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ABSTRACT 

IMPORTANCE: Objective and early identification of hospitalized patients, and particularly 

those with novel coronavirus disease 2019 (COVID-19), who may require mechanical ventilation 

is of great importance and may aid in delivering timely treatment. 

 

OBJECTIVE: To develop, externally validate and prospectively test a transparent deep learning 

algorithm for predicting 24 hours in advance the need for mechanical ventilation in hospitalized 

patients and those with COVID-19. 

 

DESIGN: Observational cohort study 

 

SETTING: Two academic medical centers from January 01, 2016 to December 31, 2019 

(Retrospective cohorts) and February 10, 2020 to May 4, 2020 (Prospective cohorts). 

 

PARTICIPANTS: Over 31,000 admissions to the intensive care units (ICUs) at two hospitals. 

Additionally, 777 patients with COVID-19 patients were used for prospective validation. 

Patients who were placed on mechanical ventilation within four hours of their admission were 

excluded. 

 

MAIN OUTCOME(S) and MEASURE(S): Electronic health record (EHR) data were extracted 

on an hourly basis, and a set of 40 features were calculated and passed to an interpretable deep-

learning algorithm to predict the future need for mechanical ventilation 24 hours in advance. 

Additionally, commonly used clinical criteria (based on heart rate, oxygen saturation, respiratory 
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rate, FiO2 and pH) was used to assess future need for mechanical ventilation. Performance of the 

algorithms were evaluated using the area under receiver-operating characteristic curve (AUC), 

sensitivity, specificity and positive predictive value. 

  

RESULTS: After applying exclusion criteria, the external validation cohort included 3,888 

general ICU and 402 COVID-19 patients. The performance of the model (AUC) with a 24-hour 

prediction horizon at the validation site was 0.882 for the general ICU population and 0.918 for 

patients with COVID-19. In comparison, commonly used clinical criteria and the ROX score 

achieved AUCs in the range of 0.773 - 0.782 and 0.768 - 0.810 for the general ICU population 

and patients with COVID-19, respectively. 

 

CONCLUSIONS and RELEVANCE: A generalizable and transparent deep-learning algorithm 

improves on traditional clinical criteria to predict the need for mechanical ventilation in 

hospitalized patients, including those with COVID-19. Such an algorithm may help clinicians 

with optimizing timing of tracheal intubation, better allocation of mechanical ventilation 

resources and staff, and improve patient care. 
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INTRODUCTION 

The novel coronavirus 19 (COVID-19) pandemic has strained global healthcare systems1 and 

supply of  mechanical ventilation2, as approximately 3%–17% of hospitalized patients require 

invasive mechanical ventilation3–6. There is a major concern that the supply of mechanical 

ventilators is insufficient for certain regions7,8. Appropriate triage and identification of patients at 

high risk for respiratory failure may help hospital systems better guide resource allocation and 

cohorting of patients8,9. Additionally, identification of patients who may need intubation allows 

healthcare providers to prepare for endotracheal intubation (e.g. by moving the patient to a 

negative pressure room), thereby preventing an emergent procedure that is inherently high risk 

and aerosol-generating10–13. Related to fears of contamination, many providers decided to 

intubate early on the assumption that patients would eventually need mechanical ventilation so as 

to avoid ‘crash intubation’14.  Others have called for more judicious use of mechanical 

ventilation, and to avoid high positive end-expiratory pressure (PEEP) in poorly recruitable 

lungs, which tends to result in severe hemodynamic impairment and fluid retention15. Both 

patient self-inflicted lung injury and ventilator-associated lung injury could potentially 

exacerbate lung inflammation and biotrauma16. As such, objective and consistent methods to 

determine who and when to intubate17, how to optimize treatment parameters, and when to safely 

extubate patients are needed to lower the long-term complications and mortality rate in this very 

sick patient population.  

Current scoring systems that predict respiratory failure and need for mechanical ventilation are 

limited by small sample size and have low predictive power18. Frontline providers have called 

for urgent development of new warning systems for patients likely to fail conservative 

management and require mechanical ventilation19. Prior studies utilizing deep learning based 
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algorithms have been shown to improve diagnostic accuracy and predict outcomes across a 

variety of clinical scenarios20–25. Such algorithms can interpret and make useful predictions from 

large and dynamic data available in the electronic health record (EHR). There are no reliable 

models to predict the need for mechanical ventilation in patients with COVID-19, therefore we 

sought to utilize dynamic EHR data at hourly resolution to determine if such an approach would 

provide value over traditional methods such as the ROX score or simple regression-based risk 

scores18. In this study, we developed and prospectively validated a deep learning algorithm that 

predicts the need for mechanical ventilation in hospitalized patients, and those with known or 

suspected COVID-19, up to 24 hours in advance of tracheal intubation. 

 

METHODS 

Development and reporting of the prediction model presented in this study was in accordance with 

the checklist provided by the transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD) consortium26. 

