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Importance: 

The emergence of COVID-19 outbreak caused by a novel coronavirus opens up an imminent 

need to better understand how our immune system responds to this new virus and to develop 

ways to control its spread. Our results suggest why some countries show a higher number of 

deaths due to COVID-19 while other countries do not. SARS-CoV-2 expresses 10 proteins that 

could be used as targets for vaccine development. By using a comprehensive bioinformatic 

screening of potential epitopes derived from the SARS-CoV-2 sequences, we identified 

potential antigens for 148 HLA-I alleles distributed world-wide. These peptides are likely to 

have a high affinity for HLA class I molecules and may induce critical immune responses. Our 

results suggest that different coverages for S and N derived peptides is associated with deaths 

related to COVID-19 in distinct populations. Of note, frequent and rare HLA alleles influence 

the effects we observed. We explored these associations regarding potential antigens derived 

from each viral protein to enumerate a set of protective HLA alleles. Moreover, we explored 

the novel insertion in the SARS-CoV-2 protein S genome to map 3 potential antigens bearing 

this new region, and a set of peptides presented by those protective HLA alleles, of interest for 

vaccine strategies. Finally, we propose that vaccine development strategies should consider the 

inverse relationships of proteins S and N in view of the associations with the number of deaths. 

 

Abstract 

The world is dealing with one of the worst pandemics ever. SARS-CoV-2 is the etiological 

agent of COVID-19 that has already spread to more than 200 countries. However, infectivity, 

severity, and mortality rates do not affect all countries equally. Here we consider 140 HLA 

alleles and extensively investigate the landscape of 3,723 potential HLA-I A and B restricted 

SARS-CoV-2-derived antigens and how 37 countries in the world are predicted to respond to 

those peptides considering their HLA-I distribution frequencies. The clustering of HLA-A and 

HLA-B allele frequencies partially separates most countries with the lowest number of deaths 

per million inhabitants from the other countries. We further correlated the patterns of in silico 

predicted population coverage and epidemiological data. The number of deaths per million 

inhabitants correlates to the predicted antigen coverage of S and N derived peptides and its 

module is influenced if a given set of frequent or rare HLA alleles are analyzed in a given 

population. Moreover, we highlighted a potential risk group carrying HLAs associated with an 

elevated number of deaths per million inhabitants. In addition, we identified 3 potential 

antigens bearing at least one amino acid of the 4-length insertion that differentiates SARS-

CoV-2 from previous coronavirus strains. We believe these data can contribute to the search 

for peptides with the potential to be used in vaccine strategies considering the role of herd 

immunity to hamper the spread of the disease. Importantly, to the best of our knowledge, this 

work is the first to use a populational approach in association with COVID-19 outcome. 
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Introduction 

Since December 2019, the world has been facing one of the worst pandemics of all times caused 

by a novel Betacoronavirus (Severe Acute Respiratory Syndrome Coronavirus 2 - SARS-CoV-

2). Until this day, more than 20 million cases and 732 thousand deaths were confirmed. 

However, the infection does not strike all nations equally when considering multiple 

epidemiological parameters (1). The viral genome of this etiological agent consists of structural 

protein genes such as Spike (S), Envelope (E), Membrane (M), and Nucleocapsid (N) and non-

structural protein genes (e.g., ORF1ab, ORF3a, ORF6) (2). Their functions have been 

extensively reviewed elsewhere (2,3). Once in the human body, SARS-CoV-2 infect cells using 

the surface molecules ACE2 and TMPRSS2 highly expressed in the lungs and respiratory tract. 

The infection is recognized by macrophages and alveolar epithelial cells that initiate a pro-

inflammatory response, which may trigger an acute respiratory distress syndrome among other 

symptoms (4–7). The SARS-CoV-2 viral proteins have been shown to elicit both cellular 

immunity and humoral response (8). One of the most promising viral proteins for vaccine 

development is the S protein due to its accessibility to antibodies and pivotal role in the 

infection (9). Nevertheless, antibody response appears first against the N protein, the most 

abundant protein in coronavirus, and a few days later for S protein (8,9). The ability to trigger 

an adaptive immune response greatly relies on the ability to present antigens through the class 

I and II Histocompatibility Leukocyte Antigen (HLA) molecules. Peptides derived from 

different SARS-CoV-2 proteins are recognized by CD4 and CD8 T cells from COVID-19 

convalescent patients (10). The allelic distribution of the largely polymorphic HLA genes 

across different countries may affect the appropriate antigen presentation of SARS-CoV-2-

derived peptides among distinct populations (11). This could be associated with specific 

profiles of disease susceptibility and severity (1). Several studies predicting HLA-restricted 

peptides derived from SARS-CoV-2 are already available (12,13). Therefore, these 

characteristics must be taken into account when considering epitope-based vaccines since 

target epitopes must not only be able to bind to the HLA molecule but also prove to be 

immunogenic to promote a functional response (14). Populational coverage studies considering 

these features may help narrow the number of candidate peptides to be considered for 

vaccination strategies (15). However, epitope coverage studies are not sufficient to predict if 

the immune response would be able to resolve the infection and provide immunity to 

individuals and/or if this immunization occurs at the expense of exacerbated immune 

responses. In the context of the SARS-CoV-2 pandemic, the susceptibility to severe cases and 

deaths may be related to the over or under presentation of SARS-CoV-2-derived peptides by 

HLA molecules as well as to individual characteristics driving inflammation (3). This is not 

necessarily restricted to HLA allele distribution among populations once the same peptide can 

be presented by more than one HLA allele. With that in mind, we evaluated how different 

populations potentially present HLA class I restricted SARS-CoV-2 peptides and their 

association with the local epidemic progression features across different countries. This 

strategy led us to a set of peptides derived from virus S and N proteins, which showed distinct 

correlations with disease outcomes. While S may have a protective role as they are potentially 

presented in HLA alleles with high frequency in countries with less number of deaths per 

million inhabitants, N has a direct correlation with the unfavorable endpoint. Importantly, the 
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patterns observed are dependent on frequent HLA alleles, and opposite correlations are found 

when evaluating only rare alleles. These results may prove critical in guiding efforts towards 

the development of vaccine candidates, as well as determine high-risk groups based on HLA 

alleles. 
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Results 

HLA-I alleles partially discriminate different outcomes among countries  

To assess the landscape of peptides potentially presented by HLA-I alleles occurring in the 

global population and how this diversity is associated with the disease outcome, we selected a 

list of countries hit by the pandemic with known HLAs genetic frequencies. Only countries 

with more than 1,000 total cases of Coronavirus disease (COVID-19) on 17/05/2020 according 

to the Worldometer database (16) register were considered, reaching a total of 50 different 

countries. Two field resolution HLA-A and HLA-B alleles for the aforementioned populations 

available in the Allele Frequency Net Database (17) were accessed. For each population, a 

different number of alleles was retrieved, considering the allele in decreasing order of their 

frequencies to reach a cumulative allelic frequency (AF) as close to 0.75 as possible. 

