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Abstract 
 
In this paper we provide forecasts of the cumulative number of confirmed reported cases in 
Brazil, specifically in Pernambuco and Ceara, by using the generalized logistic growth 
model, the Richards growth model and Susceptible, Un-quanrantined infected, Quarantined 
infected, Confirmed infected (SUQC) phenomenological model. We rely on the Nash-
Sutcliffe efficiency (NSE), root-mean-square error (RMSE) and mean absolute relative error 
(MARE) to quantify the quality of the models’ fits during the calibrationAll of these analyzes 
have been valid until the present date, April 14, 2020. The different models provide insights 
of our scenario predictions. 
 
Keywords:  epidemic modeling, prediction, generalized logistic growth model (GLM), 
Richards Model, SUQC Model, Brazil. 
 
 
1. Introduction 
 

According to (Ferguson et al., 2020), the COVID-19 pandemic is now a major global health 
threat. In Brazil, due concern for the rapid spread of the virus throughout the country, 
considering human transmission, the Federal and State Governments have adopted 
containment strategies throughout the whole country. As of 16th April 2020, there have been 
28,320 cases, in which 14,026 recovery and 1,736 deaths confirmed in Brazil. 
 
(Liu et al., 2020) stated that several studies have estimated basic production number of novel 
COVID-19. Mathematical modelling of disease transmission have a greater role in supporting 
clinical diagnosis and optimizing a combination of strategies (Jia & Lu, 2020) understanding, 
e.g., i) how transmissible the disease is, ii) when the infectiousness is highest during the 
course of infection, iii) how severe the infection is, and iv) how effective interventions have 
been and ought to be (Tang et al., 2020). However, time-varying transmission dynamics of 
COVID19 during the outbreak remain unclear (Liu et al., 2020). 



 
Most of previous work use simple exponential growth models and focus on the early growing 
process. On the other hand, there are also many works arguing that the number of infected 
people follows a trajectory different from a simple exponential growth. 
Thus, the present paper aims to use phenomenological models to dissect the development of 
the epidemics in Brazil, making a forecast of the daily incidence for the next five days and 
based on a 365-day simulation, starting on March 18, showing the likely size of the outbreak. 
For this, Richards growth model (Wu, Darcet, Wang, & Sornette, 2020) was used to 
characterize the dynamics of COVID-19 in Brail, specifically in the state of Pernambuco and 
Ceara, northeast Brazil. Thus, this paper is an exploratory evaluation in analysis that 
contribute not only to the literature, but to local governments.  
 
2. Methods 
 
2.1 Data Collection 

 

As in (Roosa et al., 2020), we obtained daily updates (until April 16, 2020) of the cumulative 
number of reported confirmed cases for the 2019-nCoV epidemic across states in Brazil, 
from the Brazilian Ministry of Nacional Health website (saude.gov.br). The data contains 
information about the 26 states and a Federal district of Brazil. Besides these data, we also 
collect the measures that each state is taking to combat covid-19 
(www.agenciabrasil.ebc.com.br). 
 
2.2 Models 
 
At present, several researchers have contributed to the literature about the COVID-19, thus 
different methodologies have been implemented to support and control the increasing number 
of infected human  (Roda, Varughese, Han, & Li, 2020), (S. Zhang et al., 2020), (Roosa et 
al., 2020). In this context, there are traditional models, as: SIR (susceptible population (S), 
Infected population (I), and recovered population (R, Including death) model has been widely 
used for modeling infectious diseases (Yu, 2020). SEIR (susceptible-exposed-infected-
removed) model (Zhou et al., 2020), in which is considered the Exposed, ones. 
 