 

Patient population and outcome 

An observational multicenter cohort consisting of all adult patients (≥18 years old) admitted to the 

intensive care units (ICUs) between January 2016 and January 15, 2020 at two large urban academic 

health centers, the University of California, San Diego Health (UCSD) and the Massachusetts 

General Hospital (MGH) was considered in this study. Throughout the manuscript we refer to the 

respective hospital systems as the development and the validation sites. Additionally, both datasets 

included prospectively collected validation cohorts, involving known or suspected patients with 

COVID-19 between February 1st and May 4th, 2020 (due to expansion of ICU care to non-traditional 
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floors, the MGH cohort included all hospitalized patients with COVID-19 independent of explicit 

indication of ICU level of care). Institutional review board approval of the study was obtained at both 

sites with a waiver of informed consent (UCSD #191098 and MGH #2013P001024).  

 

Data from both sites were abstracted into a clinical data repository (Epic Clarity; Epic Systems, 

Verona, Wisconsin) and included vital signs, laboratory values, sequential-organ failure assessment 

(SOFA) scores, Charlson comorbidity index scores (CCI) index, demographics, length of stay, and 

outcomes. Specific inputs to the model included 40 clinical variables (34 dynamic and 6 demographic 

variables), which were selected based on their availability in EHRs across the two hospitals 

considered in our study. These included vital signs measurements (heart rate, pulse oximetry, 

temperature, systolic blood pressure, mean arterial pressure, diastolic blood pressure, respiration rate 

and end tidal carbon dioxide), laboratory measurements (bicarbonate, measure of excess bicarbonate, 

fraction of inspired oxygen or FiO2, pH, partial pressure of carbon dioxide from arterial blood, 

oxygen saturation from arterial blood, aspartate transaminase, blood urea nitrogen, alkaline 

phosphatase, calcium, chloride, creatinine, bilirubin direct, serum glucose, lactic acid, magnesium, 

phosphate, potassium, total bilirubin, troponin, hematocrit, hemoglobin, partial thromboplastin time, 

leukocyte count, fibrinogen and platelets) and demographic variables (for more information see 

eTable 1 in the Supplement).  Additionally, for every vital sign and laboratory variable, the slope of 

change since its last measurement (Δ) was included as an additional feature. All variables were 

organized into 1-hour non-overlapping time bins to accommodate different sampling frequencies of 

available data. All the variables with sampling frequencies higher than once every hour were 

uniformly resampled into 1-hour time bins, by taking the median values if multiple measurements 

were available. Variables were updated hourly when new data became available; otherwise, the old 
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values were kept (sample-and-hold interpolation). Mean imputation was used to replace all remaining 

missing values (mainly at the start of each record). To assist in model training, features in the 

development cohort training set first underwent normality transformations and were then 

standardized by subtracting the mean and dividing by the standard deviation. All other datasets were 

normalized using the mean and standard deviation computed from the development cohort training 

set. 

 

Utilization of mechanical ventilation was defined as the first occurrence of simultaneous recording of 

FiO2 and Positive end-expiratory pressure (PEEP). For prediction purposes, we defined our outcome 

of interest as continuous mechanical ventilation for at least 24 hours or mechanical ventilation 

followed by death. Patients who were placed on a mechanical ventilator within three hours of 

admission were excluded since our model makes its first prediction at hour four of ICU admission (or 

hospitalization in the case of MGH COVID cohort); this allows for the collection and processing of 

lab samples required by the algorithm to make accurate predictions. 

 

Model Development and Statistical Analyses 

VentNet (a two layer feedforward neural network of size 40 and 25) was trained to predict the onset 

of mechanical ventilation 24 hours in advance, starting from hour four into admission up to the time 

of mechanical ventilation or end of hospitalization. VenNet was implemented in Tensorflow, version 

1.12.0, machine learning frameworks for Python, version 2.7 (Python Software Foundation).  The 

parameters of VentNet were initialized randomly and optimized on the training data from the 

development cohort, using the Gradient Descent algorithm with L1-L2 regularization to avoid 
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overfitting27. Model interpretability was achieved by calculating the relevance score23 of each input 

feature for every predicted risk score (see eAppendix A in the Supplement). 

 

Within the development cohort, 10-fold cross-validation (with an 80%-20% split within each fold) 

was used for training and testing purposes. We report median and interquartile values of the area 

under Receiver Operating Characteristic (AUROC or AUC) curves (and specificity at 80% 

sensitivity) for the held-out testing sets within the development cohort (details on precision-recall 

curves are presented in the Supplement). AUROCs are reported under an end-user clinical response 

policy in which the model would be silenced for six hours after an alarm is fired, and correct alarms 

that are fired up to 72 hours prior to onset of mechanical ventilation are not penalized. The best 

performing model at the development site was then fixed and used for evaluation on the validation 

cohort, and the prospectively collected cohort of COVID-19 patients. Comparison of ROC curves 

was performed using DeLong’s method28. All continuous variables are reported as medians with 25% 

and 75% interquartile ranges (IQRs). Binary variables are reported as percentages.  

