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ABSTRACT 44 

  45 

There remain many unknowns regarding the onset and clinical course of the ongoing 46 
COVID-19 pandemic. We used a combination of classic epidemiological methods, 47 

natural language processing (NLP), and machine learning (for predictive modeling), to 48 

analyse the electronic health records (EHRs) of patients with COVID-19.  49 

 50 

We explored the unstructured free text in the EHRs within the SESCAM Healthcare 51 
Network (Castilla La-Mancha, Spain) from the entire population with available EHRs 52 

(1,364,924 patients) from January 1st to March 29th, 2020. We extracted related clinical 53 

information upon diagnosis, progression and outcome for all COVID-19 cases, focusing 54 

in those requiring ICU admission. 55 
 56 

A total of 10,504 patients with a clinical or PCR-confirmed diagnosis of COVID-19 were 57 

identified, 52.5% males, with age of 58.2±19.7 years. Upon admission, the most 58 

common symptoms were cough, fever, and dyspnoea, but all in less than half of cases. 59 

Overall, 6% of hospitalized patients required ICU admission. Using a machine-learning, 60 
data-driven algorithm we identified that a combination of age, fever, and tachypnoea 61 

was the most parsimonious predictor of ICU admission: those younger than 56 years, 62 

without tachypnoea, and temperature <39ºC, (or >39ºC without respiratory crackles), 63 

were free of ICU admission. On the contrary, COVID-19 patients aged 40 to 79 years 64 

were likely to be admitted to the ICU if they had tachypnoea and delayed their visit to 65 

the ER after being seen in primary care.  66 

 67 

Our results show that a combination of easily obtainable clinical variables (age, fever, 68 

and tachypnoea with/without respiratory crackles) predicts which COVID-19 patients 69 

require ICU admission. 70 

 71 

Abstract word count: 249 words 72 
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INTRODUCTION 77 

The unprecedented, global spread of the severe acute respiratory syndrome 78 

coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) 79 

requires innovative approaches that deliver immediate, real-time results[1, 2]. To date, 80 

big data technologies have only been used to estimate SARS-CoV-2 transmission[3], 81 

and to indirectly estimate COVID-19 cases in China by using social media[4]. However, 82 

there remain many unknowns regarding the onset and temporal distribution of the 83 

ongoing COVID-19 pandemic. Similarly, both the individual and population burden of 84 

COVID-19 are just beginning to be unravelled. To the best of our knowledge, such 85 

tools[5-7] have not been used to explore the clinical characteristics and prognostic 86 

factors of COVID-19[8].  87 

Considering the unprecedented spread and severity of the ongoing COVID-19 88 

outbreak, focus has been set on hospital’s unmet need, and in particular ICU 89 

requirements[8, 9]. Indeed, health systems have been/are near collapse and 90 

independent modelling efforts have aimed to forecast a number of epidemiological 91 

estimators, including ICU use [10-12]. 92 

Previously, our team reported that  the combination of big data analytics and machine 93 

learning techniques helped to better determine quality of diagnosis and treatment of 94 

chronic obstructive pulmonary disease (COPD) via an analysis of hospital electronic 95 

health records (EHRs) using natural language processing (NLP) and validated 96 

algorithms[13, 14]. 97 

By means of The BigCOVIData study, we aimed to better determine the real-world 98 

epidemiology of COVID-19 infection in a well-defined population. Using a combination 99 

of classic epidemiological methods[15], NLP, and machine learning (for predictive 100 

modeling), we analysed the clinical information contained in the EHRs of patients with 101 

COVID-19 to advance our understanding of the disease and its associated outcomes, 102 

most notably ICU admission.  103 

 104 

METHODS 105 
 106 

The BigCOVIData study was conducted in compliance with legal and regulatory 107 

requirements and followed generally accepted research practices described in the ICH 108 

Guideline for Good Clinical Practice, the Helsinki Declaration in its latest edition, Good 109 

Pharmacoepidemiology Practices, and applicable local regulations. This study was 110 

classified as a ‘non-post-authorization study’ (EPA) by the Spanish Agency of 111 

