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Abstract 2 

Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder characterized by 3 

frontal and temporal lobe atrophy, typically manifesting with behavioural or language 4 

impairment. Because of its heterogeneity and lack of available diagnostic laboratory tests there 5 

can be a substantial delay in diagnosis. Cell-free, circulating, microRNAs are increasingly 6 

investigated as biomarkers for neurodegeneration, but their value in FTD is not yet established.  7 

In this study, we investigate microRNAs as biomarkers for FTD diagnosis. We performed next 8 

generation small RNA sequencing on cell-free plasma from 52 FTD cases and 21 controls.  The 9 

analysis revealed the diagnostic importance of 20 circulating endogenous miRNAs in 10 

distinguishing FTD cases from controls. The study was repeated in an independent second cohort 11 

of 117 FTD cases and 35 controls. The combinatorial microRNA signature from the first cohort, 12 

precisely diagnosed FTD samples in a second cohort. To further increase the generalizability of 13 

the prediction, we implemented machine learning techniques in a merged dataset of the two 14 

cohorts, which resulted in a comparable or improved classification precision with a smaller panel 15 

of miRNA classifiers. In addition, there are intriguing molecular commonalities with cell free 16 

miRNA signature in ALS, a motor neuron disease that resides on a pathological continuum with 17 

FTD. However, the signature that describes the ALS-FTD spectrum is not shared with blood 18 

miRNA profiles of patients with multiple sclerosis. Thus, microRNAs are 19 

promising FTD biomarkers that might enable earlier detection of FTD and improve accurate 20 

identification of patients for clinical trials  21 

22 
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Introduction 23 

Frontotemporal dementia (FTD) is a clinically and neuroanatomically heterogeneous 24 

neurodegenerative disorder characterized by frontal and temporal lobe atrophy. It typically 25 

manifests between the ages of 50 and 70 with behavioral or language problems, and below the 26 

age of 65 is the second most common form of dementia, after Alzheimer’s disease  (1). 27 

 28 

Due to heterogeneity in clinical presentation FTD can be difficult to diagnose (2). Three main 29 

phenotypes are described: behavioral variant frontotemporal dementia (bvFTD), characterized by 30 

changes in social behaviour and conduct, semantic dementia (SD), characterized by the loss 31 

of semantic knowledge, leading to impaired word comprehension, and progressive non-fluent 32 

aphasia (PNFA), characterized by progressive difficulties in speech production (2, 3).  33 

 34 

FTD is also pathologically heterogeneous with inclusions seen containing hyperphosphorylated 35 

tau (4), TDP- 43 (5), or fused in sarcoma (FUS) (6, 7). Mutations in the genes encoding for these 36 

proteins, as well as in other genes such as progranulin (GRN), chromosome 9 open reading 37 

frame 72 (C9ORF72), valosin-containing protein (VCP), TANK-binding kinase 1 (TBK1) and 38 

charged multivesicular body protein 2B (CHMP2B) are also associated with FTD (8-11).     39 

 40 

FTD overlaps clinically, pathologically and genetically with several other degenerative disorders. 41 

In particular, there is often overlap with amyotrophic lateral sclerosis (ALS): one in 5 ALS 42 

patients meets the clinical criteria for a concomitant diagnosis of FTD, and one in eight FTD 43 

patients is also diagnosed with ALS. TDP-43 inclusions are observed in the brains of both people 44 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408


 

 

with FTD and ALS, and genetic evidence supports that these diseases reside along a continuum 45 

(5, 12-14).  46 

 47 

Previous studies have aimed to develop cell-free biomarkers for FTD, including TDP-43 (15), 48 

tau (16), and neurofilament light chain (NfL) (17), but none of these have shown use for 49 

diagnosis. microRNAs (miRNAs), endogenous non-coding RNAs, can be quantified in biofluids 50 

(18), and have been shown previously to be dysregulated in amyotrophic lateral sclerosis (ALS) 51 

and in FTD (19). Furthermore, they may be biomarkers of disease progression in other brain 52 

diseases, including ALS (20). Previous studies have assessed the initial potential of microRNAs 53 

as diagnostic FTD biomarkers including miRNA analysis in plasma (21, 22), CSF and serum 54 