 

RESULTS 

Patient Characteristics 

After applying the exclusion criteria, a total of 18,528 and 3,888 ICU patients were included in 

the development and validation cohorts, respectively. Patient characteristics including the 

percentage of ventilated patients before and after application of exclusion criteria are presented 

in Table 1 and eTable 2 in the Supplement. Additionally, data from 26 COVID-19 patients from 

the development site (UCSD) and 402 patients from the validation site (MGH) were used for 

prospective validation (see Table 2 and eTable 3 in the Supplement).  
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Model Performance on General ICU Populations 

The 10 fold cross-validated AUC on the held-out development cohort testing set at 24 hours was 

0.886 [0.878  0.892] (median [IQR]), and the specificity when measured at the 80% sensitivity 

level was 0.824 [0.818 0.838]. We observed a drop in AUC when the prediction horizon 

increased from 6 hours to 48 hours (from 0.950 [0.948 0.952] to 0.845 [0.838 0.869], 

respectively) (See eFigure 1 in the Supplement for more details). Comparisons of the VentNet 

algorithm against the ROX score18 and a logistic regression model (Baseline model 1) based on 

commonly used clinical variables (namely, HR, O2Sat, Resp Rate, and pH) are shown in Figure 

1. VentNet significantly outperformed the baseline models (p<0.001) on the development cohort 

testing set (AUC of 0.895 versus 0.738 and 0.769, respectively) (Figure 1, panel a). Performance 

of the VentNet on the external validation cohort (Figure. 1, panel b) was comparable (AUC of 

0.882 versus 0.782 and 0.773, respectively). See Figure 1 (panels a-b) and eFigure 2 (panels a-b) 

in the Supplement for additional information, including precision-recall curves. 

 

Figure 2 (panels a and b) show heatmaps of the top 15 factors most commonly contributing to 

the increase in risk score upto 12 hours prior to intubation for the development and the validation 

cohorts, respectively. Some of the top predictive features included Respiratory Rate, Heart Rate, 

Temperature, Chloride, O2Sat, Platelet count, pH, and FiO2, among others. eFigure 3 in the 

Supplement includes an illustrative example of clinical trajectory of a patient in the ICU, as well 

as the respective model predictions and the top contributing factors. Note that as shown in 
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eFigure 4 in the Supplement, a given risk factor can contribute to an increase in risk score by 

taking values either above or below the clinical reference range. 

Model Performance on COVID-19 Populations 

VentNet achieved superior performance when prospectively applied to the UCSD and MGH 

cohorts of patients with COVID-19 (AUC of 0.943 and 0.919, respectively). The corresponding 

specificities measured at 80% sensitivity level were 88.8% and 84.5%, respectively. See Figure 1 

(panels c-d) and eFigure 2 (panels c-d) in the Supplement for more information. Across both 

cohorts, performance of the VentNet was significantly higher than the ROX score and the 

Baseline model 1 (p<0.001; see Figure 1 and eFigure 2 in the Supplement for more details). 

 

Figure 2 (panel c) shows a heatmap of the top 15 factors most commonly contributing to the 

increase in risk score upto 12 hours prior to intubation for the COVID-19 cohort at the validation 

site. In addition to features listed above, other factors frequently contributing to the risk score in 

the COVID-19 population included Total Bilirubin, Aspartate Aminotransferase (AST), 

Fibrinogen, and Phosphate, among others. Figure 3 includes an illustrative example of the 

clinical trajectory of a COVID-19 patient, as well as the respective model predictions and the top 

contributing factors. 

 

DISCUSSION 

We demonstrated that a high-performing deep learning model (AUC>0.88) can predict future 

need for mechanical ventilation 24 hours in advance using commonly accessible EHR data. We 

externally validated all findings in patients from a separate academic center, as well as in two 

prospective cohorts of patients with COVID-19 (See Figure 1). Since the proposed model can 
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inform healthcare providers of the most relevant features contributing to the need for mechanical 

ventilation (see Figures 2 and 3), it provides an interpretable algorithm to aid clinicians with 

optimizing timing of tracheal intubation, better allocation of resources, and improving patient 

care. 

 

The COVID-19 pandemic has placed important strains on the healthcare system as the surge and 

long tail of critically ill patients continues to impact resource availability1. Despite having the 

highest number of ventilators and critical care beds per capita among developed countries, 

mechanical ventilation in the United States is still a finite resource7,8. Frontline providers in the 

pandemic noted that traditional risk stratification tools such as MEWS and quick sequential 

organ failure assessment (qSOFA) score are inadequate to accurately predict respiratory failure 

in patients with COVID-1929. Additionally, physicians have attempted to predict respiratory 

failure with simple scoring systems, yet such models have not been validated in patients with 

COVID19 (e.g. ROX index). To our knowledge, this is the first study to demonstrate robust 

performance of a deep learning algorithm for early prediction of the need for mechanical 

ventilation in patients hospitalized with COVID-19.  

  

Our findings are important for a number of reasons. First, we have developed and externally 

validated an interpretable deep learning algorithm that predicts the need for mechanical 

ventilation using commonly accessible clinical variables.  Such findings could be used to 

facilitate optimal triage, more timely management, and resource utilization.  Second, we have 

shown with high predictive value the ability of our algorithm to function in different geographic 

settings in the United States and in varying cohorts. Third, our model used a sequential 
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predictive approach such that ongoing clinical status was assessed to make important clinical 

predictions (see Figure 3 and eFigure 3 in the Supplement for illustrative examples).  This 

strategy has advantages over a baseline assessment (e.g. MEWS and qSOFA) given the dynamic 

nature of critically ill patients. This approach paves the way for future implementation in real-

time at the point of care. Fourth, as shown in eTable 4 in the Supplement, VentNet’s predictions 

do not heavily rely on a single or a handful of clinical variables and as such are more robust to 

data missingness. Thus, our model has both generalizability and portability and may have an 

impact not only on the current  COVID-19 epidemic, but also in the expected “second wave” and 

beyond30.   