Medicines and Health Products (AEMPS), and it was approved by the Research Ethics 112 

Committee at the University Hospital of Guadalajara (Spain). We have followed and 113 

endorsed the STrengthening the Reporting of OBservational studies in Epidemiology 114 

(STROBE) guidance for reporting observational research[16].  115 

Study design and data source 116 

This was a multicenter, non-interventional, retrospective study using data captured in 117 

the EHRs of the participating hospitals within the SESCAM Healthcare Network in 118 

Castilla-La Mancha, Spain (Figure 1). Data captured in the EHRs was collected from 119 

all available departments, including inpatient hospital, outpatient hospital, and ER, for 120 



virtually all types of provided services in each participating hospital. The study period 121 

was January 1, 2020 – March 29, 2020.  122 

The study database was fully anonymized in a structured format and contained no 123 

personal information from patients. Likewise, personal information was not accessed 124 

during either the application of automated and algorithmic methods (i.e., NLP) or during 125 

the conversion of unstructured data into the structured database. Importantly, given 126 

that clinical information was handled in an aggregate, anonymized, and irreversibly 127 

dissociated manner, patient consent regulations do not apply to the present study 128 

Study sample 129 

The study sample included all patients in the source population diagnosed with COVID-130 

19. Patients were identified on the basis of clinical diagnosis (i.e., COVID-19 cases 131 

determined by observed symptomatology, imaging (mostly chest X-ray) and laboratory 132 

results, as captured in the unstructured, free-text information in the EHRs) and/or 133 

microbiological test results (i.e., COVID-19 cases confirmed by RT-PCR or similar 134 

available tests). Our decision to consider both PCR- and clinically confirmed cases is 135 

justified by the limited availability of routinely administered RT-PCR tests in the region 136 

during the study period and supported by recent discussions on the far-from-optimal 137 

sensitivity of RT-PCR for COVID19 (i.e., a single negative result from a single 138 

specimen cannot exclude the disease in suspected cases)[17, 18]. Indeed, recent 139 

reports highlight the clinical validity and relatively high sensitivity of symptom- and 140 

imaging-based identification of COVID-19 patients, especially in early stages of the 141 

disease[17, 19, 20].  142 

EHRead® 143 

To meet the study objectives, we used EHRead®[21], a technology developed by 144 

SAVANA that applies NLP, machine learning, and deep learning to analyse the 145 

unstructured free-text information written in millions of de-identified EHRs. This 146 

technology enables the extraction of information from all types of EHRs and the 147 

subsequent normalization of extracted clinical entities to a unique terminology. This 148 

process allows for further analysis of descriptive or predictive nature. Originally based 149 

on SNOMED CT terminology, our unique body of terminology comprises more than 150 

400,000 medical concepts, acronyms, and laboratory parameters aggregated over the 151 

course of five years of free-text mining, targeting the most common diseases (e.g. 152 

respiratory diseases, cardiovascular diseases, and diabetes, among others). 153 

Using a combination of regular expression (regex) rules and machine learning models, 154 

the terminology entities are detected in the unstructured text and later classified based 155 

on sections typically contained in the EHRs, hospital services, and other clinical 156 

specifications. Importantly, each detected term is described in terms of negative, 157 

speculative, or affirmative clinical statements; this is achieved by using deep learning 158 

CNN classification methods that rely on word embeddings and context information (for 159 

a similar methodological approach, see [22]). Limitations in a case by case detection 160 

are also overcome with a similar approach to ensure that the detected concepts are 161 

used within the appropriate context for the descriptive and predictive analysis. 162 

For particular cases where extra specifications are required (i.e.,  to differentiate 163 