In this paper, we generate short-term forecasts in real-time using three phenomenological 
models that have been previously used to derive short-term forecasts: (i) The generalized 
logistic growth model (GLM) extends the simple logistic growth model to accommodate sub-
exponential growth dynamics with a scaling of growth parameter, p. Logistic model (GLM) 
based on the initial growth phase of an epidemic tend to under predict disease incidence 
before the inflection point has occurred 
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This model also includes flexible growth scaling via the parameter to model a range of early 
epidemic growth profiles ranging from constant incidence (p=0), polynomial (0 < p < 1) and 
exponential growth dynamics (p =1). The remaining model parameters are as follows: r is the 
growth rate, and K0 is the final epidemic size. For this model, we estimate  Θ= (r, p, K0) 



where f (t, Θ) = C’(t) and fix the initial number of cases C(0) according to the first 
observation in the data. 
 
(ii)  (Wu et al., 2020) generate short-term forecasts in real-time using the generalized 
Richards model to the reported number of infected cases. The original Richards growth 
model describes three free parameters, which has been fitted to a range of logistic-type 
epidemic curves, according to differential Eq. (1) (Chowell, 2017).  
 �����

�� � ����� �1 	 �����

 �� 

 (2) 
 

where, where C(t) represents the cumulative number of cases at time t, r is the growth rate in 
the initial stage and K is the final size of the epidemic. However, according to these authors, 
during the early stages of disease propagation, when C(t) is significantly smaller than K, this 
model assumes an initial exponential growth phase. To account for initial sub-exponential 
growth dynamics, it is incorporated a deceleration of growth parameter (p), � ∈ [0.1], 
allowing the model to capture different growth profiles, replacing the growth term rC by rCp. 
Besides, the α exponent measures the deviation of the s-shaped symmetric dynamics of the 
simple logistic curve. Basically, the Generalized Richards model (GRM) is defined by the 
differential Eq. (2): 
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For more detail of this model, we suggest (Wu et al., 2020);(Roosa et al., 2020) (Zhao & 
Chen, 2020) (Chowell, 2017) 
 
(iii) (Zhao & Chen, 2020) develop a Susceptible, Un-quanrantined infected, Quarantined 
infected, Confirmed infected (SUQC) model to characterize the dynamics of COVID-19. In 
this model, S= S(t) is the number of susceptible individuals with no resistance to disease in 
the population; U=U(t), is the number of infected and un-quarantined individuals that can be 
either presymptomatic or symptomatic; Q=Q(t), is the number of quarantined infected 
individuals. C=C(t), the number of confirmed infected cases. Thus, we can developed a 
composite variable I(t) = U(t) + Q(t) + C(t), representing the real cumulative number of 
infected individuals at time t. The model comprises the following independent parameters: α 
is the infection rate, the mean number of new infected caused by an un-quarantined infected 
per day ( α ∈ [0, ∞));  ��is the quarantine rate for an un-quarantined infected being 
quarantined, with the range �� ∈ [0,1]; ��, the confirmation rate of Q, is the probability that 
the quarantined infected are identified to be confirmatory cases by a conventional method, 
such as the laboratory diagnosis, with the range �� ∈ [0,1]. Thus, the ODE equations to model 
the dynamics of infectious disease and the control by artificial factors (Eq.3) 
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According to the authors, from the above SUQC model, we can further define some 
biologically meaningful parameters, for monitoring and predicting the trend of disease: T = 
1/γ1 is the mean waiting time from quarantine to confirmation, w = 1/[�� 	 �1 	 ����] is the 
meantime delay from isolation to confirmation; the reproductive number of the infection is 
R=α/γ1. Differently from SIR/SEIR models, the number of removed individuals, is not 
included in the model as in the. Once the infected are quarantined, the authors assume their 
probability of infecting susceptible individuals is zero, and thus no matter the infected are 
recovered or not, they have no effect on the dynamics of the epidemic system. Besides, with 
the results of the model, the authors also analyzed the intervention effects of control measures 
 
Therefore, once the SUQC model (Zhao & Chen, 2020) takes into account all the 
particularities of COVID-19: (i) the epidemic has a probability of infection during the 
incubation period (pre-symptomatic); (ii) various isolation measures are used to control the 
development of the epidemic; (iii) the main source of data is the daily number of confirmed 
infections reported in the official report, affected by the detection method and with a delay 
between the actual infected number and the confirmed infected number, we agreed that their 
model is more suitable for analysis than other existing epidemic models, and finally we 
decided to use it. For more detail of this model, we suggest (Zhao & Chen, 2020) 
 