 

For a 24 hour ahead prediction horizon, specificity of the model (on the MGH COVID-19 

cohort) at 50% sensitivity was 96.5% (with a PPV of 35.3%) versus 98.9% (with a PPV of 

39.2%) for 6 hours. In terms of model optimization one could argue the value in maximizing 

sensitivity, specificity or both. In particular, during the COVID-19 pandemic it has been argued 

that the avoidance of emergent procedures is a priority, since there is clearly a risk of viral 

transmission to providers and delays in intubation increases the risk of cardiovascular 

collapse31,32. Thus, a highly sensitive model may help to minimize the chance of a ‘crash’ 

intubation33 which leads to poor clinical outcomes and may put providers at risk of unnecessary 

viral exposure. On the other hand, a highly specific model may be used to avoid unnecessary 

intubation14, and the associated risks of ventilator induced lung injury, ventilator associated 

pneumonia34, and sedation and associated delirium35. Additionally, a shorter prediction horizon 

(e.g., 6 hour) may provide more clinically actionable information versus a longer prediction 

horizon (e.g., 24-72 hour) may inform population-level resource allocation.  
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Despite its many strengths, this study includes a number of limitations. First, we defined the need 

for mechanical ventilation in our EHR database based on the presence of PEEP and FiO2 

measurements. We believe that this definition is robust based on considerable experience, but 

acknowledge that some mis-labeling could occur in any EHR based criteria.  Nonetheless, we 

view such misclassification as random and do not expect any potential misclassifications would 

artificially improve our model’s performance. Second, more generally the proposed algorithm 

makes use of EHR data that was not originally designed for the analysis performed in our study. 

However, the superior performance of our algorithm, even in the presence of missing data, 

confirms its utility in a real-world clinical setting. Third, the COVID-19 pandemic has led to 

many changes in usual care including potentially earlier intubation, avoidance of high flow nasal 

cannula, and avoidance of non-invasive ventilation, among others.  Thus, one could argue that 

the need for intubation of these patients may be driven by factors unique to this epidemic.  

However, our model was trained and validated with historical data from major academic centers 

prior to COVID-19.  Thus, the high observed AUCs speak to the robustness of the model, even 

in the face of rapid changes in practice patterns.  Fourth, one could argue that the outcome of 

intubation and need for mechanical ventilation is somewhat subjective and could be a function of 

local practices or intrinsic bias inherent in such decisions.  However, our ability to predict a 

clinically important and hard outcome (need for mechanical ventilation) 6 to 24 hours in advance 

suggests the value of this model.  Moreover, traditional clinical parameters (heart rate, 

respiratory rate, pH, oxygen saturation) used to make intubation decisions performed relatively 

poorly compared to our deep learning algorithm (AUC of 0.769 vs 0.895 on the development site 

testing cohort).  Despite these limitations, we view our new findings as robust and likely to lead 
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to important advances in the care of COVID-19 patients.  Furthermore, our approach may extend 

beyond the COVID-19 pandemic to guide optimal clinical care using advanced analytics as 

applied to the general ICU population e.g. to determine timing and selecting of appropriate 

pharmacological therapies. 

 

CONCLUSION 

In this two-center observational study, we demonstrate that high-performance models can be 

constructed to predict the future need for mechanical ventilation in hospitalized patients, 

including those with COVID-19. By using an open-source software, our validated algorithm is 

readily available for prospective studies aimed at determining the clinical utility of the proposed 

risk model for optimizing timing of tracheal intubation, better allocation of mechanical 

ventilation resources and staff, and improving patient care. 

 

Conflicts of interest and sources of funding: Dr. Nemati is funded by the National Institutes of 

Health (#K01ES025445), Biomedical	Advanced	Research	and	Development	Authority	

(#HHSO100201900015C),	and the Gordon and Betty Moore Foundation (#GBMF9052). Dr. 

Malhotra is a PI on NIH RO1 HL085188, K24 HL132105, T32 HL134632 and co-investigator 

on R21 HL121794, RO1 HL 119201, RO1 HL081823.  ResMed, Inc. provided a philanthropic 

donation to UC San Diego in support of a sleep center.  Dr. Malhotra received funding for 

medical education from Merck and Livanova. Dr. Mukerji is funded by the National Institutes of 

Health (#K23MH115812) and the Harvard Medical School Elenor and Miles Shore Foundation. 

Dr. Westover is supported by the Glenn Foundation for Medical Research and the American 

Federation for Aging Research through a Breakthroughs in Gerontology Grant; the American 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.30.20118109doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20118109


Academy of Sleep Medicine through an AASM Foundation Strategic Research Award; the 

Department of Defense through a subcontract from Moberg ICU Solutions, Inc, and by grants 

from the NIH (1R01NS102190, 1R01NS102574, 1R01NS107291, 1RF1AG064312). Dr. Wardi 

is supported by the National Foundation of Emergency Medicine and funding from the Gordon 

and Betty Moore Foundation (#GBMF9052). He has received speaker’s fees from Thermo-

Fisher and consulting fees from General Electric. Other co-authors have declared no conflicts of 

interest and sources of funding. 