(23), and CSF exosomes (24) but no definitive markers have so far been found. We therefore 55 

aimed to study a large cohort of patients with different clinical phenotypes and pathological 56 

forms of FTD, to see whether they are able to reliably distinguish cases from controls, and 57 

different forms of FTD from each other. 58 

                 59 

Here, we provide an unbiased signature of plasma miRNAs that has good diagnostic power in a 60 

large and heterogeneous cohort of patients with FTD, which is further predictive in an 61 

independent second cohort and may contribute to FTD subtyping. Therefore, circulating 62 

miRNAs hold a fascinating potential as diagnostic biomarkers and as means for patient 63 

stratification in clinical trials.     64 

 65 

 66 

 67 
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Results 68 

A plasma miRNA classifier for FTD  69 

In order to characterize the potential of plasma miRNAs as biomarkers for FTD we assembled a 70 

cohort of 73 plasma samples (subject information in Table 1), purified RNA and performed next 71 

generation sequencing (NGS). As many as 2313 individual miRNA species were aligned to the 72 

human genome (GRCh37/hg19) across all samples. However, only 137 miRNA species 73 

exceeded a cut-off of ≥100 UMIs per sample averaged on all samples. Of the 137 detected 74 

miRNAs, 20 miRNA changed in a statistically significant manner in FTD plasma relative to 75 

control (p-value < 0.05, Wald test; Figure 1A). Two miRNAs, whose levels decreased to the 76 

greatest extent in FTD compared to controls, namely, miR-379-5p and miR-654-3p (1.4 fold), 77 

remained significant after multiple hypothesis testing (Figure 1B).   78 

 79 

We next studied miRNA capacity as binary disease classifiers, by generating receiver-operating 80 

characteristic (ROC) curves. ROC area under the curve (AUC) suggested modest predictive 81 

capacity for miR-379-5p and for miR-654-3p (AUC for both: 0.71±0.07, p<0.01; Figure 1C). 82 

 83 

We further utilized the combinatorial signature of the 20 miRNAs that were differentially 84 

expressed between FTD patient plasma and control (Table S1). Using these, an ROC AUC of 85 

0.79±0.05 (p<0.0001, Fig. 1C) was found, which was superior to the prediction capacity of any 86 

individual miRNA. 87 

 88 

 89 
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Assessment of plasma miRNA classifier for FTD in a second cohort  90 

We then performed a replication study in an independent cohort of 117 FTD cases and 35 age-91 

matched controls (Table 1). In this study, the levels of 58 miRNAs decreased and 89 increased in 92 

a statistically significant manner in FTD, relative to control plasma (p-value <0.05, Wald test, 93 

Figure 2A and Table S1). Noticeable miRNAs were miR-125b-2-3p (× 26 up, p = 1.4x10-25), 94 

miR-34b-5p (× 23 up, adj. p = 9.8x10-23) and miR-379-5p (× 2.2 down, p = 1.9x10-14). 144 of the 95 

147 miRNAs further survived adjustment for multiple comparisons by Benjamini–Hochberg 96 

procedure (adjusted p-value < 0.05).  97 

 98 

The expression of the 20 miRNAs that were most differentially expressed in the first cohort 99 

correlated with their respective expression in the second cohort (Pearson R of log 2 fold-change 100 

= 0.75, p=0.0001, Fig. 2B). Furthermore, the combined predictive power of the 20 miRNAs, that 101 

were decided on as a classifier based on data of the first cohort, was slightly superior in the 102 

replication cohort, with an AUC of 0.82±0.04 (p<0.0001, Fig. 2C). 103 

 104 

In addition to external validation, by testing a second cohort, we sought to guarantee the 105 

generalizability by applying K-fold cross-validation, which is an internal validation technique to 106 

evaluate performance and prevent overfitting (25, 26). Towards this we divided the 225 datasets 107 

(from 56 control and 169 FTD samples) randomly into three equal parts, or ‘folds’, of 75 108 

datasets, each. A machine learning model was trained using each time 2 of the 3 data folds (150 109 

samples) for building a prediction model and applying the prediction rule to estimate the 110 

prediction precision on the remaining 75 samples in the remaining third fold. This step was 111 

repeated k = 3 times iteratively so all folds were used twice in training and once for the testing 112 
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process. 136 miRNAs that were measured above noise levels in all cohorts were included, 113 

yielding the following AUCs: 0.90 for fold 1; 0.87 for fold 2; and 0.93 for fold 3, with an 114 

average AUC of 0.90 (Fig. 2D). 115 

 116 

We next aimed to reduce the complexity of the measurements required for prediction by 117 

identifying the top 20 miRNA predictors per fold, i.e. the 20 miRNAs with the highest weighted 118 

importance in predicting disease status (Fig. 3A-C). We reduced the number of miRNAs 119 

gradually, starting from a 43 miRNA panel composed of the top 20 predictors in at least one fold 120 