Populations whose HLA allele frequencies information did not reach the threshold or having 

less than 50 individuals in the HLA cohort were removed, totalizing 37 countries in our study 

(Supplementary File 1, Figure S1). The median cumulative AF varied among populations with 

a median of 0.752 for HLA-A (minimum of 0.721 for AUT and maximum of 0.781 for GRE) 

and 0.739 for HLA-B (minimum of 0.714 for SWE and maximum of 0.750 for MEX) and the 

number of HLA-I alleles ranged from 4 to 14 for HLA-A (median=7) and from 6 to 26 for 

HLA-B (median=13, Table S1). 

To investigate whether different HLA-I alleles among populations could be associated with 

epidemiologic features (retrieved from the Worldometer database, see methods), we sorted 

countries in ascending order regarding these data (Supplementary File 1). The USA was the 

country with the highest number of cases, followed by RUS, ESP, GBR, BRA, and ITA, while 

the countries with the lowest number of cases were SEN, CZE, TUN, KOR, and BUL (Figure 

S2A). However, when we evaluate cases per million inhabitants, IRL was the leading country 

in the rank, followed by SGP, USA, ITA, SWE, and POR while BRA, THA, CHN, INA, TUN, 

and JPN were the countries with the lowest ratios (Figure S2B). The USA also led the rank in 

the number of COVID-19 deaths, followed by GBR, ITA, FRA, BRA, and DEU while the 

countries with the lowest number of deaths were OMA, SGP, SEN, GHA, and TUN (Figure 

S2C). When analyzing the number of deaths per million inhabitants, ESP was the country with 

the highest ratio followed by ITA, GBR, FRA, SWE, and HOL while THA, GHA, SEN, CHN, 

MAL, and INA were the countries with the lowest ratios (Figure S2D). The USA also had the 

highest number of serious cases followed by BRA, FRA, GBR, DEU, and ESP, while the 

countries with the lowest number of serious cases were MAR, UAE, TUN, GHA, SEN, and 

ARM (Figure S2E). On the other hand, the USA also led in the number of recovered, followed 

by ESP, ITA, BRA, CHN, and RUS while BUL, TUN, SGP, SEN, ROM, and GRE were the 

countries with the lowest numbers of recovered (Figure S2F).  

We chose to use death per million inhabitants as the main epidemiological metric as it is the 

one that varies least depending on the testing capacity or policy adopted by the country studied 

(18). To evaluate if the distribution of HLA allele frequencies among populations could explain 

death per million inhabitants, we performed an unsupervised hierarchical clustering. We used 

HLA-A and HLA-B frequencies for each particular country, that were divided into quartiles 
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according to the epidemiological parameter (Figure 1). We observed, as expected, that 

geographic location strongly influences the clustering since cluster 1 is composed exclusively 

by African countries (pink, RSA, GHA and SEN), corresponding to 60% of all African 

countries analyzed, with a Jaccard similarity coefficient (JSC) of 0.91, while Cluster 2, also 

homogeneous regarding the geographic composition, is composed only of Asian countries 

(yellow, INA, MAL, THA, CHN, and SGP) corresponding to 41% of all Asian countries 

evaluated in this study, with a JSC of 0.93 (Figure 1). However, we observed that all countries 

comprising clusters 1 and 2 belong to the first quartile (Q1, green, less number of deaths per 

million). Therefore, although the HLA frequency clustering recaps the country's continental 

distribution, it also appears to separate the first quartile apart from the remaining groups. The 

most prevalent HLA-I alleles in Q1 are HLA-A*24:02, HLA-A*11:01, HLA-B*40:01, and 

HLA-A*23:01 while in Q4 (red, more number of deaths per million) are HLA-A*02:01, HLA-

A*01:01, HLA-A*03:01, and HLA-B*07:02. Using a Principal Component Analysis (PCA), 

the same result was observed: despite the clustering by continents, countries belonging to the 

first quartile (green) are separated from those of the other quartiles (Figure S3). This result 

highlights the contribution of HLA alleles to segregate distinct responses to the COVID-19 

infection among countries. We reasoned that describing the binding spectra of each allele for 

peptides related to SARS-CoV-2 could further contribute to a better understanding of the 

epidemiologic data. Therefore, we next sought to perform a thorough characterization of 

SARS-CoV-2 derived peptide binding prediction to HLA-I alleles. 

HLA-I binding of SARS-CoV-2-derived peptides among different populations 

In order to study the binding of SARS-CoV-2 peptides to different HLA alleles, we predicted 

the affinities of HLA alleles (33 HLA-A and 73 HLA-B, Supplementary File 2) for each 

potential SARS-CoV-2 derived peptide using the netMHCpan4 tool (19). Only peptides that 

met the criteria of scoring high probabilities of being transported by TAP, and processed by 

the proteasome (predicted both by netCTLpan (20)) were considered as the final dataset (Fig 

S4A-B). The 38,464 predicted 8-11 mer unique peptides were derived from the complete 

genome of the SARS-CoV-2. Of those, 18,799 unique peptides passed the TAP transport score, 

12,230 the proteasome cutting, and 10,909 both filters (Fig S4C). Peptides were categorized as 

Strong Binders (SB, %Rank < 0.5), Weak Binders (WB, 0.5 ≤ %Rank < 2), and Non-binder 

(NB, %Rank ≥ 2) based on the %Rank definition by the developers, which accounts for the 

probability of a peptide to bind the HLA given a pool of natural ligands. We confirmed that the 

number of SB peptides increases with the number of HLA-I alleles accordingly for a given 

population by performing a Pearson correlation between these two variables (R=0.95, p-value 

< 0.01, Figure S4D). Even considering that this correlation could be expected, it is important 

to emphasize that the number of SB peptides restricted to a given HLA allele varies greatly and 

shall affect a given population antigen coverage. 