 
 
List of Tables and Figures: 
 
Table 1: Demographic comparisons of the UCSD and MGH general ICU cohorts  

 
Table 2: Demographic comparisons of the prospective validation cohorts consisting of COVID-19 
patients at UCSD and MGH. 

 
Figure 1: Performance of the proposed and baseline models on the development and validation 
ICU cohorts and the two COVID-19 prospective validation cohorts. 
 
Figure 2: Population-level plot of top contributing factors to the increase in model risk score.  
 
Figure 3: An illustrative example of a patient’s trajectory over a 67 hour window preceding 
intubation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.30.20118109doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20118109


References 

1.  Emanuel EJ, Persad G, Upshur R, et al. Fair Allocation of Scarce Medical Resources in 
the Time of Covid-19. Mass Medical Soc; 2020. 

2.  Feinstein MM, Niforatos JD, Hyun I, et al. Considerations for ventilator triage during the 
COVID-19 pandemic. The Lancet Respiratory Medicine. Published online 2020. 

3.  Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. 
New England journal of medicine. 2020;382(18):1708–1720. 

4.  Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel 
coronavirus in Wuhan, China. The lancet. 2020;395(10223):497–506. 

5.  Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 
novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061–1069. 

6.  Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients 
with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. Published 
online 2020. 

7.  Staff CS, Archives CC, iCritical Care AA, et al. United States Resource Availability for 
COVID-19. 

8.  Truog RD, Mitchell C, Daley GQ. The toughest triage—allocating ventilators in a pandemic. 
New England Journal of Medicine. Published online 2020. 

9.  White DB, Katz MH, Luce JM, Lo B. Who should receive life support during a public health 
emergency? Using ethical principles to improve allocation decisions. Annals of Internal 
Medicine. 2009;150(2):132–138. 

10.  Organization WH. Infection prevention and control during health care when novel 
coronavirus (nCoV) infection is suspected Interim guidance, 19 March 2020. Published 
online 2020. 

11.  Hui DS. Severe acute respiratory syndrome (SARS): lessons learnt in Hong Kong. Journal 
of thoracic disease. 2013;5(Suppl 2):S122. 

12.  Jing G, Li J. Expert consensus on preventing nosocomial transmission during respiratory 
care for critically ill patients infected by 2019 novel coronavirus pneumonia. Zhonghua jie 
he he hu xi za zhi. 2020;17:E020. 

13.  Cheung JC-H, Ho LT, Cheng JV, Cham EYK, Lam KN. Staff safety during emergency 
airway management for COVID-19 in Hong Kong. The Lancet Respiratory Medicine. 
2020;8(4):e19. 

14.  Meng L, Qiu H, Wan L, et al. Intubation and Ventilation amid the COVID-19 
OutbreakWuhan’s Experience. Anesthesiology: The Journal of the American Society of 
Anesthesiologists. 2020;132(6):1317–1332. 

15.  Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. Covid-19 does not 
lead to a “typical” acute respiratory distress syndrome. American journal of respiratory and 
critical care medicine. 2020;201(10):1299–1300. 

16.  Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory 
treatments for different phenotypes? Intensive care medicine. Published online 2020:1. 

17.  Biddison LD, Berkowitz KA, Courtney B, et al. Ethical considerations: care of the critically ill 
and injured during pandemics and disasters: CHEST consensus statement. Chest. 
2014;146(4):e145S–e155S. 

18.  Roca O, Caralt B, Messika J, et al. An index combining respiratory rate and oxygenation to 
predict outcome of nasal high-flow therapy. American journal of respiratory and critical care 
medicine. 2019;199(11):1368–1376. 

19.  Goh KJ, Choong MC, Cheong EH, et al. Rapid progression to acute respiratory distress 
syndrome: review of current understanding of critical illness from COVID-19 Infection. Ann 
Acad Med Singapore. 2020;49(1):1–9. 

20.  Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.30.20118109doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20118109


health records. NPJ Digital Medicine. 2018;1(1):18. 
21.  Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning 

algorithm for detection of diabetic retinopathy in retinal fundus photographs. The Journal of 
the American Medical Association. 2016;316(22):2402–2410. 

22.  Tomašev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous 
prediction of future acute kidney injury. Nature. 2019;572(7767):116–119. 

23.  Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An Interpretable 
Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Critical Care 
Medicine. 2018;46(4):547-553. doi:10.1097/CCM.0000000000002936 

24.  Shashikumar SP, Josef C, Sharma A, Nemati S. DeepAISE -- An End-to-End Development 
and Deployment of a Recurrent Neural Survival Model for Early Prediction of Sepsis. 
arXiv:190804759 [cs, stat]. Published online August 10, 2019. Accessed January 30, 2020. 
http://arxiv.org/abs/1908.04759 

25.  Milea D, Najjar RP, Zhubo J, et al. Artificial Intelligence to Detect Papilledema from Ocular 
Fundus Photographs. New England Journal of Medicine. Published online 2020. 