COVID cases from other mentions of the term related to fear of the disease or to 164 

potential contact), the detection output was manually reviewed in more than 5000 165 

reports to avoid any possible ambiguity associated with free-text reporting. All NLP 166 

deep learning models used in this study were validated using the standard 167 



training/validation/testing approach; we used a 75/12/13 split ratio in the available 168 

annotated data (between 2,000 and 3,000 records, depending on the model) to ensure 169 

efficient generalization on unseen cases. For all developed models, we obtained F-170 

scores greater than 0.89. 171 

Data Analyses 172 

All categorical variables (e.g., comorbidities, symptoms) are shown in frequency tables, 173 

whereas continuous variables (e.g., age) are described via summary tables that include 174 

the mean, standard deviation, median, minimum, maximum, and quartiles of each 175 

variable. The number of missing data points for each variable is provided, if any. To 176 

test for possible statistically significant differences in the distribution of categorical 177 

variables between study groups (i.e., male vs. female, ICU admission vs. No ICU 178 

admission), we used Yates-corrected chi2 tests. For continuous variables, mean 179 

differences were tested using t-tests. Given our general population approach, and our 180 

larger than usual sample size, we were interested in exploring sex-related differences 181 

in COVID-19 patients, so most results are stratified by sex[23]. All statistical inferences 182 

were performed at the 5% significance level using 2-sided tests or 2-sided CIs.  183 

Predictive model 184 

We developed a decision tree to classify COVID-19 patients according to their risk of 185 

being admitted to the ICU. The two types of patients or classes considered in the 186 

model were therefore "admitted to the ICU" and "not admitted to the ICU". The model 187 

maps the characteristics of patients (the variables) to their class in the shape of a tree. 188 

From a clinical perspective, this model contemplates all patient variables upon 189 

admission, meaning that its predictive value is so from symptom debut until outcome. 190 

The tree is composed of nodes that branch to subsequent children nodes depending 191 

on the patient’s variables. The tree is built in such a way that each branch separates 192 

the two classes as much as possible. This separation is measured as Shannon 193 

entropy, where a node with an entropy of zero means that the classification is perfect 194 

(either all or none of the patients were admitted to the ICU) and an entropy of one is 195 

the worst possible mix (50%/50%)[24]. 196 

Model training and validation. The model was developed and tested on the available 197 

data from hospitalized patients that had either been admitted to the ICU or not; the 198 

latter were either discharged from the hospital or died in the course of the disease. This 199 

amounted to a total of 900 patients. Our algorithm was validated in a split of our 200 

COVID-19 sample, in a 70% training set and a 30% validation set. This means that the 201 

model was trained with 630 patients (582 who did not require intensive care, vs 48 who 202 

did) and validated over the remaining 270 patients. Because the two classes were 203 

unbalanced (far fewer patients require ICU), we used the standard technique of 204 

oversampling the lower class to guarantee a balance of accuracy and recall (in other 205 

words, the tradeoff between false positives vs. false negatives). Further, we sought to 206 

replicate the results from this validation in a posteriori sensitivity analysis, as per recent 207 

recommendations for predictive modeling in COVID-19[25] and TRIPOD guidance[26]. 208 

For this second validation, we trained the model with data from the provinces of Ciudad 209 

Real and Guadalajara (38% of the study sample from Castilla La-Mancha), and used 210 

an independent set with combined data set from the other three provinces, namely 211 

Toledo, Cuenca, and Albacete for validation.  212 

 213 

RESULTS 214 



 215 
From a source general population of 2,035,000 inhabitants, we used NLP and machine 216 

learning to analyse the clinical information contained in the EHRs of 1,364,924 217 

anonymous patients (Figure 1). Among these, we identified a total of 10,504 patients 218 

diagnosed with COVID-19 (Figure 2). The flowchart of participation in the study up to 219 

hospital admission, ICU admission, or discharge is presented in Figure 2. 220 

COVID-19 patients were 52.5% males, with a mean±SD age of 58.2±19.7 years, 221 

(Table 1). Most COVID-19 patients were 50 years and older (Figure 3). Upon 222 

diagnosis, the most common symptoms reported were cough, fever and dyspnoea 223 

(Table 1); notably, less than half of patients presented with these symptoms, probably 224 

due to the fact that most were attended in primary care. Further, respiratory crackles, 225 

myalgia, and diarrhoea were identified in 5% or more of cases, while other respiratory 226 