(i.e., in one, two or three folds), which resulted in AUCs of 0.87, 0.87, 0.94 and an average AUC 121 

of 0.89 (Fig. 3D). We then utilized 13 miRNAs that were among the top 20 in at least two folds 122 

which resulted in AUCs of 0.85, 0.89 and 0.93, and an average of 0.89 (Fig. 3E). Finally, we 123 

used only four miRNAs - miR-26a-5p, miR-326, miR-203a-3p and miR-629-5p – that were 124 

among the top 20 predictors in all three folds.  Their combinatorial AUCs after cross-validation 125 

were 0.81, 0.83 and 0.89 and 0.85 on average (Fig. 3F). All panels of miRNAs used for the 126 

cross-validation are listed in Table S1.  127 

 128 

These measurements were comparable to the AUC obtained with 136 miRNAs (Fig. 2D), 129 

revealing that the diagnostic power was not compromised by a substantial reduction of the 130 

miRNA numbers. 131 

 132 

 133 

 134 

 135 
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Overlap between FTD miRNA signature and ALS miRNA signature  136 

FTD and ALS are two diseases on a neuropathology continuum. We aimed to determine whether 137 

the miRNA signatures found in FTD and in ALS reveal any molecular similarity. For this 138 

purpose, we sequenced and analyzed the differences between 115 ALS cases and 103 controls 139 

(see Table 2). We also sequenced 17 samples from patients with multiple sclerosis (MS), because 140 

this disease is mechanistically different from FTD and involves autoimmune-related 141 

demyelination, so molecular similarity to FTD is not expected to be seen. 161 miRNA species 142 

were differentially expressed in either one of the diseases (FTD, ALS or MS) vs controls. 143 

Differentially expressed miRNAs in either FTD or ALS were correlated in fold-change values 144 

between the diseases (Pearson R for log-transformed values = 0.35, p<0.0001, Figure 4A), but no 145 

such correlation was found between FTD and MS (R= - 0.15, p=0.15, Figure 4B).  Intriguingly, 146 

muscle-specific miR-206 robustly increases in ALS, in agreement with previous reports (27-30) 147 

with no change at all in FTD.  148 

 149 

We next tested the degree of overlap between miRNAs differentially expressed in FTD vs. ALS. 150 

Seven out of 20 miRNAs changed exclusively in FTD, and the remaining 13 miRNAs changed 151 

in a significant manner in both FTD and ALS (Figure 4C; Table S1). Remarkably, the 152 

directionality of change for these miRNAs (increase/decrease) was consistent across diseases for 153 

all of the miRNAs but one, miR-29a-3p which decreased in FTD and increased in ALS (Figure 154 

4A). Moreover, the fold-change values in this subset of 13 miRNAs that have changed in both 155 

ALS and FTD, were highly correlated between the diseases (Pearson R = 0.90, p<0.0001). In 156 

contrast, only five out of the 20 miRNAs that changed in FTD, also changed in MS (Figure 4D; 157 

Table S1). Taken together, the miRNA signature in FTD plasma shows a similarity to the ALS 158 
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plasma signature, but not to the MS signature, in accordance with pathological and clinical 159 

similarities between FTD and ALS. 160 

 161 

Finally, we employed the FTD predictor, based on 20 miRNAs that are changing in FTD on ALS 162 

and healthy control cohorts. The signature of 20 miRNAs was able to correctly call ALS from 163 

controls more than at random (ROC AUC = 0.63, p<0.001, Table S2), while the seven miRNAs 164 

that are exclusively changed in FTD were not able to distinguish between ALS and control in a 165 

statistically significant manner (ROC AUC = 0.57, p=0.06). Thus, miRNAs that are differentially 166 

expressed in FTD have a moderate capacity to predict ALS. 167 

 168 

miRNAs signature of FTD subtypes and FTD patients with different pathologies 169 

We next tested whether specific miRNAs changed in the main FTD subtypes, bvFTD, SD and 170 