When evaluating the peptides according to its predicted affinity to HLA alleles, a crescent value 

is observed with the decrease in the qualitative classifications according to the program, i.e., 

lower nM affinity for peptides classified as SB (median of 181.1 nM), moderate for WB 

(median of 1,571.4 nM) and higher for NB (median of 29,660.2 nM, Figure S5A). In order to 
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define which group of peptides we should work with, we compared the predicted in silico 

affinities with affinities of viral-derived peptides obtained by experimental assays. The 

aforementioned data was retrieved from the Immune Epitope Database (IEDB). A total of 

49,207 MHC Ligand assays were retrieved following the selection criteria: 38,558 for HLA-A 

and 10,649 for HLA-B, classified by the IEDB according to the results of in vitro assays readout 

into Positive-High (Pos-H, 17,353), Positive-Intermediate (Pos-I, 14,927) or Positive-Low 

(Pos-L, 16,927). The IEDB classifications take into account the information provided in 

deposited papers: peptides categorized into Pos-L/-I/-H have been grouped according to an 

IC50 threshold. A similar pattern was observed for the experimental affinities which were 

lower for Pos-H peptides, a median of 10.1 nM, and higher for Pos-L peptides, a median of 

1,430 nM (Wilcox, p < 0.0001, Figure S5B). Moreover, we also predicted the binding affinities 

of 18,522 unique peptide/HLA pairs retrieved from the IEDB whose capacities to elicit a TCR 

response were tested through 34,872 T cell assays. They are qualitatively classified into 

Positive (Pos, 2,705) or Negative (Neg, 15,817) taking into account in vitro assays such as 

ELISPOT and chromium release. A significant difference in the affinities was observed when 

comparing Pos peptides affinities assays (median of 49.1 nM) with Neg (median of 188.0 nM) 

ones (Wilcox, p < 0.0001, Figure S5C). It is important to mention that a difference in affinity 

(Wilcoxon, p < 0.0001) was observed for the predicted data (Figure S5D) but no overall 

difference in binding affinities was observed for IEDB HLA-A and B alleles (Figure S5E). 

Half of the HLA alleles assessed in the in vitro binding assays selected from the IEDB are 

shared by the HLAs used for predictions in our analysis. In summary, the predicted affinities 

of peptides classified into strong, weak or no binder are comparable to the experimental 

affinities from ligand assays at the IEDB, showing that SB peptides have predicted affinities 

equivalent to the vast majority of peptides that were proven to bind the HLA experimentally 

(Pos-H and Pos-I - Figures S5A-B), potentially eliciting an immune response. Therefore, we 

decided to work only with the SB peptides in the downstream analyses, totalizing 3,723 

peptides that passed both TAP and proteasome filtering (Fig S4C).  

Considering all SB peptides predicted to bind to the 106 analyzed alleles, none of them matched 

with 100% identity the sequences found in the human proteome using BLAST search. Different 

HLA alleles can bind to different peptide repertoires, which is defined by the amino acids that 

compose the cleft. Alleles that bind to a large repertoire of peptides are called generalists and 

those that bind to a smaller repertoire of peptides can be called specialists (21). The HLA-A 

alleles with the capacity to present the higher number of SB peptides are HLA-A*43:01 (302 

unique peptides), HLA-A*01:01 (300 unique peptides), and HLA-A*26:01 (296 unique 

peptides) in contrast to HLA-A*31:01 (84 unique peptides), which is predicted to present the 

lowest number of SB peptides (Figure 2A). Searching for specific virus proteins and regions 

within the virus ligandome, we analyzed the set of potential HLA-restricted peptides per 

population and open reading frames (ORF). The number of SB peptides potentially presented 

by each allele varies greatly depending on the virus ORF considered, and it is proportional to 

ORF sizes (Figures 2B, Table S2). Some SB peptides were predicted to be presented by 

multiple HLA alleles and, as so, evidentiate the discrepancy between the number of 

peptide:HLA pairs and the number of unique SB peptides derived from viral ORFs (Table S2). 

For instance, HLA-A*01:01 is predicted to present the highest number of SB peptides (43 
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unique peptides) derived from protein S (1,274 amino acids - aa) and a moderate number of SB 

peptides (10 unique peptides) derived from the protein N (420 aa, Figure 2B). Two of the top 

five most promiscuous (generalist) HLA-A regarding SARS-CoV-2 are country-specific 

(HLA-A*43:01 from RSA and HLA-A*01:03 from UAE). The most generalist HLA-A (HLA-

A*01:01) is found in low frequency in countries that comprise the first quartile (median AF = 

0.000, mean=0.0252) and high allele frequency in countries from the fourth quartile (median 

AF = 0.130, mean=0.148). Regarding the more SARS-CoV-2 fastidious (specialists) HLA-A, 

HLA-A*33:03 is present in countries that comprise the first quartile (median AF = 0.021, 

mean=0.0468), but is absent in countries belonging to the fourth quartile. The globally common 

HLA-A*02:01 is predicted to bind a low number of SB peptides from protein S and N when 

compared to the other alleles. On the other hand, it is one of the alleles with the higher number 

of SB peptides from the ORF1ab region, thus being a specialist allele for this region. In 

contrast, the HLA-A*11:01, A*23:01 and A*24:02 alleles (more prevalent in the countries 

belonging to the first quartile) seem to act as specialized alleles for the S regions, having the 

potential to present a greater number of peptides from this region than from the N region 

(Figure 2B). As for HLA-A, the predicted binding spectrum for HLA-B varies among alleles 

in which HLA-B*15:21, HLA-B*15:15 and HLA-B*35:43 possess the higher number of SB 

peptides (286, 269 and 268 unique peptides, respectively), and HLA-B*45:01 (45 unique 

peptides) the lowest (Figure 3A). The globally commons HLA-B*07:02 and HLA-B*44:02 are 

predicted to bind low numbers of SB peptides from protein S and N. In contrast, the HLA-

B*15:02 (only found in countries belonging to the first quartile) is predicted to bind high 

numbers of SB proteins from the S region while having the potential to present low numbers 

of peptides from N protein. (Figure 3B). 

Distinct patterns of estimated antigen coverage among populations are observed within 

different ORFs 

The use of predicted HLA-restricted epitopes capable of binding with substantial affinity to the 

HLA alleles provides a means of addressing population coverage related to HLA 

polymorphism and different HLA binding specificities. We, therefore, calculated the 

percentage of individuals from each population predicted to respond to class I SARS-CoV-2 

derived SB epitope set on the basis of HLA genotypic frequencies and HLA binding data, using 

the population coverage calculation tool available through the IEDB. This allowed us to obtain 

the number of Epitopes/HLA combinations that cover each population at a given rate (Table 

S3, Supplementary File 3). 