and non-respiratory signs and symptoms were less common. Sex-dependent 227 

differences in sign and symptom frequencies upon diagnosis are shown in Table 1. Of 228 

note, we observed subtle increases in frequency of diarrhoea, myalgia, headache, 229 

chest pain, and anosmia in female COVID-19 patients, while men showed significant 230 

increases in fever, dyspnoea, respiratory crackles, ronchus, lymphopenia, and 231 

tachypnoea (all p<0.05).   232 

Similarly, the most frequent comorbidities were cardiovascular disease (48.2% of 233 

patients) -mainly arterial hypertension (33.6%) and heart disease (25.1%)- and 234 

diabetes (15.7%) (Table 1). Regarding respiratory diseases, COPD was present in 235 

6.4%, asthma in 7.2%, OSA in 2%, and bronchiectasis in 1.2% of patients. Sex-236 

dependent differences in comorbidities upon diagnosis are also shown in Table 1; 237 

except for asthma, the frequency of all comorbidities was significantly higher in male 238 

than female COVID-19 patients (all p<0.05). 239 

Next, we explored whether the distribution of comorbidities and sign/symptoms 240 

captured in the patients’ EHRs upon diagnosis differed between those COVID-19 241 

patients who were admitted to the ICU vs. those who were not (Table 2). Regarding 242 

comorbidities, diabetes, obesity, cardiovascular disease (mainly hypertension), heart 243 

disease (mainly ischemic heart disease), and renal dysfunction were more common 244 

among those patients who were admitted to the ICU (all p < 0.01). As for signs and 245 

symptoms, cough, fever, dyspnoea, respiratory crackles, diarrhoea, tachypnoea, 246 

lymphopenia, and rhonchus were more frequent among ICU patients (all p < 0.05). 247 

Interestingly, respiratory diseases were not more frequent among patients who were 248 

admitted to the ICU (Table 2).  249 

Finally, by using a machine-learning, data-driven algorithm, we identified that the 250 

combination of three easily available clinical variables, namely age, temperature, and 251 

respiratory frequency, was the most parsimonious predictor of ICU admission among 252 

COVID-19 patients (Figure 4). For this model, age and temperature were captured as 253 

continuous variables, whereas tachypnoea (yes/no) was defined as respiratory 254 

frequency of more than 20 breaths per minute. With accuracy, recall, and AUC values 255 

of 0.68, 0.71, and 0.76, respectively, the presented model reached optimal balance in 256 

terms of positive and negative predictive value for ICU admission. On the one hand, 257 

those younger than 56 years, without tachypnoea, and with temperature <39ºC/102ºF 258 

(entropy = 0, n = 145) (or >39ºC/102ºF without respiratory crackles), were free of ICU 259 

admission, (entropy = 0, n = 18). On the other hand, COVID-19 patients aged 40 to 70 260 

years were likely to be admitted in the ICU if they presented with tachypnoea and 261 

delayed their visit to the ER after being seen in primary care (entropy = 0, n = 104). As 262 

stated in the Methods section, we performed an additional sensitivity analysis with 263 



different data sets to further validate the results of our predictive model. The 264 

independent data set of two provinces (Ciudad Real and Guadalajara, including a total 265 

of 753,408 individual patients, or 38% of the entire study sample from Castilla-La 266 

Mancha; Figure 1 and Supplemental Table S1), was used to retrain our algorithm to 267 

identify ICU admission at onset; validation was performed in the remaining three 268 

provinces. As shown in Supplemental Figure S1, the new decision tree identified the 269 

same relevant clinical variables, that is age, tachypnea, temperature, and respiratory 270 

crackles/ronchus with similar (but not identical) thresholds in some of them. This 271 

additional model reached values of accuracy, recall, and AUC of 0.85, 0.57, and 0.84, 272 

respectively, thus providing additional proof of validity for our main findings. 273 