26.  Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. 
British Journal of Surgery. 2015;102(3):148–158. 

27.  Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. 
science. 2006;313(5786):504–507. 

28.  DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more 
correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 
Published online 1988:837–845. 

29.  Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some 
recommendations during the COVID-19 epidemic in China. Intensive care medicine. 
Published online 2020:1–4. 

30.  Xu S, Li Y. Beware of the second wave of COVID-19. The Lancet. Published online 2020. 
31.  Phua G-C, Govert J. Mechanical ventilation in an airborne epidemic. Clinics in chest 

medicine. 2008;29(2):323–328. 
32.  Wardi G, Villar J, Nguyen T, et al. Factors and outcomes associated with inpatient cardiac 

arrest following emergent endotracheal intubation. Resuscitation. 2017;121:76–80. 
33.  Flores MV, Cohen M. Preventing airborne disease transmission: Implications for patients 

during mechanical ventilation. In: Noninvasive Ventilation in High-Risk Infections and Mass 
Casualty Events. Springer; 2014:305–313. 

34.  Chastre J, Fagon J-Y. Ventilator-associated pneumonia. American journal of respiratory 
and critical care medicine. 2002;165(7):867–903. 

35.  Kotfis K, Williams Roberson S, Wilson JE, Dabrowski W, Pun BT, Ely EW. COVID-19: ICU 
delirium management during SARS-CoV-2 pandemic. Critical Care. 2020;24:1–9. 

 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.30.20118109doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.30.20118109


Table 1: Demographic comparisons of the UCSD and MGH general ICU cohorts  
 

 UCSD (development site) MGH (validation site) 

Demographics Non-Ventilated Ventilated Non-ventilated Ventilated 

Patients, n (%) 17,723 (95.6%) 805 (4.4%) 3,602 (92.6%) 286 (7.4%) 
Age, yrs (S.D) 61.3 [48.3 72.6] 61.2 [48.6 71.2] 62 [51 72] 64 [53 74] 

Male, n  10,421  521 1,948 173 
Race, n 

Caucasian 
Black 
Asian 

 

 
9,659 
1,330 
1,081 

 
440 
60 
43 

 
2,925 
191 
119 

 
229 
19 
8 

ICU LOS,  hrs (IQR) 48.3 [26.7 95.9] 221.5 [113.8 386.9] 50.9 [27.2 98.0] 183.7 [92.2 
309.9] 

CCI, # (IQR) 3 [2 7] 3 [1 6] 4 [2 6] 4 [2 6] 
SOFA, n (IQR) 0.6 [0 1.8] 3.3 [1.9 5.1] 0.9 [0.3 2.1] 4.1 [2.5 6.3] 

Inpatient mortality,  
n 

869 329 223 109 

Time from ICU 
admission to start of 
ventilation, hrs (IQR) 

N/A 20 [7.8 45] N/A 13 [6 33] 

S.D=standard deviation; yrs=years; LOS=length of stay; ICU=intensive care unit; IQR=interquartile range; CCI=Charlson comorbidity 
index; SOFA=sequential organ failure assessment 
Patients were excluded if 1) their length of stay was less than 4 hours or greater than 20 days, 2) no Heart Rate was recorded during their 
entire stay, or 3) the start of mechanical ventilation was prior to hour four of ICU admission.  
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Table 2: Demographic comparisons of the prospective validation cohorts consisting of COVID-19 
patients at UCSD and MGH. 
 

 UCSD COVID-19 MGH COVID-19 

Demographics Non-ventilated Ventilated Non-ventilated Ventilated 

Patients, n (%) 16 (61.5%) 10 (38.5%) 343 (85.3%) 59 (14.7%) 
Age, yrs (S.D) 57.6 [45.2 81.6] 52.8 [42.3 65.9] 65 [47 78] 61.5 [50 73] 

Male, n 9 7 176 40 
Race, n 

Caucasian 
Black 
Asian 

 

 
7 

<5 
<5 

 
<5 
0 

<5 

 
207 
46 
13 

 
30 
10 
<5 

ICU LOS,  hrs (IQR) 51.4 [37.7 128.4] 368.7 [247.0 430.0] 131 [87.5 230] 258.5 [141 396] 
CCI, # (IQR) 4 [2.8 5.3] 2 [1 4.3] 3 [1 6] 3 [1 5] 

SOFA, n (IQR) 1.3 [0 2.1] 2.5 [0 5.4] 0.1 [0 0.7] 3.0 [1.6 4.7] 
Inpatient mortality,  

n  
<5 <5 24 14 

Time from ICU 
admission to start of 
ventilation, hrs (IQR) 

N/A 23 [10 63] N/A 49.5 [20.6 143] 

S.D=standard deviation; yrs=years; LOS=length of stay; ICU=intensive care unit; IQR=interquartile range; CCI=Charlson comorbidity 
index; SOFA=sequential organ failure assessment 
Patients were excluded if 1) their length of stay was less than 4 hours or greater than 20 days, 2) no Heart Rate was recorded during their 
entire stay, or 3) the start of mechanical ventilation was prior to hour four of admission. 
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(a)

 

(b) 

 

(c) 

 

(d) 

 
 