We observed an elevated cumulative coverage throughout the countries, spanning from 466.29 

in KOR to 565.58 in OMA, with an average of 527.61±24.26, when considering the minimum 

number of epitopes/HLA combinations predicted to cover 90% of each population. Despite 

that, significant differences were spotted when evaluating the Area Under the Curves - AUC 

for distinct populations. The AUC reflects the population coverage by accounting the 

percentage of individuals capable of presenting an epitope and the number of epitopes/HLA 

combinations for a given population. By evaluating the estimated antigen coverage we 

observed distinct patterns across proteins and divergent coverage when comparing distinct 
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populations within proteins (Figure 4, Supplementary File 3). Some populations were better 

covered for specific portions of the virus, e.g., BRA (AUC=1,438.20) and ITA 

(AUC=1,408.04) show a high AUC for the protein N (Figure 4D) while others show higher 

coverages for both N and S proteins, e.g., RSA (AUC=1,614.47 for N, AUC=6,248.83 for S) 

and ISR (AUC=1431.51 for N, AUC=6,416.80 for S) (Figure 4D, 4F). In contrast, some 

populations show a high coverage for N protein, e.g. IRL (AUC=1,428.40) and a lower 

(AUC=5,392.90) for S protein (Figure 4F). Importantly, the minimum and maximum AUC 

values differ according to each protein as they have a different number of Epitope/HLA 

combinations (Figure S6).  

The antigenic coverage within populations can vary since a population is composed of 

individuals with different ethnic backgrounds. To overcome this limitation, we selected HLA 

allele from representative studies such as cord blood banks instead of anthropological ones, to 

investigate antigenic coverage differences regardless of geographical localization, but rather 

associated with distinct ethnical groups in a given population. Therefore, we performed a 

population coverage analysis using the HLA alleles described for the four major ethnic 

backgrounds of the USA: Caucasian, African American, Asian, and Hispanic (Supplementary 

File 4). The estimated coverage varies among ethnic backgrounds depending on the virus 

protein analyzed (Figure S7) in which the African American background has less coverage for 

E, S, M, and ORF1ab proteins, and high coverage for N protein. 

Epidemiological parameters are associated with antigen coverage for specific ORFs 

Aiming to understand the relationship between estimated population antigen coverage and 

COVID-19 manifestations in different populations, we explored associations between the AUC 

of each country within different ORFs and epidemiological data. We performed Spearman 

correlations between the epidemiological parameters associated with the COVID-19 pandemic 

and the AUC of the 5 proteins analyzed and the entire SARS-CoV-2 genome. As explained 

before, we have chosen the number of deaths per million inhabitants as the main metric (Figure 

5), since we believe it may be a more consistent measure, because they are less likely to vary 

with testing capacity or political strategy. We observed a strong positive correlation between 

the calculated coverage of each population (represented by the AUCs) and the number of deaths 

per million inhabitants considering a set with all potential epitopes derived from the SARS-

CoV-2 for E (p=0.014, R=0.4, CI=0.0423 to 0.6995) and N (p=0.0028, R=0.48, CI=0.1518 to 

0.7036) proteins. Consistently, other significant correlations were also found when considering 

different epidemiological parameters that are depicted in Figures S8-11. 

Since we observed inverse correlations for S (borderline p-value) and N coverage associated 

with the number of deaths per million inhabitants, and because we have observed high HLAs 

allele frequencies predicted to mainly present S derived peptides in countries from the first 

quartile, whereas HLAs that potentially present a high number of N derived peptides were 

enriched in the fourth quartile, we sought to investigate whether distinct patterns of HLA 

restriction for S and N-derived peptides could better be associated with deaths. In addition, a 

given population may have an elevated AUC coverage for both S and N proteins, only for S or 

only for N proteins, and with the ratio, we evaluate the spectrum of S and N derived peptides 
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that simultaneously bind to a collection of HLA alleles. For this reason, we investigated if the 

ratio between the coverage for S/N proteins is more associated with the number of deaths rather 

than the coverage of each protein separately. In fact, a stronger association with disease 

outcome was found when evaluating the ratio between the population's AUC predicted for S 

and N proteins together versus the number of deaths per million inhabitants (R=-0.62, p=4.4e-

5, CI=-0.89 to -0.3373, Spearman correlation, Figure 6). Of note, the AUC ratio for S and N 

estimated coverage was 3.84 for African Americans, 4.08 for Caucasians, 4.55 for Hispanics, 

and 5.15 for Asians. These AUC ratios fall within the limits of previous analysis (3.78 to 5.84, 

Figure 6) and, although they may indicate a higher number of deaths for people of African 

American background, the lack of stratified epidemiological data hampered further analysis 

correlating the ethical group’s coverage with deaths. Therefore, more studies are necessary to 

confirm these results. Overall, these results highlight the opposite roles associated with 

potential recognition and presentation of peptides derived from these two SARS-CoV-2 

proteins and the COVID-19's outcome.  

Interested in better exploring this recognition pattern, we ranked HLA alleles based on the 

frequency of SB peptides derived from S or N proteins. First, we divided the number of 

potential binders individually from each protein by their respective lengths as in Table S2 to 

account for the difference in protein sizes, since bigger proteins tend to generate greater 

numbers of peptides. Next, for each allele, the normalized frequency of SB peptides in the S 

protein was divided by the respective normalized frequency in N protein. The majority of HLA-

A and B alleles have a ratio superior to 1 meaning that they tend to bind to more SB peptides 

derived from S than to N derived protein (Figure S12). The alleles with the highest ratios are 

HLA-A*24:02 (9.54), HLA-A*23:01 (8.87), and HLA-B*18:01 (6.25) in contrast to HLA-

A*30:01 (0.49) and HLA-B*07:02 (0.32), showing the lowest ratios. HLA-A*24:02 has an 

elevated AF in JPN (0.3790) and in many other countries belonging to the first (Q1) and second 

quartiles (Q2) of deaths per million (Figure 1). On the other hand, low ratio HLA alleles have 

a higher AF in GHA (0.1107 for HLA-A30:01) and in SWE (0.186 for HLA-B07:02), the latter 

possessing a higher number of deaths per million than the average. Moreover, HLA-B*07:02 

which has the lowest ratio for HLA-B alleles has an elevated AF in several countries of the 4th 

quartile (Figure S12, Figure 1) 