PNFA. After statistical adjustment for multiple comparisons, four miRNAs decreased in a 171 

significant manner in PNFA, and two miRNAs decreased and one miRNA increased 172 

significantly in bvFTD, whereas the small SD sample numbers (n=8) did not allow to depict 173 

microRNAs that are changed in a significant manner after adjustment for multiple comparisons 174 

(Fig. S1A-C).  175 

 176 

We calculated a decent combinatorial predictive power for the 20 miRNAs in distinguishing 177 

bvFTD / SD / PNFA from healthy controls: thus, for bvFTD vs. healthy controls in the original 178 

cohort we obtained an AUC of 0.85±0.06, p<0.0001; in the replication cohort AUC of 179 

0.80±0.05, p<0.0001, Fig. S1D; for SD vs. controls, original cohort AUC was 0.86±0.08, 180 
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p=0.003; replication cohort AUC was 0.79±0.06, p=0.0003 (Fig. S1E); for PNFA vs. controls, 181 

original cohort AUC was 0.81±0.08, p=0.002; replication cohort AUC was 0.81±0.05, p<0.0001 182 

(Fig. S1F). We concluded that the combinatorial 20 miRNAs signature distinguishes FTD and its 183 

subtypes from controls with comparable AUCs, for all three subtypes.  184 

 185 

The overlap of symptoms between subtypes of FTD poses a diagnostic challenge (31). We 186 

therefore tested whether FTD subtypes could be distinguished based on miRNA signature. We 187 

analyzed miRNA differential expression of PNFA cases vs. non-PNFA, which pooled together 188 

bvFTD and SD cases, due to a similar molecular signature of SD and bvFTD. Fourteen miRNAs 189 

changed in a significant manner in PNFA vs non-PNFA: miR-625-3p, miR-625-5p, miR-126-5p, 190 

miR-146a-5p, miR-146b-5p, miR-340-5p, miR-181a-5p (all increased in PNFA compared to 191 

non-PNFA) and miR-342-3p, let-7d-3p, miR-122-5p, miR-192-5p, miR-16-5p, miR-203a-3p 192 

(decreased; Fig. S1G). The combinatorial signature of these fourteen miRNAs yielded an AUC 193 

of 0.81±0.08 (Fig. S1H; p=0.0007), indicating that PNFA can be differentiated from other types 194 

of FTD with a high accuracy.  195 

 196 

We also tested whether specific miRNAs changed between FTD cases with different likely 197 

underlying pathologies, i.e. tau and TDP-43. 19 FTD cases with predicted Tau pathology based 198 

on genetics (4 in cohort I + 15 in cohort II) were compared to 63 cases with predicted TDP-43 199 

pathology (23 in cohort I + 40 in cohort II). Fourteen miRNAs changed in a statistically 200 

significant manner, but none remained significant after correction for multiple hypotheses (Fig. 201 

S2A). The combinatorial signature of these 14 miRNAs had a weak classification power, though 202 

it was statistically significant (AUC of ROC = 0.7±0.06, p=0.009, Fig. S2B). Taken together, the 203 
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miRNA profile in our dataset has limited diagnostic power for pathological subtypes of FTD, as 204 

opposed to FTD vs control and different clinical subtypes of FTD.  205 

 206 

207 
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Discussion 208 

Our study utilizes a large cohort of FTD blood samples. It is the first work that employs next 209 

generation sequencing technology for FTD biomarkers. We defined a signature, composed of 20 210 

miRNAs, that is able to classify FTD. This signature that was discovered in an initial cohort was 211 

informative when applied to a second cohort. These observations suggest that miRNAs can be 212 

potentially utilized in clinical sampling as diagnostic FTD markers, which is needed because of 213 

non-specific early symptoms and overlap with other degenerative and non-degenerative 214 

conditions. Ours is the largest cohort used for miRNA profile, and its use of unbiased exhaustive 215 

next generation sequencing can potentially explain the discrepancies from past studies with 216 

smaller cohorts and biased miRNA choices (21-24).   217 

A classifier panel of 20 miRNAs had ~80% chance to correctly call FTD in the first cohort. 218 