 274 

DISCUSSION 275 

Recent technological advances allow for the optimal and rapid extraction, integration, 276 

and analysis of the unique and massive amount of untapped medical knowledge 277 

captured in the EHRs. This possibility is particularly meaningful when the clinical 278 

question at hand requires collecting data from a large number of patients in a very 279 

limited amount of time, as is the case with the newly described COVID-19 pandemic. 280 

By anonymously accessing the clinical information of more than 10,000 anonymous 281 

patients with COVID-19 (a number that largely surpasses samples included in recent 282 

reports about the disease[27, 28]), we were able to describe their demographic and 283 

clinical characteristics, their clinical journey, and the statistical relationship between the 284 

most common symptoms and comorbidities on admission, and COVID-19 prognosis 285 

(i.e., ICU admission). There were subtle differences in clinical symptoms at onset by 286 

sex, while all comorbidities (but asthma) were significantly higher in male than female 287 

COVID-19 patients; these and other findings should be replicated in clinical series 288 

elsewhere. 289 

The variables identified in our ICU admission model (i.e., age, temperature, and 290 

tachypnoea) are clinically relevant as they are readily available and easily observable 291 

in the everyday practice with COVID-19 patients. Although tachypnea is not an 292 

exclusive manifestation of COVID-19 and can be present in patients suffering from 293 

other respiratory diseases (i.e., pneumonia), our model suggests that this sign (in 294 

combination with age and temperature) is the most reliable predictor of ICU use over 295 

other common symptoms and signs such as cough, dyspnea, or respiratory crackles. 296 

 297 

In addition, given that the stability and capacity of ICUs worldwide is threatened by the 298 

rapid spread of the disease, the identification of individual factors that predict ICU 299 

admission may not only improve patient management but also optimize healthcare 300 

resource use and planning.  301 

 302 

Further applied to other national and international healthcare networks, the tools and 303 

methodology presented here can potentially characterize and predict the prognosis of 304 

COVID-19 in a timely and unprecedented manner. As recently pointed out[29, 30], 305 

there might be value in the application of artificial intelligence to the current COVID-19 306 

pandemic, not only to predict outbreaks[31] or read chest CT scans[32], but also to 307 

disentangle COVID-19’s clinical onset and natural history in nearly real-time. Indeed, 308 

classical methods would have required months of questionnaire-based data collection 309 

and questionnaire validation, along with multiple Ethics Board approvals and other 310 

practical hurdles, all saved with our current approach. 311 



 312 

In the race against COVID-19[33], where the goal is to curb the pandemic, it is 313 

imperative to leverage big data and intelligent analytics for the betterment of public 314 

health. However, it is of the utmost importance not to neglect privacy and public trust, 315 

to keep best practices, and to maintain responsible standards for data collection and 316 

data processing at a global scale[34]. 317 

 318 

Strengths and Limitations 319 

To our knowledge, this is the first study using NLP and machine learning to access 320 

real-world data in such a large COVID-19 population. Indeed, our state-ot-the-art 321 

methodology allowed for the rapid analysis of the unstructured free-text narratives in 322 

the EHRs of one million patients from the general population of the region of Castilla 323 

La-Mancha (Spain).  324 

Our methodology combined modules for sentence segmentation, tokenization, text 325 

normalization, acronym disambiguation, negation detection, and a multi-dimensional 326 

ranking scheme; the latter involved linguistic knowledge, statistical evidence, and 327 

continuous vector representations of words and documents learned via shallow neural 328 

networks. When applied to EHRs, NLP enables a) access to entire track records for all 329 

patients in the target population, and b) the implementation of exploratory analysis to 330 

unravel associations between variables that have remained undetected with traditional 331 

research methods. By considering all possible patients with the target disease, the 332 

information and analyses used here (i.e., RWD and free-scale statistics) remained 333 

unbiased by the research question or the observers. Unlike classical statistical 334 

methods (e.g., logistic regression), the main advantage associated with the use of ML 335 

in this context is that it allows for the automatic detection of meaningful relationships 336 

between variables. For instance, if a given symptom (i.e., fever) is only relevant for 337 

certain patients (i.e., older than 50), techniques such as the classification trees used 338 

here are suitable to uncover this relationship. In this context, although the total number 339 

of patients that required ICU use in the training set was somewhat low (48 patients), 340 

the number of variables considered in the model was also very limited. In addition, the 341 

inclusion of a validation stage reduces the likelihood of overfitting. Ultimately, the use of 342 

classifications trees in this study (as opposed to other models such as Artificial Neural 343 