Until this point, we have focused on representing the majority of each population by using an 

AF of 0.75 that is estimated to represent about 93,75% of the individuals in a given population 

(PF = 1-(1-AF)2) (22). Interestingly, when elevating the HLA allele frequency threshold to 0.9, 

which is estimated to represent 99% of the individuals, and reperforming the analysis with the 

same parameters as described for 0.75, a different set of events is observed (Figure S13). To 

reach the 0.9 threshold, 43 HLA-A and 97 HLA-B alleles were included in which a minimum 

of 7 HLA-A was used for AUT, JPN and SWE, and 10 HLA-B for SWE, and a maximum of 

21 HLA-A and 41 HLA-B alleles were used, both in BRA. The median allele frequency for 

HLA-A was 0.8997 (0.888-0.910) and 0.8949 (0.8820-0.900) for HLA-B (Table S1). For this 

analysis, two countries (TUN and THA) that haven’t reached the cutoff of +/- 0.02 deviation 

for the 0.90 threshold were excluded. The correlations between AUC population coverage and 

deaths per million inhabitants were lost except for E protein (Figure S13B). Despite the absence 
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of significant correlations between deaths per million inhabitants and AUC coverage for S or 

N protein, the inverse correlation between AUC ratio for S/N and the number of deaths per 

million inhabitants (R=-0.43, p=0.01, CI=-0.7587 to -0.0231) is maintained when considering 

this new threshold (Figure S13G). 

To understand the influence of the minor alleles included in the new dataset generated when 

considering the 0.90 threshold, we performed a new population coverage analysis considering 

only alleles that were added for this last threshold and are absent from the previous analysis 

using a threshold of 0.75. Surprisingly, a significant positive Spearman correlation between 

AUC coverage and deaths per million inhabitants was observed for the S protein (R=0.36, 

p=0.036, CI=0.0327 to 0.5965) and a negative correlation (R=-0.36, p=0.033, CI=-0.6678 to -

0.0105) for the E protein (Figure S14). Also in contrast to previous findings, a significant 

positive correlation (R=0.61, p=0.00011, CI=0.3509 to 0.7843) was observed between the 

AUC ratio for S/N and deaths per million inhabitants (Figure S14G) despite no evident 

correlation with N protein (Figure S14D). 

Potential peptides for vaccine development 

We highlighted the SARS-CoV-2 derived SB peptides generated within each ORF (left Y-axis, 

Figure 7A) or protein, as well as the number of HLA-I alleles potentially presenting them (right 

Y-axis, Figure 7A). We observed regions capable of generating an elevated number of unique 

SB peptides (black bars - top) in comparison to others and the ability of each of these peptides 

to bind to several HLA-I alleles (blue dots - bottom) which can help to select vaccine 

candidates. We found 24 unique SB peptides falling within the receptor-binding motif and 3 

SB peptides derived from the 4 amino acid insertion (23) in the S1/S2 cleavage site (highlighted 

in purple in the Figure 7B). These 3 SB peptides vary in the range of affinities and also the 

number of HLA binders (Table 1). It is also important to note that a 38 amino acid region at 

the end of S protein (FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKN) does not 

generate any potential HLA-I A or B restricted peptide considering the 140 HLAs analyzed. 

Aiming to identify candidate peptides to vaccine development, we listed peptides potentially 

presented by HLA alleles that possess high allele frequencies in countries belonging to Q1 

(Figure S15) including but not limited to HLA-A*24:02, HLA-A*23:01, HLA-B*15:02, and 

HLA-B*58:01 while avoiding alleles prevalent in Q3 and Q4. It is important to mention that, 

as stated previously, an unfavorable outcome was observed for countries with high AF for 

HLA-A*02:01. Therefore, aiming a vaccine design based on peptides predicted to be presented 

by this allele may prove ineffective in some populations. A total of 126 candidate peptides were 

identified considering 85 HLA alleles (Figure S15, Supplementary File 5). Six peptides were 

selected to estimate the global populational coverage considering all deposited populations on 

IEDB. A coverage of 21.09% is achieved with one peptide, 42.78% with two peptides, and up 

to 79.99% with 6 peptides (Table 2). 
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Altogether, these results indicate a distinct pattern of virus recognition and response among 

populations. HLA allele profiles and predicted antigen coverage for specific ORFs show a 

strong correlation with mortality by COVID-19. These results highlight the relevance of 

distinct responses to proteins S and N among different populations to COVID-19 pandemic 

evolution.  
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Discussion 

In this work, we investigated the distinct susceptibility associated with HLA diversity profiles 

among populations facing the SARS-CoV-2. We applied multiple in silico approaches to 

predict the population’s response to the SARS-CoV-2 infection and correlated these findings 

with the number of deaths per million and other epidemiological parameters. We suggest that 

a positive country outcome relies partially on the ability of the majority of a population to 

present peptides derived from the S protein whilst avoiding those derived from the N protein, 

as it correlates with an unfavorable outcome. 

Numerous factors such as political rules implementation, adherence to social distancing 

measures, health system structures, and population density can affect the spread of SARS-CoV-

2 and impact COVID-19 outcome. Besides, underreporting and testing policies vary among 

countries and also influence the epidemiological reports (i.e.: INA, MEX, SEN, JPN, MAR 

TUN, BRA, COL, and THA performed tests in less than 1% of the population). Absolute 

epidemiological parameters such as total number of cases, serious/critical cases, deaths or 

recoveries are biased by the number of cases or population size. In this sense, when using the 

number of deaths per number of cases, the countries’ testing policy can directly interfere with 

the data because countries with an open testing policy tend to have fewer serious cases and 

deaths than countries which test only hospitalized or risk group individuals. Therefore, we 

choose to use deaths per million inhabitants as the main metric since it also has been used as a 

proxy for disease outcome (24,25). In addition, other factors like blood type and ethnicity 

(26,27), countries BCG vaccination policy (24), or the percentage of obese people (28) could 

influence mortality, affecting the relationship between deaths per million and Spike or 

Nucleocapsid proteins AUC coverage. In fact, some countries (e.g.: ITA, ESP, FRA, GBR, 

USA, and HOL) showed higher deaths per million than expected by the relation between AUC 

ratio of S/N and deaths per million inhabitants. Considering that, we included as many countries 

as possible in the analysis to minimize these discrepancies rather than normalize for the 

particularities of each population. 