Figure 1: Performance of the proposed and baseline models on the development and validation 
ICU cohorts and the two COVID-19 prospective validation cohorts. For a prediction horizon of 
24-hours, comparison of the proposed model versus two baseline models are shown on the 
development and validation ICU cohorts (panel a-b), and prospective validation cohorts of 
patients with COVID-19 (panels c-d).  
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      (a) 

 

 

        (b)  

 

 

  (c) 

 

Figure 2: Population-level plot of top contributing factors to the increase in model risk score. 
The x-axis represents hours prior to onset time of mechanical ventilation. The y-axis represents 
the top factors (sorted by the magnitude of relevance score) across the patient populations at the 
development site (panel a), external validation site (panel b), and prospective COVID-19 cohort 
(panel c). Only dynamically changing variables are shown. Among the static factors, duration of 
time in hospital (till current time) and gender (male) were consistently among the top factors. 
The heat-map shows the percentage of ventilated patients for whom a given variable was an 
important contributor to their risk score, up to 12 hours prior to intubation. See eAppendix A in 
the Supplement (Interpretability section and eFigure 4 in the Supplement) for more details. 
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Figure 3: An illustrative example of a patient’s trajectory over a 67 hour window preceding 
intubation. The proposed algorithm crossed the prediction threshold around hour 45, roughly 24 
hours prior to the onset time of mechanical ventilation. This 54-year-old female with a history of 
hypothyroidism presented with fevers, chills, muscle aches, fever, sore throat, cough, and 
anosmia. She was admitted to the hospital for hypoxemia and a chest x-ray showing basilar 
patchy opacities present in the emergency department. She later tested positive for COVID-19. 
Her oxygen requirements and work of breathing increased with a marked drop in oxygen 
saturation around hour 50. On the afternoon of the third day (hour 65) of hospitalization, she 
developed rapidly progressive respiratory failure, was intubated and diagnosed with acute 
respiratory distress syndrome (ARDS). For clarity, the top relevant features are shown every five 
hours under the estimated risk scores. 
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eTable 1: List of input variables used by the model. 
 

Variable Measurement Unit Variable Measurement Unit 

Vital Signs (Dynamical Features) 

Heart rate beats/minute Mean Arterial Pressure mmHg 
Pulse oximetry % Diastolic BP mmHg 
Temperature degC Respiration rate breaths per minute 

Systolic BP mmHg End tidal CO2 mmHg 
Laboratory values (Dynamical Features) 

Excess bicarbonate mmol/L Serum Glucose mg/dL 
Bicarbonate mmol/L Lactic acid md/dL 

Fraction of inspired 
Oxygen 

% Magnesium mmol/dL 

pH - Phosphate mg/dL 
Partial pressure of CO2 

from arterial blood 
 mmHg Potassium mmol/L 

Oxygen saturation from 
arterial blood 

% Total Bilirubin mg/dL 

Aspartate transaminase IU/L Troponin I ng/mL 
Blood Urea Nitrogen mg/dL Hematocrit % 
Alkaline phosphate IU/L Hemoglobin g/dL 

Calcium mg/dL Partial Thromboplastin Time seconds 
Chloride mmol/L White Blood Cell count count*103/µL 

Creatinine mg/dL Fibrinogen mg/dL 
Bilirubin direct mg/dL Platelets count*103/µL 

Demographics 
Age Years Hours between hospital admit 

and ICU admit 
hours 

Gender Male/Female Duration until current time hours 
                                

Care Units             
Medical/Surgical ICU 

unit 
-- -- 
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eTable 2: Demographic comparisons of the UCSD and MGH general ICU cohorts 
(Overall cohorts without exclusion criteria) 

 UCSD (development site) MGH (validation site) 

Demographics Non Ventilated Ventilated Non Ventilated Ventilated 

Patients, n (%) 15922 (63.2%) 9290 (36.8%) 3074 (47.8%) 3360 (52.2%) 
Age, yrs (S.D) 61.5 [48.2 73.1] 59.6 [46.7 69.2] 62 [50 72] 64 [54 73] 

Male, n  9235 6039 1614 2157 
Race, n 

Caucasian 
Black 
Asian 

 

 
8280 
1210 
971 

 
4756 
752 
511 

 
2505 
157 
111 

 
2664 
185 
97 

ICU LOS,  hrs (IQR) 44.4 [24.7 77.7] 109.9 [52.1 227.4] 45.8 [25.3 78.9] 73.9 [28.7 183.3] 
CCI, # (IQR) 3 [2 7] 3 [1 6] 4 [2 6] 4 [2 6] 

SOFA, n (IQR) 0.6 [0 1.8] 3.3 [1.9 5.1] 0.9 [0.3 2.1] 4.1 [2.5 6.3] 
Inpatient mortality,  

n 
637 1663 163 601 

S.D=standard deviation; yrs=years; LOS=length of stay; ICU=intensive care unit; IQR=interquartile range; CCI=Charlson comorbidity index; 
SOFA=sequential organ failure assessment 
 

 

 

eTable 3: Demographic comparisons of the UCSD and MGH COVID19 cohorts. (Overall 
cohorts without exclusion criteria)  