Networks) is especially appropriate in the clinical context because they are easily 344 

interpretable. 345 

Regarding the geographical location of our participating hospital sites, it is worth 346 

mentioning that with a total of 1,364,924 patients from the region of Castilla La-Mancha 347 

(SESCAM Healthcare Network), our sample is representative of the Spanish 348 

population; Spain has been among the hardest hit countries by the pandemic, in terms 349 

of both total cases and mortality rates [35, 36], and this region in particular is the third 350 

most affected in the country, just behind Madrid and Catalonia. For this reason, we 351 

anticipate that the clinical conclusions drawn here are relevant for clinicians worldwide. 352 

Of note, ICU capacity in the region during the study period was not compromised yet, 353 

which protects against possible bias in our training data (all patients requiring intensive 354 

care were indeed admitted to the ICU).  355 

The results and conclusions of the present study should be interpreted in light of the 356 

following limitations. First, we did not distinguish COVID-19 cases confirmed by 357 

laboratory results (i.e, RT-PCR) from those exclusively diagnosed through clinical 358 

observation (i.e., symptomatology, imaging and laboratory results). However, it should 359 



be noted that PCR and other rapid laboratory tests for the detection of SARS-CoV-2 360 

were not routinely administered in Spain during the study period. In addition, this 361 

decision is supported by recent discussions on the clinical validity and relatively high 362 

sensitivity of symptom- and imaging-based identification of COVID-19 patients, 363 

especially in early stages of the disease[17, 19, 20].  Second, independent replications 364 

by different research groups in larger patient sets are needed to further support the 365 

clinical validity of our results.  366 

Finally, future reports from the BIGCOVIData study may incorporate laboratory results 367 

and treatments, and contextualize the results presented here in a larger clinical 368 

picture[25].  369 

We conclude that, in the largest series of COVID-19 patients attended during the first 370 

three months of the pandemic in Spain, 6% of all hospitalized patients required ICU; 371 

and that a combination of easily obtained clinical variables, namely age, fever, and 372 

tachypnoea predicts which COVID-19 patients require ICU admission. 373 

 374 
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FIGURES and TABLES 484 

 485 

 486 

 487 

  488 

Figure 1. Map of Castilla-La Mancha.  489 

Footnote: Map of Castilla-La Mancha (red) within the Spanish (blue line) and 490 

European territories. From a source general population of 2,035,000 inhabitants, we 491 

collected and analyzed the clinical information in the EHRs of 1,364,924 patients within 492 

the SESCAM Healthcare Network.   493 



 494 

Figure 2. Patient flowchart.  495 

Footnote: Flowchart depicting the total number of inhabitants in the source population, 496 

the number (%) of patients with available EHRs analyzed, the number of patients 497 

diagnosed with COVID-19, and of those, the number of hospitalizations and ICU 498 

admissions.   499 



 500 

Figure 3. Age and Sex Distribution of COVID-19 patients.  501 

Footnote: Age distribution of incident cases of COVID-19 in females (left) and males 502 

(right) in the study population for the period comprised between Jan 1, 2020 and March 503 

29, 2020.   504 



 505 

Figure 4. Decision tree of relevant clinical variables for the prediction of ICU 506 

admission in COVID-19 patients.  507 

Footnote: The combination of three easily available clinical variables, namely age, 508 

temperature, and respiratory frequency, was the most parsimonious predictor of ICU 509 

admission among COVID-19 patients. The number of patients, probability (p) of ICU 510 

admission predicted by the model, and level of entropy (a measure indicating how 511 

mixed or pure the classification is, where 0 indicates optimal separation of classes) are 512 

indicated in each box. The green pathway indicates that those patients with no 513 

tachypnoea, younger than 56 years old, and with temperature less than 39ºC/102ºF 514 