Our analyses depict the potential population's patterns of SARS-CoV-2 recognition of class I 

HLA restricted peptides. The HLA alleles repository allowed us to carefully select populations 

prioritizing blood donor registry rather than anthropology studies to better represent a country. 

Since the most relevant genes for CTL responses are the HLA-A and B and considering that 

HLA-C data is not available for several populations, we have not accounted for HLA-C (29). 

It also allowed us to characterize in detail the potential responses associated with major and 

minor alleles. Remarkably, HLA-B*15:03, the allele predicted to present more peptides in 

previous works (12,13), ranks 12th out of 76 HLA-B alleles analyzed. As the methodology and 

metrics used in these previous works differ from ours, different results are expected.  

HLA systems have a strong linkage disequilibrium (LD) that can result in conserved multi-

locus haplotypes, mostly because the alleles are arranged in adjacent loci in a specific region 

of the chromosome, where the distance between them, among other factors, can affect the 

linkage disequilibrium (30), and, consequently, their random inheritance in a given population. 

To correct for LD, we would need to have access to full haplotypes frequencies instead of allele 
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frequencies, which is not available or incomplete for many countries impacting the size of the 

study. Despite that, although our study does not consider the LD of the HLA system, we believe 

that using high AF thresholds, as we did, minimize the need for the correction for LD. 

Furthermore, the impact of LD on the calculation of population coverage by IEDB has been 

considered negligible (14). 

HLA binding predictions have become a useful and important method for selecting promising 

peptides for vaccination. Moreover, by comparing the predicted binding affinities with the 

affinities verified through assays deposited at the IEDB, we showed that SB peptides, the focus 

of this study, have comparable affinities to the peptides experimentally defined as high and 

intermediate binders. In addition, their binding affinities are in the range of those peptides 

known to trigger a TCR response as detected by T cell-based assays as opposed to WB peptides. 

Previous works have highlighted the importance of population coverage studies to uncover 

candidate peptides for vaccination. The inverse correlation between coverage for proteins S 

and N and deaths per million inhabitants corroborates a study showing that CD8 T lymphocytes 

from convalescent patients display more reactive CD8+ T cells for S than for the N protein 

(10), highlighting its immunogenic role. This same report indicates that several immunogenic 

HLA-I restricted peptides are derived from S protein, in line with our findings that S peptide 

coverage has a positive impact on COVID-19 outcome. These results suggest CD8 mediated 

anti S-derived peptide responses could be one of the mechanisms associated with more 

favorable COVID-19 outcomes.  

Features of SARS-CoV-2 S proteins are responsible for unique characteristics of this new virus. 

A recent report indicated differences in the protein S sequence regarding the receptor-binding 

motif and a four amino acid insertion when comparing with bat and previous strains (23). We 

found unique SB peptides falling within the receptor-binding motif sequence, including the 4 

amino acid insertion in the S1/S2 cleavage site. This sequence is considered to be related to the 

high virulence of SARS-CoV-2 (23) and HLA-I restricted peptides derived from this region 

could help mounting differential immune responses between SARS-CoV-2 and other 

coronaviruses. On the other hand, the lack of potential peptides derived from the 

FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKN region is somehow intriguing 

and exploiting functional features of this segment and evolutive forces that could have shaped 

its low immunogenicity can shed light over the relevance of these findings. 

The scarceness of N protein derived immunogenic HLA-I restricted peptides reported by 

Grifoni and colleagues (2020) resembles the low proportion of N protein-derived peptides 

found in our analysis. This reinforces the concept that N derived peptides may not be involved 

in functional and productive anti-SARS-CoV-2 responses since our correlation analyses 

indicate that populations with greater N coverage have higher numbers of deaths per million 

inhabitants. Protein N is highly expressed and has a high immunogenic potential so that 

antibodies against it are the first found in the serum of infected patients (31). Since the 

homology between N proteins of SARS-CoV-2 and SARS-CoV is over 90% (15) and the 

SARS-CoV-2 peak viral load is earlier (32), the immunogenicity of SARS-CoV-2 protein N is 

believed to be similar to that of SARS-CoV with an even faster response. However, when 
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investigating T lymphocytes from convalescent patients, a lower frequency of targets 

associated with protein N was observed (10), indicating that these peptides are either less 

immunogenic or could lead to the depletion of reacting cells by some T cell hyperactivation 

mechanism. If this is the case, N derived peptide-based hyperactivation could be related to 

cytokine storm, a process largely associated with the most severe cases of COVID-19 (4,33,34). 

The number of deaths per million inhabitants showed a significant positive correlation when 

correlated with N coverage, reinforcing the possibility that N peptides lead to a more aggressive 

disease. This dysregulation of the immune system has been shown to occur in other viral 

infections and could be dependent on CD8 T lymphocytes (35).  

Assuming that, like rhesus monkeys, individuals previously infected with SARS-CoV-2 are 

protected from reinfection, herd immunity becomes possible for COVID-19 (36). Herd 

immunity consists of individuals being protected from infection by being surrounded by 

immune non-infected individuals, therefore unable to transmit the disease (37). Previous 

studies have shown that the average number of SARS-CoV-2 transmission caused by a single 

infectious individual (R0) is from 2 to 6 (38,39), so assuming a R0 of 4, the herd immunity 

would be achieved with 75% immune individuals. By using a threshold of 0.75 for cumulative 

allele frequencies for HLA-A and B within each population, we estimate that 93.75% of the 

country's population is covered by our analysis. In this context, vaccine strategies based on S 

derived peptides would induce protective responses to the infection in the majority of the 

population that carry more frequent HLAs. The opposite would be expected regarding the 

minority, carrying rare HLAs, that display a positive correlation between S coverage and the 

number of deaths. On the other hand, the same rationale may apply to N and E proteins which 

correlate positively with the number of deaths for the major HLA alleles but display an inverse 

tendency when only the minor alleles are accounted for. In summary, an elevated S/N coverage 

for the most frequent HLA alleles showed protective effects whilst lower S/N coverage ratios 

were protective for the minor HLA alleles within populations. It is important to mention, 

though, that reaching herd immunity through vaccination for COVID-19 can be a hard task, 

probably requiring revaccination, since the immune response to SARS-CoV-2 may be lost 

rapidly (40) and people might thereafter be susceptible to reinfection with the virus.  