3. Results 
 
3.1 Model calibration 
 
We calibrate each model to the daily cumulative reported case counts for Brazil and other 
states (Pernambuco and Ceara). After fitting the model with the recent data from Brazilian 
Ministry of Nacional Health website (saude.gov.br), we make a series of predictions about 



future dynamics of the COVID-19 outbreak in Brazil and the state of Pernambuco. We also 
extended some analysis for the state of Ceara.  
 
We estimate the best-fit model solution to the reported data using nonlinear least squares 
fitting. This process yields the set of model parameters Θ that minimizes the sum of squared 
errors between the model f(t, Θ) and the data yt; where ΘGLM=(r, p, K), ΘRich=(r, p, K,α), and 
ΘSUQC=(α,β,γ1,S(0),U(0),Q(0),C(0)) correspond to the estimated parameter sets for the GLM, 
the Richards model, and the SUQC model, respectively. 
Table 1, below, shows the GLM model’s parameters.  
 

 r p K NSE RMSE MARE 
Brazil 0.432 0.842 32433900.646 0.991 868.387 0.027 
CE 1.047 0.679 1183986.722 0.989 84.565 0.037 
PE 1.361 0.695 1524686.862 0.995 57.662 0.039 
Table 1 Parameter estimation of the epidemic dynamics in Brazil, Ceara, Pernambuco. 
 
Table 2, below, shows the Richards model’s parameters.  
 

 

 
 
Table 2 Parameter estimation of the epidemic dynamics in Brazil, Ceara, Pernambuco.  
 
Table 3, below, shows the SUQC model’s parameters.  
 

 
r α β γ1 S(0) U(0) Q(0) C(0) NSE RMSE MARE 

Brazil 4.050 0.212 0.145 0.052 119586642.484 37466.894 6843.530 11130.000 0.982 1241.051 0.037 
CE 4.961 0.251 0.125 0.051 5127326.325 2635.755 848.377 823.000 0.992 72.440 0.030 
PE 1.892 0.308 0.223 0.163 6900065.105 911.134 204.208 201.000 0.999 26.163 0.018 
Table 3 Parameter estimation of the epidemic dynamics in Brazil, Ceara, Pernambuco. 
 
It is noted that the state of Pernambuco had the lowest detection rate of the virus, this was 
possible due to the lack of a virus detection test in the state. However, with the arrival of the 
new tests, it is expected that this rate will increase. 
 
3.2 Initial Growth Rate (r) and Final magnitude of the epidemic (K) Analysis  
 
In Figures 1-2 the growth rate of confirmed cases in whole Brazil are presented, based on 
Generalized Richards model and with the standard logistic growth model. While the two 
models estimated stable and nearly equivalent growth rates in Brazil, the estimated growth 
rates for other states vary across models and do not follow a distinct trend as more data 
become available. However, the scaling and size parameters (Figure 3-4) remain relatively 
stable across all states. 
 
 
 

 r p K α NSE RMSE MARE 

Brazil 0.527 0.855 32433901.827 0.171 0.993 774.540 0.025 
CE 1.746 1.000 1183991.236 0.009 0.990 81.428 0.033 
PE 0.997 0.764 1524337.774 0.265 0.993 67.969 0.046 



 

 
Fig 1 Grotwth rate based on GLM model 
 

 

Fig 2 Grotwth rate based on GRM model 
 

 
 

 

 
Fig 3 Final epidemic size (K) based on GLM model 
 

 