(OR more than 39ºC/102ºF without respiratory crackles), did not require ICU 515 

admission. On the contrary, the red pathway indicates that patients aged 40-79 years, 516 

who presented with tachypnoea, and delayed their visit to the ER after being seen in 517 

primary care, were likely to be admitted in the ICU. For this model, we obtained 518 

accuracy, recall, and AUC values of 0.68, 0.71, and 0.76, respectively (top right panel). 519 

See text for further details.   520 



TABLE 1. Baseline demographics and clinical data upon diagnosis. 521 

 Female 
n = 4,984 

Male 
n = 5,519 

TOTAL 
n = 10,504 

p-
value* 

Sex     
Female   4,984(47.4)  
Male   5,519(52.5)  
Unknown   1(0.0)  

Age (in years)     
 Mean(SD) 57.4(20.0) 59.0(19.5) 58.2(19.7) <0.001 
 Median(Min-Max) 58.0(0.0-100.0) 60.0(0.0-102.0) 59.0(0.0-102.0)  
 (Q1-Q3) (44.0-73.0) (46.0-74.0) (45.0-73.0)  
Signs and Symptoms n(%)     

Cough 2,482(49.8) 2,760(50.0) 5,243(49.9) 0.8453 
Fever 2,120(42.5) 2,783(50.4) 4,904(46.7) <0.001 
Dyspnoea 1,476(29.6) 1,818(32.9) 3,294(31.4) <0.001 
Respiratory crackles 849(17.0) 1,085(19.7) 1,934(18.4) <0.001 
Diarrhoea 556(11.2) 543(9.8) 1,099(10.5) 0.03 
Myalgia 467(9.4) 451(8.2) 919(8.7) 0.0326 
Headache 462(9.3) 302(5.5) 764(7.3) <0.001 
Rhonchus 279(5.6) 414(7.5) 693(6.6) <0.001 
Chest pain 287(5.8) 267(4.8) 554(5.3) 0.039 
Lymphopenia 196(3.9) 346(6.3) 542(5.2) <0.001 
Wheezing 194(3.9) 195(3.5) 389(3.7) 0.3567 
Tachypnoea 135(2.7) 203(3.7) 338(3.2) 0.0059 
Anosmia 166(3.3) 134(2.4) 300(2.9) 0.0066 
Sore throat 69(1.4) 57(1.0) 127(1.2) 0.118 
Ageusia 33(0.7) 32(0.6) 65(0.6) 0.68 
Dysphagia 19(0.4) 28(0.5) 47(0.4) 0.4119 
Neuralgia 19(0.4) 22(0.4) 41(0.4) 1 
Splenomegaly 8(0.2) 14(0.3) 22(0.2) 0.4071 
Hepatomegaly 2(0.0) 6(0.1) 8(0.1) 0.3586 

Comorbidities n(%)#     
Cardiovascular disease 2,253(45.2) 2,805(50.8) 5,058(48.2) <0.001 

Hypertension 1,552(31.1) 1,975(35.8) 3,527(33.6) <0.001 
Ischemic stroke 91(1.8) 163(3.0) 254(2.4) <0.001 

Heart Disease  1100(22.1) 1539(27.9) 2639(25.1) <0.001 
Ischemic heart disease 152(3.0) 475(8.6) 627(6.0) <0.001 
Heart failure 243(4.9) 309(5.6) 552(5.3) 0.1063 

Diabetes 689(13.8) 957(17.3) 1646(15.7) <0.001 
Obesity 479(9.6) 457(8.3) 936(8.9) 0.0185 
Renal dysfunction 271(5.4) 493(8.9) 764(7.3) <0.001 

CKD 171(3.4) 323(5.9) 494(4.7) <0.001 
Depression 484(9.7) 219(4.0) 703(6.7) <0.001 
Chronic respiratory disease 242(4.9) 646(11.7) 888(8.5) <0.001 
         Asthma 496(10.0) 263(4.8) 759(7.2) <0.001 