A country's population is normally composed of multi-ethnic groups and backgrounds, which 

could undergo distinct susceptibilities to SARS-CoV-2 infection. In addition, there is an 

increasing debate on whether some ethnic groups are being disproportionately affected by 

COVID-19, which is frequently enhanced by distinct access to the health system and social 

inequities (27,41,42). Our attempt to investigate antigenic coverage within ethnic groups of the 

same country aimed to check differences in their coverage patterns, regardless of geographical 

localization. Overall, our results suggest that differences within ethnic backgrounds may exist 

and could be associated with a better or worse susceptibility for these groups. However, more 

studies are necessary to confirm this pattern, and also to explore these discrepancies in other 

countries since the ethnic background should differ from country to country. The results also 

highlight the need for distinct political strategies to deal with the pandemic, which differs 

among countries. We were able to identify two HLA alleles that are highly prevalent in 

countries showing less number of deaths and may have protective effects regarding the immune 
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response to SARS-CoV-2. The vast majority of peptides derived from protein S potentially 

presented by those two alleles were absent from supertype HLAs such as HLA-A*01:01, 

A*02:01, A*03:01, B*15:01, and others. In fact, the most prominent worldwide allele HLA-

A*02:01 potentially presents peptides from the ORF1ab region. A recent study has shown that 

this region is not immunodominant in CD8-mediated immune response when challenged with 

SARS-CoV-2 Epitope MegaPool in convalescent donors (10). HLA-A*24:02 is highly 

frequent in many populations and the predictions made for this allele could help drive vaccine 

development. 

Finally, we highlighted some important viral regions predicted to be presented by a vast number 

of HLA alleles which can help to understand the response to viral peptides and peptide vaccine 

design. More importantly, we suggest that peptide-based vaccination strategies should rely 

mainly on the S protein due to its negative correlation with the number of deaths per million 

inhabitants and its role in the infection. On the other hand, we present a cautionary note for 

using the N protein since it showed a strong positive correlation with the number of deaths per 

million when considering individuals carrying frequent alleles. Last, we identified potential 

antigens derived from the 4 amino acid insertion of SARS-CoV-2 that is absent from previous 

strains and could be used for studies based on T cell response, as it would allow differentiation 

from previous coronavirus infections and importantly, serve as a guide for SARS-CoV-2 

specific vaccine development. To our knowledge, this is the first work to focus on antigen 

population coverage associating with COVID-19 outcome. 
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Material and Methods 

Epidemiological data 

The epidemiological data used in this analysis (number of total cases, total deaths, total 

recovered, serious critical cases, total cases per 1 million of inhabitants and total deaths per 1 

million inhabitants) were retrieved on the Worldometer database 

(www.worldometers.info/coronavirus, accessed at 01:18PM, May 17, 2020). This database 

collects data from official reports, directly from Government's communication channels or 

indirectly, through local media sources when deemed reliable. The 50 countries with the 

highest death per million inhabitants and more than 1 thousand total cases were evaluated. 

HLA-I gathering 

Human Leukocyte Antigen (HLA) I alleles for A and B genes with at least two fields and its 

frequencies in the selected populations were retrieved from the Allele Frequency Net Database 

(43) between 23/04/2020 and 07/05/2020. Larger datasets that were not part of anthropological 

studies nor minority ethnic groups, and with at least 50 individuals were preferred 

(Supplementary File 2). The alleles were ordered from the most frequent to the least frequent 

and the allele frequencies were summed to obtain a cumulative allele frequency of 0.75 or 0.90 

separately for HLA-A and B. The values used were the closest to the threshold (equal, above 

or below) considering the difference between the cumulative allele frequency and the threshold 

itself. Countries that haven’t reached these thresholds with a difference inferior to 0.04 for 

AF=0.75 and 0.02 for AF=0.9 were excluded. The minor alleles (AF=0.15) are the alleles 

exclusive from the dataset generated when using 0.90 as a threshold. Allele frequencies with 

resolution greater than two fields were combined, e.g. for BRA: B*07:02:01 and B*07:02:03 

became B*07:02. The HLA alleles for 4 ethnic backgrounds (African American, Caucasian, 

Hispanic, and Asian) were obtained for the USA population and analyzed as previously 

described. 

Accessing experimental binding affinities 

We searched at the Immune Epitope Database (IEDB) on 18/05/2020 for MHC Ligand assays 

that matched the parameters “Linear Epitope”, Organism “Virus”, positive assays only, MHC 

Ligand Assays, MHC Restriction: “MHC Class I”, HLA-A and HLA-B, Host: “Humans”. 

Assays with NA values for “Quantitative.measurement” and entries with “>”, “≤” or “<” in 

"Measurement.Inequality" were excluded. Also, we retrieved T cell assays using the same 

parameters except for the positive assays only. 

 

Binding predictions 

The translated proteome from SARS-CoV-2 genome version BetaCoV_Wuhan_IPBCAMS-

WH-01_2019 was downloaded on 23/03/2020 from the NCBI repository 

(https://www.ncbi.nlm.nih.gov/nuccore/MT019529). Binding predictions were performed 
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using netMHCpan4 (19) with peptide lengths from 8 to 11 for the entire viral genome. We used 

blastp v2.9.0 to eliminate peptides that matched protein sequences from the Ensembl human 

genome GRCh38 with 100% of identity and same query length. Next, we performed 

predictions with netCTLpan to also remove peptides with a TAP score smaller than 0 and a 

proteasome cleavage score smaller than 0.5 to assure that our analysis only includes peptides 

with a high probability of being processed by proteasome and TAP. Only strong binder peptides 

(%Rank <0.5) were kept for further analysis. 

Population Coverage 

We used the tool described by Bui and collaborators (14) available at IEDB 

(http://tools.iedb.org/population/) to calculate the population coverages. The inputs used were 

the same allele frequencies for the binding predictions (Table/Supp file) and the Strong Binder 

peptides for each HLA-I allele. The analysis was performed using the “Class I separate” option. 

Coverages were calculated for the entire SARS-CoV-2, and separately for S, N, M, E, and 

ORF1ab viral proteins. Area Under the Curve (AUC) was calculated prior to Spearman 

correlations.  

Statistical analysis 

Significant results for correlations were considered when p-value < 0.05. A bootstrap with 1000 

replicates was performed to access the confidence interval for Spearman correlations with 

epidemiological data. We used the complete method and 1-Pearson correlation coefficient as 

the distance to cluster rows and columns of the heatmaps. Cluster stability for heatmaps was 

calculated using Jaccard distancing through bootstrapping using 10,000 replacements and 

cluster method “disthclustCBI”. Spearman correlations were used unless stated otherwise. 