 UCSD COVID-19 MGH COVID-19 

Demographics Non Ventilated Ventilated Non Ventilated Ventilated 

Patients, n (%) 15 (40.5%) 22 (59.5%) 626 (84.6%) 114 (15.4%) 
Age, yrs (S.D) 56.9 [44.6 79.6] 62.1 [42.3 67.7] 60 [43 76] 62.5 [50 74] 

Male, n (%)  9 16 322 71 
Race, n (%) 
Caucasian 

Black 
Asian 

 

 
6 

<5 
<5 

 
11 
0 

<5 

 
366 
90 
33 

 
57 
15 
<5 

ICU LOS,  hrs (IQR) 50.3 [36.9 1026] 366.2 [191.3 430.1] 131 [87.5 230] 258.5 [141 396] 
CCI, # (IQR) 4 [2.8 5.3] 2 [1 4.3] 3 [1 6] 3 [1 5] 

SOFA, n (IQR) 1.3 [0 2.1] 2.5 [0 5.4] 0.1 [0 0.5] 3.1 [1.3 4.8] 
Inpatient mortality,  

n 
<5 <5 47 25 

S.D=standard deviation; yrs=years; LOS=length of stay; ICU=intensive care unit; IQR=interquartile range; CCI=Charlson comorbidity index; 
SOFA=sequential organ failure assessment 
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(a) 

 

 
(b) 

 
eFigure 1: The 10 fold cross validation performance of proposed model on 
development cohort held-out testing set at varying prediction horizons (6, 12, 24, 
36, 48 hours). Medians and Interquartile ranges (shaded area) of AUCroc and 
specificity (at 80% sensitivity) are shown in panels (a)- (b) as a function of 
prediction horizons on the held-out set of the development cohort.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
 
eFigure 2: Precision-Recall Curves. Comparison of the proposed model versus 
two baseline models are shown on the development and validation ICU cohorts 
(panel a-b), and prospective validation cohorts of patients with COVID-19 (panels 
c-d).  
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eFigure 3: An illustrative example of a patient’s trajectory over a 64 hour window 
preceding intubation. This patient was a 73 year old man who developed 
respiratory distress, and a chest x-ray demonstrated findings concerning for 
aspiration vs pneumonia. He was initially treated with high flow oxygen, but 
ultimately required intubation and mechanical ventilation. The proposed 
algorithm crossed the prediction threshold around hour 40, roughly 24 hours 
prior to the onset time of mechanical ventilation. Notably, at hour 45 the patient 
was placed on 80% supplementary oxygen. Attempts to reduce the amount of 
supplementary oxygen within the proceeding hours resulted in a sharp drop in 
O2Sat to 88%. For clarity, the top relevant features are shown every five hours 
under the estimated risk scores. 
 
 
eAppendix A. 
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Interpretability: 
 
VentNet is uniquely interpretable wherein apart from computing the risk score, the model identifies the most 
relevant features contributing to the risk score as well. The importance of each feature’s contribution to the risk 
score is measured through a metric called relevance score. 
To compute the relevance score, we simply take the derivative (or gradient) of the risk score with respect to all input 
features and multiply it by the input features. The relevance score simply says that an input feature is relevant if it is 
both present in the data and if the model reacts to it (the derivative term). Additionally, the direction of influence of 
a variable on the increase in risk score can be deduced from the sign of the input gradients (see eFigure 4).  In this 
analysis, we only extract the top contributing features with a positive relevance score.  

 
(a) 
 

       
 

 

        (b)  

 

 

  (c) 

 

eFigure 4: Directionality with respect to influence of top factors contributing to an 
increase in the risk score (companion to Figure 2 in the main manuscript). A key 
advantage of nonlinear models is their ability to model U-shaped risk profiles. For 
instance, out of all instances that temperature contributed to an increase in risk 
for ventilation within our various cohorts, roughly 50-60% was due to abnormally 
high values of temperature (color-coded as blue) and 40-50% was due to an 
abnormally low value of temperature (color-coded as red). Traditionally used 
linear models (such as logistic regression) cannot adequately capture such risk 
profiles. Note, these findings need to be interpreted in the context of 
multiplicative interactions among the risk factors, such as age and immune 
system deficiency. Notably, our cohort of patients with COVID-19 appear to be 
less heterogeneous in their risk profiles than the general ICU populations at our 
development and validation sites. 
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eTable 4: Summary of drop in AUC of a given model when a feature is treated as 
missing during evaluation. Results are shown for the performance of the models in the 
development cohort. ROX score appears to overly rely on the respiratory rate, while 
VentNet relies on a wider array of features to make predictions, and as such is more 
robust to data missingness.  
 

 VentNet Baseline 1 ROX 
Heart rate 0.017 0.013   

Respiratory rate 0.014 0.044 0.193 
Blood Urea Nitrogen 0.009     

FiO2 0.005   0.006 
pH 0.004 0.002   

Platelets 0.004     
O2Sat 0.002 0.008 0.002 
SaO2 0.002     

Calcium 0.002     
Aspartate transaminase 0.001     

Chloride 0.001     
Bilirubin direct 0.001     

Serum Glucose 0.001     
Magnesium 0.001     
Potassium 0.001     

Total Bilirubin 0.001     
White Blood Cell count 0.001     
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