Reassuringly, it was comparably informative in calling FTD correctly also on a second cohort. In 219 

addition to external (second cohort) validation, we applied machine learning to the whole dataset 220 

of 225 samples. Through iterative learning, we defined a signature created by 136 miRNAs that 221 

was able to call FTD correctly in 90% of cases. We then reduced the signature complexity to the 222 

usage of only 43 miRNAs with the highest classification power that kept a true FTD calling 223 

capacity of 90%. Toward clinical diagnostic usage it is warranted to test the predictor that was 224 

developed in machine learning on an independent cohort, preferentially of different ethnicity.  225 

 226 

Interestingly, the miRNA signatures of FTD is akin of ALS perhaps reflecting on a shared patho-227 

mechanism for these two neurodegenerative disorders on the ALS-FTD continuum. This 228 

similarity cannot be extended to multiple sclerosis, a disease that is driven by a different, 229 
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autoimmune, mechanism. Nonetheless, the two diseases are still two different entities and 230 

accordingly only 10% of the miRNAs that has changed in either disease were shared.  231 

 232 

In summary, we have characterized a large FTD plasma cohort for miRNA expression by next 233 

generation sequencing and found specific patterns of changes that can contribute to diagnosis of 234 

FTD. These patterns seem to involve the ALS-FTD continuum, alluding to differences and 235 

commonalities in the underlying mechanisms that drive molecular changes in ALS and FTD.  236 

 237 

238 
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Materials and Methods 239 

Standard protocol approvals, registrations, and patient consents 240 

Approvals were obtained from the local research ethics committee and all participants provided 241 

written consent (or gave verbal permission for a carer to sign on their behalf). For ALS samples, 242 

recruitment, sampling procedures and data collection have been performed according to Protocol 243 

(Protocol number 001, version 5.0 Final – 30th November 2015). 244 

Study design 245 

Based on power analysis, we found that about 20 control and 50 FTD samples are required to 246 

obtain an ROC of 0.7 with a power of 80% and a p-value of 0.05. We determined the sample size 247 

based on these calculations. Because sample processing was done in different batches, samples 248 

were randomly allocated to the batches and within each batch, the number of control and 249 

FTD/ALS/MS samples was balanced in order to reduce batch-associated bias.  250 

Participants and sampling 251 

Participants were enrolled in the longitudinal FTD cohort studies at UCL. Frozen plasma 252 

samples from the UCL FTD Biobank were shipped to the Weizmann Institute of Science for 253 

molecular analysis. Study cohort I: 52 FTD patients, 21 healthy controls. Study cohort II: 117 254 

FTD patients, 35 healthy controls. FTD patients were further assigned into two groups with 255 

predicted pathology of TDP-43 or tau, based on genetics and clinical phenotype. Patients 256 

positive for C9ORF72 repeats and progranulin (PRGN) mutations and/or presented with 257 

semantic dementia, were predicted to have TDP-43 pathology, while patients with MAPT 258 

mutations were predicted to have tau pathology. Demographic data are detailed in table 1.  259 

ALS and MS samples and their respective healthy controls (N = 115, 17 and 103, respectively) 260 

were obtained from the ALS biomarker study. ALS patients were diagnosed according to 261 
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standard criteria by experienced ALS neurologists (32). Healthy controls were typically spouses 262 

or relatives of patients. Demographic data are detailed in table 2.  263 

Plasma samples were stored in -800C until RNA extraction and subsequent small RNA next 264 

generation sequencing.  265 

 266 

Small RNA next generation sequencing  267 

Total RNA was extracted from plasma using the miRNeasy micro kit (Qiagen, Hilden, Germany) 268 

and quantified with Qubit fluorometer using RNA broad range (BR) assay kit (Thermo Fisher 269 

Scientific, Waltham, MA). For small RNA next generation sequencing (NGS), libraries were 270 

prepared from 7.5 ng of total RNA using the QIAseq miRNA Library Kit and QIAseq miRNA 271 

NGS 48 Index IL (Qiagen), by an experimenter who was blinded to the identity of samples. 272 