Data analysis 

The analysis was conducted using the R environment version 4.0 and the following packages 

ggpubr v0.2.1, ggplot2 v3.2.1, data.table v1.12.2, gridExtra v2.3, readxl v1.3.1, dplyr v0.8.3, 

tidytext v0.2.3, pheatmap v1.0.12, RColorBrewer v1.1, cowplot v1.0, GenomicRanges v1.31.1, 

IRanges v2.18.1, stats v4.0.2, boot v1.3, ggfortify v0.10 and ggbio v1.32. 
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Figure Legends 

Figure 1. Unsupervised two-dimensional cluster analysis of 37 countries by HLA-A and 

HLA-B Allele frequencies. Each row represents a population, the first column represents the 

deaths per million inhabitants quartiles: Q1 = green (lower than 5); Q2 = yellow (5 to 20); Q3 

= orange (21 to 85); Q4 = red (greater than 85). The other columns represent HLA alleles, 

which frequencies values are represented by the blue scale color bar. The complete method and 

1-Pearson correlation coefficient as distance were used to cluster rows and columns. 

Figure 2. Number of unique Strong Binder peptides for the 33 analyzed HLA-A alleles. (A) 

Global view of the predicted binding spectra for HLA-A considering the entire SARS-CoV-2 

genome or (B) depicted by ORF1ab, Envelope (E), Membrane(M), Nucleocapsid (N) or Spike 

(S) proteins. Strong Binder peptides were selected using a %Rank cut-off of 0.5%, which is 

based on the likelihood of this peptide being presented when compared to a pool of natural 

ligands. HLA binding predictions performed by netMHCpan were crossed with TAP and 

proteasome predictions performed by netCTLpan in order to get a more reliable set of peptides. 

Importantly, the same peptide can be predicted to be presented by more than one HLA. 

Figure 3. Number of unique Strong Binder peptides for the 76 analyzed HLA-B alleles. (A) 

Global view of the predicted binding spectra for HLA-A considering the entire SARS-CoV-2 

genome or (B) depicted by ORF1ab, Envelope (E), Membrane(M), Nucleocapsid (N) or Spike 

(S) proteins. Strong Binder peptides were selected using a %Rank cut-off of 0.5%, which is 

based on the likelihood of this peptide being presented when compared to a pool of natural 

ligands. HLA binding predictions performed by netMHCpan were crossed with TAP and 

proteasome predictions performed by netCTLpan in order to get a more reliable set of peptides. 

Importantly, the same peptide can be predicted to be presented by more than one HLA. 

Figure 4. Population coverage for SB peptides derived from SARS-CoV-2 according to the 

HLA-I set of this study. (A) Cumulative population coverage considering the number of 

possible SARS-CoV-2 derived epitope-HLA allele combinations as a function of the fraction 

of each population (%). (B-F) Same as in (A) but for SB peptides derived from specific viral 

proteins. Each line represents a population and they were colored according to their AUC: the 

top six higher AUCs are in light blue, the top six lower are in red, and the remaining curves are 

black. The abbreviations are alphabetically ordered in the legends, not sorted by AUC. E, 

Envelope; M, Membrane; N, Nucleocapsid; S, Spike protein. 

Figure 5. Correlations between SARS-CoV-2 derived SB peptides coverage of each population 

and COVID-19 outcome. Spearman correlations between AUC calculated from the population 

coverage considering the entire SARS-CoV-2 genome (A), Envelope (B), Membrane (C), 

Nucleocapsid (D), ORF1ab (E) or Spike protein (F) derived peptides and deaths per million 

inhabitants. For this analysis, a threshold of 0.75 for the allele frequency was considered. The 

confidence interval shown was calculated using bootstrap with 1000 replacements. 

Figure 6. Proteins S and N potentially associated with opposite responses associated with 

COVID-19. Spearman correlation between the S/N AUC ratio and deaths per million 
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inhabitants. Colors represent countries with a higher (red) or lower (blue) number of deaths. 

The confidence interval shown was calculated using bootstrap with 1000 replacements. 

Figure 7. Landscape of SARS-CoV-2-derived SB peptides considering the AF threshold of 

0.90. (A) The viral proteins and ORFs are represented by colored rectangles proportional to 

their size. Black bars represent unique SB peptides potentially presented by populations. Blue 

dots represent the number of HLA-I alleles that a given SB peptide binds to. (B) Detail of the 

S protein and its domains and the SB peptides derived from each region. The seven SB peptides 

that contain at least one of the 4-length amino acid insertion are highlighted in purple. Length 

is represented in aa. RBM, Receptor Binding Motif; RBD, Receptor Binding Domain; S1/S2, 

S1/S2 cleavage site; S2’, S2 cleavage site. 
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Table 1. Strong binder peptides including some of the 4 amino acid insertion in protein S, 

which are highlighted in bold. 

Peptide Predicted Aff(nM) Number of HLA 

binders 

Start (bp) End (bp) 

RARSVASQSI 129.55 (55.2-203.9) 2 683 692 

ARSVASQSI 117.1 1 684 692 

RRARSVASQSI 227.3 1 682 692 

 

Table 2. Global population coverage analysis based on the allele frequencies available at the 

Immune Epitope Database. 

Peptides 

Projected 

population 

coverage 

Average number of epitope 

hits / HLA combinations 

recognized by the 

population 

Minimum number of 

epitope hits / HLA 

combinations 

recognized by 90% of 

the population 

TRFQTLLAL 21.09% 0.22 0.13 

TRFQTLLAL 

YFPLQSYGF 
42.78% 0.51 0.17 

TRFQTLLAL 

YFPLQSYGF 

SVLNDILSR 

54.12% 0.68 0.22 

TRFQTLLAL 

YFPLQSYGF 

SVLNDILSR 

ATRFASVYAW 

64.66% 0.9 0.28 

TRFQTLLAL 

YFPLQSYGF 

SVLNDILSR 

ATRFASVYAW 

KEIDRLNEV 

75.51% 1.18 0.41 

TRFQTLLAL 

YFPLQSYGF 

SVLNDILSR 

ATRFASVYAW 

KEIDRLNEV 

ESNKKFLPF 

79.99% 1.32 0.5 
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