Fig 4 Final epidemic size (K)based on GRM model 
 

 
3.3 Forecast of the total number of cases in 7 days 
 
As stated before, several intervention measures have been adopted by the Federal and State 
governments. Figures 5-7, below, seek to demonstrate the impact of social mitigation and 
adoption of new tests, on the trend of increasing cases in Brazil and in the states of Ceará and 
Pernambuco.  After the social mitigation of Brazil, Pernambuco and Ceara, and the top-level 
health emergency activated in most states on March 25, the transmission has been contained 
with a relatively fast exponential decay of the growth rate. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 

 
 
Fig 5 Forecast of the total number of cases in 7  
days based on GLM model 
 

 
 

Fig 6 Forecast of the total number of cases in 7 days  
based GRM model 
 
 

 

 
Fig 7 Forecast of the total number of cases in 7 days based SUQC model 

 
 
We can notice that, firstly there was a convergent analysis between the increasing forecasting 
of the three models. Secondly, there was a great impact on the growth of cases in the three 
locations, ranging from 50 to 90%. This is due to the SUQC model, that which presents a 
greater precision in the estimated number of infected. Nevertheless, this suggests that the 
epidemic lasts longer in Brazil compared to other states, which may be attributed to intensive 
control efforts and large-scale social distancing interventions 
 
 
 
 
 

 



3.4 Short-term predict of the total number of cases in 7 days 
 
Without considering the impact of social mitigation and adoption of new tests, on the trend of 
increasing cases in Brazil and in the states of Ceará and Pernambuco, we had also conducted 
a short-term perdiction of the totan numer of cases, in seven days, for all states of Brazil 
(Figures 8-10). Despite presenting some differences in the estimated values, mainly in the 
SUQC model, the three models presented the 7 most critical states: Sao Paulo, Rio de 
Janeiro, Ceara, Pernambuco, Amazonas, Maranhao and Espirito Santo. Among which, to 
date, April 21, 2020, Amazonas, Ceará and Pernambuco, occupy more than 90% of the ICU 
beds for Covid-19.  
 
 

 

 
Fig 8 Short-term predict (7 days) based on GLM model 
 

 

Fig 9 Short-term predict (7 days) based on GRM model 

 

 
Fig 10 Short-term predict (7 days) based on SUQC model 

 
 
 
 
 
 
 
 

 



 
3.5 Interval of days between the beginning and the peak of the epidemic 
 
We had also simulated the infected peak os cases (Figure 11-13). Althgough the result of the 
three models enphisize greater flattening in the curve, with a manageable number of sick / 
dead, Pernambuco and Ceara occupy more than 90% of the ICU beds for Covid-19. Besides, 
according to these results, Ceara calls for more attention.  
 
 

 

 
Fig 11 Percentage of daily cases based on GLM model 

 

Fig 12 Percentage of daily cases based on GRM model 

 

 
 

Fig 13 Percentage of daily cases based on SUQC model 
 
 
 
 
 
 
 
 

 



 
3.6 Number of days between the beginning and the peak of the epidemic 
 
Take into account all of Brazilian states, we analyzed the number of days between the 
beginning the start of adjustement and the peak of the epidemic. This information may lead to 
the understanding that some states are already experiencing the peak of the epidemic, while 
others are on the verge of that peak. 
 

 

 
Fig 14 Number of days between start of adjustment and the peak 
based on GLM model 

 

Fig 15 Number of days between start of adjustment and the
based on GRM model 
 

 

 
Fig 16 Number of days between start of adjustment and the peak based on SUQC model 

 
 
3.7 Maximum number of cases 
 
Beasides the number of days between the beginning and the peak of the epidemic, we also 
analyzed the maximum number of daily cases in Brazil and for other states. This information 
may lead to the understanding that some states are already experiencing the peak of the 
epidemic, while others are on the verge of that peak. 
 
 
 

 
the peak 



 
 

 

 
Fig 17 Maximum number of daily cases based on GLM model 
 

 

Fig 18 Maximum number of daily cases based on GRM m

 

 
Fig 19 Maximum number of daily cases based on SUQC model 

 
 
 
3.8 Growth Rate of Reproductive Number  
 
A simulation of the number of reproductions of the virus was made over time, as shown in 
Figure 20-22, below. It is possible to notice that, in gerenal, Brazil has been showing a 
downward trend, while the state of PE and CE has a growth trend, mainly after April 13. 
However, Ceara continues to show greater value for the reprotuvity index in the three 
models.  
 