Following 3’ and 5’ adapter ligation, small RNA was reverse transcribed, using unique 273 

molecular identifier (UMI), primers of random 12-nucleotide sequences. This way, precise linear 274 

quantification miRNA is achieved, overcoming potential PCR-induced biases (18). cDNA 275 

libraries were amplified by PCR for 22 cycles, with a 3’ primer that includes a 6-nucleotide 276 

unique index. Following size selection and cleaning of libraries with magnetic beads, quality 277 

control was performed by measuring library concentration with Qubit fluorometer using dsDNA 278 

high sensitivity (HS) assay kit (Thermo Fisher Scientific, Waltham, MA) and confirming library 279 

size with Tapestation D1000 (Agilent). Libraries with different indices were multiplexed and 280 

sequenced on a single NextSeq 500/550 v2 flow cell (Illumina), with 75bp single read and 6bp 281 

index read. Fastq files were demultiplexed using the User-friendly Transcriptome Analysis 282 

Pipeline (UTAP) developed at the Weizmann Institute (33). Sequences were mapped to the 283 

human genome using Qiagen GeneGlobe analysis web tool. 284 
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 285 

Statistical analysis and machine learning 286 

Plasma samples with ≥40,000 total miRNA UMIs were included. miRNA with average 287 

abundance of ≥100 UMIs per sample, across all samples, were considered above noise levels. 288 

miRNA NGS data was analyzed via DESeq2 package in R Project for Statistical Computing (34, 289 

35), under the assumption that miRNA counts followed negative binomial distribution and data 290 

were corrected for library preparation batch in order to reduce its potential bias. Ratio of 291 

normalized FTD counts to the normalized control counts presented after logarithmic 292 

transformation on base 2. P values were calculated by Wald test (35, 36) and adjusted for 293 

multiple testing according to Benjamini and Hochberg (37). For binary classification by 294 

miRNAs, receiver operating characteristic (ROC) curves for individual miRNAs or combinations 295 

of miRNAs were plotted based on voom transformation of gene expression data in R (38). 296 

Graphs were generated with GraphPad Prism 5.  297 

Machine learning was performed on Python 3.6. Cohorts were merged and case-control number 298 

imbalance was mitigated by applying ADASYN algorithm (https://imbalanced-299 

learn.readthedocs.io/en/stable/api.html), which simulates synthetic new healthy sample data from 300 

the existing data. Then, K-Fold cross validation was performed on the pooled data set with K=3. 301 

An ROC was generated for each of the three folds and individual and mean AUCs were 302 

calculated.  303 

 304 

305 
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 442 

Table 1. Summary of demographic and clinical characteristics of FTD Cohorts I and II and 443 

control samples. bvFTD: behavioural FTD; PNFA: progressive nonfluent aphasia; SD: semantic 444 

dementia 445 
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 461 

 462 

Table 2. Summary of demographic and clinical characteristics of ALS, MS and control samples. 463 

ALSFRS-R: ALS functional rating scale. Demographic data recognizes that male ratio and age 464 

of first phlebotomy was significantly different between ALS cohort I and controls (proportion 465 

test: p<0.0001; t-test: p<0.001, respectively).  466 
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 486 

 487 

 488 

 489 

Figure 1. Predictive value of differential miRNA expression in FTD plasma. (A) MA plot of 490 

differential miRNA expression in FTD (n=52) and heathy control (n=21 plasma samples). Log-2 491 

transformed fold-change, against the mean miRNA abundance. Red -significantly changed 492 

miRNAs (p-value 0.05). (B) A volcano plot of differentially expressed miRNAs between FTD 493 

(n=52) and heathy control (n=21 plasma samples). Each dot represents a single miRNA, plotted 494 

according to log 2 fold-change (FC) in FTD vs control (X-axis), and the negative log 10 495 

transformation of p-value (Y-axis). Black horizontal line demarcates p<0.05 and dots denote 496 

miRNAs with statistically significant differential expression in FTD plasma; green - increased in 497 

FTD; blue - decreased in FTD. (C) Receiver operating characteristic (ROC) curves demonstrate 498 

the capacity of miR-379-5p (blue, AUC=0.71, p=0.005), miR-654-3p (green, AUC=0.71, 499 

p=0.006) and of a combinatorial signature of 20 miRNAs, whose differential expression is 500 

significant (red, AUC=0.79, p<0.0001; miRNAs listed in Table S1), to distinguish between FTD 501 

and healthy controls. True positive rate (sensitivity) as a function of the false positive rate (1-502 

specificity) for different cut-off values. P-values are calculated given null hypothesis of area 503 

under the curve (AUC) =0.5.  504 
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 513 