COPD 126(2.5) 549(9.9) 675(6.4) <0.001 
        Obstructive sleep apnea 
syndrome (OSA) 

69(1.4) 143(2.6) 212(2.0) 
<0.001 

         Bronchiectasis 42(0.8) 87(1.6) 129(1.2) <0.001 
Chronic Liver Disease 36(0.7) 75(1.4) 111(1.1) 0.002 

Cirrhosis 16(0.3) 35(0.6) 51(0.5) 0.0304 
HIV 12(0.2) 22(0.4) 34(0.3) 0.2113 

Footnote: *p-values from Yates-corrected chi2 test on percentage difference of female vs. male COVID-19 patients. All 522 
tests were performed individually for each variable (comorbidity or sign/symptom, where applicable). For numerical 523 
values (i.e., age), t-tests of difference between means were used. #List of medical conditions according to SNOMED CT 524 
terminology. 525 

526 



TABLE 2. Association between ICU admission and comorbidities/signs and symptoms upon 527 
diagnosis in patients with COVID-19.  528 

COMORBIDITIES SIGNS AND SYMPTOMS 

Condition# No ICU  
n(%) 

ICU 
n(%) 

p-
value* 

Sign or 
Symptom 

No ICU  
n(%) 

ICU  
n(%) 

p-
value* 

Diabetes 1613(15.5) 33(39.8) <0.001 Cough 5181(49.7) 62(74.7) <0.001 
Obesity 917(8.8) 19(22.9) <0.001 Fever 4849(46.5) 55(66.3) <0.001 
Chronic 
respiratory 
disease 

883(8.5) 5(6) 0.548 Dyspnoea 3246(31.1) 48(57.8) <0.001 

COPD 
673(6.5) 2(2.4) 0.2029 

Respiratory 
crackles 

1904(18.3) 30(36.1) <0.001 

     Asthma 750(7.2) 9(10.8) 0.2868 Myalgia 908(8.7) 11(13.3) 0.2066 
     OSA 211(2) 1(1.2) 0.8908 Diarrhoea 1084(10.4) 15(18.1) 0.0363 
   Bronchiectasis 129(1.2) 0(0) 0.6033 Dysphagia 47(0.5) 0(0) 1 
Cardiovascular 
disease 

4998(48) 60(72.3) <0.001 Wheezing 383(3.7) 6(7.2) 0.1568 

Hypertension 3487(33.5) 40(48.2) 0.0066 Tachypnoea 311(3) 27(32.5) <0.001 
Ischemic 
stroke 

253(2.4) 1(1.2) 0.716 Chest pain 546(5.2) 8(9.6) 0.1237 

Heart Disease 2604(25) 35(42.2) <0.001 Lymphopenia 524(5) 18(21.7) <0.001 
Ischemic 
Heart 
Disease  

616(5.9) 11(13.3) 0.0099 Headache 757(7.3) 7(8.4) 0.8442 

Heart failure 548(5.3) 4(4.8) 1 Rhonchus 676(6.5) 17(20.5) <0.001 
Renal 
dysfunction 

748(7.2) 16(19.3) <0.001 Hepatomegaly 8(0.1) 0(0) 1 

CKD 488(4.7) 6(7.2) 0.4059 Anosmia 297(2.9) 3(3.6) 0.9317 
Chronic Liver 
Disease 

109(1) 2(2.4) 0.502 Ageusia 65(0.6) 0(0) 0.9847 

Cirrhosis 51(0.5) 0(0) 1 Neuralgia 41(0.4) 0(0) 1 
Depression 699(6.7) 4(4.8) 0.6418 Sore throat 126(1.2) 1(1.2) 1 
HIV 33(0.3) 1(1.2) 0.6536 Splenomegaly 21(0.2) 1(1.2) 0.4317 

Footnote: *p-values from Yates-corrected chi2 test of difference between percentage of patients in either outcome 529 
group. All tests were performed individually for each variable (comorbidity or sign/symptom, where applicable). #List of 530 
medical conditions according to SNOMED CT terminology.  531 