 
 
 
 
 
 

 
model 



 
 

 

 
Fig 20 Growth rate (interval of 15 days) based on GLM model 
 
 

 

Fig 21 Growth rate (interval of 15 days) based on GRM model
 

 

 
Fig 22 Growth rate (interval of 15 days) based on SUQC model 
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3.9 Total Estimated Death  
 
A simulation of the total number of deaths was made for Brazil and its all states, as shown in 
Figure 23-25, below, based on the lethality rates. Special attention should be given to Sao 
Paulo, Pernambuco and Rio de Janeiro states. In fact, until the present date, April 22, 
according to data from the Ministry of Health, in the ranking of confirmed and fatal cases, 
Sao Paulo, Rio de Janeiro, Ceara, Pernambuco and Amazonas, lead this list. 
 
 

 

 
Fig 23 Total estimated deaths based on GLM model 
 

 

 
Fig 24 Total estimated deaths based on GRM model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 25 Total estimated deaths based on SUQC mode 
 

 
 
 
 
 

 



 
 
 
3.10 Final Analysis based on SUQC Model  
 
The SUQC Model, to model COVID-19 cases, is usefull to understand the dynamic of the 
COVID. Figure 26-28, below, shows the model's output variables in a 380-day simulation 
from April 5th for Brazil, Pernambuco and Ceara. As described before, the SUQC model 
takes into account the number of susceptible people (S), people infected in non-quarantine 
(U), people infected in quarantine (Q) and the total number of case confirmations (C) from 
COVID-19, and with them, still the total number of infected people can be estimated (I = 
U+Q+C).  
 
 

 

 
Fig 27 SUQC model of Pernambuco 

 

 
Fig 28 SUQC model of Ceara 
 

 

 
Fig 26 SUQC model of Brazil 

 
 
 
 
 



 
 
 
As the epidemic runs its course, the susceptible are infected.The Figure 30, below, shows the 
current lethality of the virus, which was calculated from the ratio between the total number of 
deaths and the total number of confirmed cases. Among the states reported with the highest 
lethality rate, Pernambuco, Rio de Janeiro and Sao Paulo. Brazil has a 6.3% lethality rate, 
that is a rate close to that presented in China (country of origin of the disease).  
 

 
Fig 30 Total deaths per total confirmed cases 
 
 
By the other side, as the SUQC model is able to provide an estimate of the total number of 
infected (I), we can estimate the true lethality of the virus, as shown in Figure 31, below: 
 



 
Fig 31 Total deaths per all infected cases  
It is noted that, concerning to the lethality calculated from the confirmed cases, there was a 
reduction of about four times for Brazil. In this new assessment, the country had a 1.5% 
lethality rate, leaving it very close to the lethality rate of countries with the greatest potential 
for detecting pre-symptomatic people such as Germany (about 1%). This indicates that the 
model has a great capacity to estimate the number of pre-symptomatic people who are not in 
confinement (U). This makes it a crucial tool for making decisions about whether or not to 
intensify social isolation. 
 
 
4. Discussion and concluding remarks 
 

In this paper, we provide timely short-term forecasts of the cumulative number of reported 
cases of the 2019-nCoV epidemic in Brazil and the state of Pernambuco and Ceara, northeast 
Brazil, based on the GLM, Richards and SUQC model. By using this procedure, we refit our 
proposed dynamics transmission model to the data available until April 16th, 2020 and re-
estimated the daily reproduction number, which implies the evolving epidemic trend. Overall, 
our findings supports several other studies (J. Zhang et al., 2020), in which indicate that 
intervention measures might contribute to interrupt local transmission. 
 
The forecasts presented are based on the assumption that current mitigation efforts will 
continue. 
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