 514 

Figure 2. Replication of miRNA signature in a second cohort. (A) MA plot of differential 515 

miRNA expression in a second cohort of FTD (n=117) and a second heathy control cohort (n=35 516 

plasma samples). Log-2 transformed fold-change, against the mean miRNA abundance. Red -517 

significantly changed miRNAs (p-value 0.05).  (B). Scatter plot of correlation between fold 518 

change of 20 miRNAs, which classify FTD, between the first and second cohorts. (C) ROC 519 

curve of a combinatorial signature of 20 miRNAs, whose differential expression is significant in 520 

the first cohort, distinguishes between FTD and healthy controls of the second cohort. True 521 

positive rate (sensitivity) as a function of the false positive rate (1-specificity) for different cut-522 

off values. P-values are calculated given null hypothesis of area under the curve (AUC) =0.5. (D) 523 

ROC curves based on K-fold cross validation with N=3 for a merged data set of 136 miRNA 524 

expression in both the discovery and the replication cohort (169 FTD cases and 56 healthy 525 

controls). Red, ROC for fold 1; blue, ROC for fold 2; green, ROC for fold 3.   526 

 527 

 528 

 529 

 530 

Magen et al Figure 2 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408


 

 

 531 

 532 

 533 

 534 

Figure 3. Most important miRNA classifiers in cross validation. Top 20 miRNA classifiers in 535 

(A) cross-validation fold 1 (B) fold 2 and (C) fold 3. (D-F) ROC curves based on K-fold cross 536 

validation with N=3 for a merged data set including both the discovery and the replication cohort 537 

(169 FTD cases and 56 healthy controls), when (D) only the 43 miRNAs depicted as "top 20" in 538 

at least one fold (all of the miRNAs shown in panels A-C) are selected for classification. (E) 13 539 

miRNAs depicted as “top 20” in at least two folds are selected and (F) only the four miRNAs 540 

depicted as “top 20” in all three folds are selected.  Red, ROC for fold 1; blue, ROC for fold 2; 541 

green, ROC for fold 3.   542 
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 552 

Figure 4. Differential miRNA expression in ALS vs. FTD plasma. (A) Scatter plot of 553 

correlation between ALS/control ratio and FTD/control ratio. (B) Scatter plot of correlation 554 

between MS/control ratio and FTD/control ratio. (C) Venn diagram of comparison between ALS 555 

and FTD with 13 shared miRNAs in the black portion. (D) Venn diagram of comparison between 556 

MS and FTD with 5 shared miRNAs in the black portion. 557 
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Supplementary figures  559 

 560 

Figure S1. miRNA profiles of FTD subtypes. (A) MA plots of differential miRNA expression 561 

in bvFTD patients (N=25), (B) SD patient (N=8) and (C) PNFA patients (N=15) compared to 562 

healthy controls (N=21). Log-2 transformed fold-change, against mean miRNA abundance. Red 563 

-significantly changed miRNAs (p-value 0.05). ROC curve of a combinatorial signature of 20 564 

miRNAs, whose differential expression is significant in the first cohort, distinguishes (D) bvFTD 565 

(E) SD and (F) PNFA from healthy controls, in the first (black) and second (red) studies. True 566 

positive rate (sensitivity) as a function of the false positive rate (1-specificity) for different cut-567 

off values. P-values are calculated given null hypothesis of area under the curve (AUC) =0.5.  568 

(G) MA plot for differential miRNA expression between PNFA (N=15) and non-PNFA FTD 569 

cases (bvFTD + SD (N=33)). Red- significantly changed miRNAs (p<0.05). (H) ROC curve 570 

based on combinatorial signature of 14 significant miRNAs for distinguishing PNFA and non-571 

PNFA FTD cases. 572 
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 574 

Figure S2. miRNA profiles associated with FTD neuropathologies. (A) MA plots of 575 

differential miRNA expression in FTD patients with predicted Tau pathology (N=19) vs patients 576 

with predicted TDP-43 pathology (N=63) from both cohorts used in the study. Log-2 577 

transformed fold-change, against mean miRNA abundance. Red -significantly changed miRNAs 578 

(p-value 0.05). (B) ROC curve based on combinatorial signature of 14 significant miRNAs for 579 

distinguishing FTD cases with Tau pathology from those with TDP-43 pathology. 580 

 581 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408

