections since the
number of infecteds will be higher in frequency relative to the null model.

It is still debated whether the patients who recover from COVID-19 and test positive for the virus after their recovery
are still infectious or not. Nevertheless, it is clear that these positive test results contribute to the data on the number of
daily confirmed cases. However, current modeling studies regarding COVID-19 neglect this fact and assume that all
positive test results are recorded within the duration of the serial interval only. Our results show that this assumption
might lead to an underestimation of both the reproduction number and the effect of the lockdown, leading to a potential
underprediction for the prospective data.

In conclusion, It is not possible to either prove or disprove the existence of a certain compartment of individuals purely
by modeling. Including a chronically infectious population in our model was motivated by the evidence reported for
prolonged viral shedding in the literature [14–20], and attempted to test whether this is also a plausible modeling
approach to explain the data observed so far. Given that different assumptions on the infectiousness level during a
prolonged viral shedding window can result in similar descriptions of the observed data in retrospect but different
outcomes in prospect, it is important to consider a chronically infectious population from a modeling perspective when
national policies are being imposed.
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a) b)

c) d)

e) f)

Figure 2: Fitting, prediction, and relative prediction error (RPE) results for Italy, calculated using different levels of
infectiousness for the chronically infectious population and different sizes of datasets. Model outcomes for the number
of daily confimed cases (a), c)) and daily deaths (b), d)) using an additional 5 and 30 days of observed data for model
fitting, respectively. Predictions drawn in darker shades of blue represent the fitting results with increased infectiousness
of the chronically infectious population, i.e., lower rc values, and the predictions for the null model (rc = 100%) are
drawn in red. Data points that are used for fitting are drawn in black whereas the datapoints that are excluded from
fitting but used for prediction error calculations are drawn in green. Gray areas around the model outcomes represent
the union of the confidence intervals calculated for different levels of infectiousness. Relative prediction error (RPE) e)
for the number of daily cases and f) the number of daily deaths for a given rc value and a given dataset size used for
fitting, where rc = 100% represents the results for the null model, and values below 1 are shaded in gray for a better
visualization.
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Figure 3: Fitting results and predictions for Switzerland, calculated using different levels of infectiousness for the
chronically infectious population, (a), c), e), g), and i)) assuming the lockdown measures continue, and (b), d), f), h),
and j)) assuming a gradual easing on the lockdown measures (relaxation). Time dependent effects of the lockdown and
the relaxation are illustrated in a) and b), respectively. Predictions drawn in darker shades of blue represent the fitting
results with increased infectiousness of the chronically infectious population, i.e., lower rc values, and the predictions
for the null model (rc = 100%) are drawn in red.
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a) b) c)

Figure 4: Posterior distributions of the a) basic reproduction number of the primarily infectious population (Rp
0), b)

total basic reproduction number (R0 = Rp
0 + (1− εH)Rc

0), and c) the final reduction in infectiousness due to lockdown
(1− rL), for a given rc value.
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